Kinetics of reconstructive austenite to ferrite
transformation in low alloy steels

R. C. Reed and H. K. D. H. Bhadeshia

A thermodynamic model has been coupled with simplified kinetic theory, so that, subject to a number of assumptions, the one-
dimensional parabolic thickening constant o, for allotriomorphic ferrite growing from austenite can be estimated as a function of
temperature and composition. To do this, kinetic theory for ternary Fe—C—X systems (where X represents a substantial alloying
element ) is extended to multicomponent alloys. Values of « , calculated assuming local equilibrium and paraequilibrium are
compared. Consistent with recent calculations, the slope of the o, versus temperature plot is found to change abruptly on entry
into the negligible partitioning local equilibrium regime, consistent with an increase in interfacial velocity. At very high
supersaturations, the effect of the cross-terms in the diffusivity matrix appears to be small and onl y then can their effect be
ignored. At temperatures below the Ae;, the value of «,, calculated assuming local equilibrium, is less than that calculated
assuming paraequilibrium. Classical nucleation theory is used to model the ferrite allotriomorphs as discs growing from prior
austenite grain boundaries. It has been demonstrated that the model developed here can reproduce the C-curve behaviour

typical of those parts of the time—temperature—transformation diagrams that are due to allotriomorphic ferrite, provided the
paraequilibrium mode of transformation is assumed to be operative. This work therefore suggests that in multicomponent alloys,
the state of true local equilibrium does not exist at the advancing interface. Some problems associated with the paraequilibrium

mode of transformation during reconstructive growth are discussed.
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Introduction

Concept of local equilibrium

In the past 30 years or so, there has been remarkable
progress in the collection and assessment of thermodynamic
data for metals and alloys. Such work is near fruition,
since there is now available a number of software systems
(e.g. Refs. 1, 2) capable of estimating the phase diagram as
a function of pressure, temperature, and the combined
effect of numerous alloying elements, given a starting set
of possible phases.

The ability to predict diagrams in this way is of obvious
necessity in the design of new alloys. However, in many
applications, metastable phases are present, often because
they offer advantageous properties. Indeed, many large
scale processes are now tending towards conditions of high
supercooling, since it is in those circumstances that ultrafine
grained microstructures, phases having non-equilibrium
solute concentrations, etc. can be produced. It follows that
detailed understanding of the kinetics of phase transform-
ations in metals and alloys is becoming of overriding
importance in a coordinated search for alloys having
improved and novel properties.

This work represents an attempt to model the decompos-
ition of austenite to allotriomorphic ferrite, so the part of
the time—temperature—transformation (TTT) diagram that
is due to this reaction product can be estimated as a
function of temperature and alloy chemistry. Emphasis is
placed on performing this for multicomponent alloys,
because it is these that are relevant both practically and
commercially.

Since it is the phase diagram that governs the extent of
austenite decomposition, and because austenite and ferrite
are to be assumed to be in local equilibrium at the
interface, the work described here is heavily dependent
upon a suitable thermodynamic model for the iron rich
corner of the phase diagram. The model that was employed
is described in the Appendix and, in much greater detail,
in Ref. 3.

The starting assumption for the kinetic analyses of many
phase transformations is that of local equilibrium at the
moving interface. For the decomposition of austenite to
allotriomorphic ferrite in a binary Fe-C steel, local
equilibrium implies that the interface adopts the carbon
compositions x}* and x{” in the austenite and ferrite phases
respectively, given by the binary phase diagram.*~° It also
implies that solute and solvent atoms both have atomic
mobility outside the interface, because austenite and ferrite
have different densities, and therefore mass flow is necessary
if the transformation is to be stress free.>® There must
exist sufficient atomic mobility within the interface for the
reconstruction of the parent lattices to occur there; such
mobility destroys any atomic correspondence between the
parent and product lattices. The tieline fixing the interface
composition passes through the mean alloy composition
and the rate of migration of the interface is given by
solving Fick’s laws, taking conservation of solute into
account. In this sense, the kinetic theory is decoupled from
the thermodynamic theory, because the calculation of the
interfacial velocity follows from the unique tieline available.

