SINGLE CRYSTAL SURFACE ENGINEERING

W. Kurz C. Bezençon S. Mokadem J.-D. Wagnière

Swiss Federal Institute of Technology Lausanne (EPFL)

J.-M. Drezet

M. Hoebel M. Konter **CALCOM** Lausanne

ALSTOM Power Baden

Physical Metallurgy - EPFL

SX - SURFACE ENGINEERING

- What is SX surface engineering ?
- Why ?
- How does it work ?

THE CONCEPT OF SX - SURFACE ENGINEERING

- SX superalloys are generally used for HPT turbine blades.
- Mechanical properties \uparrow when
 - 1. Cr (oxidation) \downarrow
 - 2. C, B, Zr (grain boundaries) \downarrow

THE CONCEPT OF SX - SURFACE ENGINEERING - I COATING

Low Cr superalloys require protection against oxidation and corrosion :

- Present day technique: plasma spray
 Cr rich polycrystalline NiCrAly coating.
- Ni has high crystal (E) anisotropy → incompatibility stresses in thermal cycling → premature cracking.

SOLUTION: SX COATING ON SX BLADE

E-MODULUS ANISOTROPY OF Ni

Phase γ - Siebörger et al.

 $E_{[100]} \sim 125 \text{ [GPa]}$ $E_{[111]} \sim 310 \text{ [GPa]}$

LASER CLADDING PROCESS

MICROSTRUCTURES / DEFECTS

EPITAXY

Ensure at the surface

- metallic contact with the substrate
- similar crystal structure of primary phases

LASER CLADDING PROCESS

EPITAXY

MCrAly with

low Al

high Al

γ primary phase

β primary phase

SINGLE CRYSTAL LASER CLADDING OF

MCrAIY ON CMSX 4

MCrAlY

CMSX-4

DENDRITE BRANCH SELECTION

COLUMNAR-EQUIAXED TRANSITION CET

Avoid nucleation and growth in the constitutionally undercooled region ahead of the columnar dendritic zone

COLUMNAR TO EQUIAXED TRANSITION

COLUMNAR TO EQUIAXED TRANSITION *Effect of G and V*

COLUMNAR TO EQUIAXED TRANSITION

$$\frac{\Delta T_c}{G} < N_0^{-1/3}$$

$$\Delta T_c = \Delta T_0 (a \cdot V)^{1/n}$$

$$\Delta T_0(a \cdot V)^{1/n} < G \cdot N_0^{-1/3}$$

$$\frac{G^n}{V} > a \cdot (\sqrt[3]{N_0} \cdot \Delta T_0)^n$$

$$\frac{G^n}{V} > a \cdot \left\{ \sqrt[3]{\frac{4\pi \cdot N_0}{3\phi_c}} \cdot \frac{\Delta T_0}{1+n} \right\}^n \quad \Longrightarrow \quad \frac{G^n}{V} > K$$

, for a columnar structure

MICROSTRUCTURE SELECTION MAP

PROCESSING PARAMETERS

Calculation of

- temperature gradient, G
- interface velocity, V

as a function of position in the melt pool

calcom - EPFL

Temperature Gradient

Rosenthal Solution of the Heat-flux equation

Solidification velocity

Isotherm velocity : $V_{iso} = V_b \cdot \cos \theta$

Solidification velocity

COMBINATION OF PARAMETERS CHARACTERISTIC FOR MICROSTRUCTURES & PROCESSING

MICROSTRUCTURE-PROCESSING MAP

PROCESSING-MICROSTRUCTURE MAP

 $T_0 = 20^{\circ}C$

 $T_0 = 1000^{\circ}C$

0°

LASER REMELTING

EPFL

60°

LASER CLADDING MCrAIY Orientation analysis (EBSD)

[100] Pole Figure

SX CLADDING OF MECH. TEST SPECIMEN

Transverse Section

MCrAlY - 0,3 mm

MICROSTRUCTURE OF TEST SPECIMEN

[110]

REPAIR ENGINEERING

High price of SX components, typically 5 k€ per blade, asks for life time extension techniques

THE CONCEPT OF SX - SURFACE ENGINEERING - II REPAIR ENGINEERING

Low C, B, Zr superalloys form (at high T) mechanically strong crystals - but are very week at grain boundaries:

• avoid formation of g.b.

SOLUTION: SX REPAIR OF SX BLADES

LASER METAL FORMING

Platform crack due to thermo-mechanical fatigue

After cutting/polishing

AFTER LASER METAL FORMING

LASER METAL FORMING

Microstructure Analysis

8 laser traces

54°

CONCLUSIONS

- Epitaxial Cladding,
- Epitaxial Laser Forming,
- (also Epitaxial Welding),
- can be achieved on SX components. It requires solidification theory for a close control of
- macroscopic heat flux (epitaxy) and
- •microstructure development to control CET.

CONCLUSIONS

Today there is industrial activity to transfer the concepts into production for stationary gas turbines and aircraft engines. Ideal ground for application of long term university research to industrial problems.