In a ternary system Fe-C-X, where X represents a
substitutional solute, it is in general impossible for the
system to choose the tieline passing through the mean
alloy composition,” *? because of the need to satisfy
simultaneously the mass conservation conditions for solute
species having very different mobilities: the diffusivities of
carbon and X differ typically by six orders of magnitude.
The particular tieline chosen depends upon the kinetic
theory, so that, in this case, the thermodynamics and
kinetics are more strongly coupled.

Quantitative theory’~'? has been developed previously
for the prediction of the tieline choice under the local
equilibrium assumption. The theory predicts that, at low
supersaturations, there is bulk partitioning of the substi-
tutional X, and the activity gradient of carbon in austenite
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ahead of the interface is almost zero, so that the necessity
for diffusion of carbon away from the «/y interface is
almost entirely eliminated. This is termed the partitioning
local equilibrium (or PLE) mode, in recognition of the fact
that X partitions during growth.

At high supersaturations, there is negligible partitioning
of substitutional solute and a sharp concentration gradient
or ‘spike’ of X exists ahead of the interface; this allows the
substitutional solute to keep pace with the carbon. This is
termed the negligible partitioning local equilibrium (or
NPLE) mode of growth.

Only a small amount of work has been carried out on
the kinetic analysis of multicomponent steels. In a recent
review, DeHoff'* showed how the quantitative theory
could be applied in this case. However, the cross-terms in
the diffusivity matrix were assumed to be negligible, and
calculations were not performed. In the present work, the
effect of the distribution of substitutional solutes on the
flux of carbon ahead of the interface is considered and
detailed calculations are performed.

Although the concept of local equilibrium has not yet
been tested in a direct sense, ie. by measurement of the
atomic concentrations at and near the interface between
two phases, the theory is in broad agreement with diffusion
couple experiments,® measurements of the growth velocities
of individual allotriomorphs,'* and studies on the bulk
partitioning of substitutional solutes as detected using
electron microprobes.!? However, as is discussed below,
there are some problems associated with the assumption
of local equilibrium at the moving interface; the concept
of paraequilibrium is often envisaged at high undercoolings.
In the following section, the kinetic theory necessary for
the prediction of tielines governing interfacial compositions
during diffusion controlled growth in ternary Fe-C-X
systems is reviewed, then the theory is extended to
multicomponent steels.

Growth kinetics

TERNARY Fe-C-X SYSTEM

Kirkaldy” was the first to obtain general solutions to the
multicomponent diffusion equations for planar, cylindrical,
and spherical precipitates. These equations have been
applied®~'2 to the ternary system Fe—C—X and a reasonable
level of agreement between theory and experiment has
been found.

For the ternary system 0—1-2, in which 0 is the solvent
(Fe), 1 is an interstitial solute (C), and 2 is a substitutional
solute (X) the appropriate diffusion equations for planar
growth are®®

dc 0%c 0%c,

‘6t_1 =Du 6221 D1, 0z> M
and

dc ¢ d%c,

#:DZIFZHLDZZEZT N )}

where D;; are the chemical diffusion coefficients (assumed
concentration independent), the ¢; are the concentrations
in moles per unit volume, z is the coordinate normal to
the interface, along which ferrite is growing, and t refers
to the time measured from the start of precipitate growth.

Because components 1 and 2 diffuse interstitially and
by a vacancy mechanism respectively, it follows that

D1,>>D22...............(3)

moreover, for dilute solutions, it has been demonstrated!¢17
that

Dyy»Dy;, and Dyy»Dyy . . . . L L L. (4

The above conditions indicate that equations (1) and (2)
can be approximated by

oc, d%c, e

§= 11?-{—1)1252—2 N &)
and

0c, d%c,

E_Dzz—ﬁf N ()]

so that the distribution of carbon in austenite can be
assumed to have a negligible effect on the flux of X ahead
of the o/y interface.

Coates®!® has obtained the solutions to equations 5)
and (6) corresponding to the diffusion controlled growth
of ferrite, by setting D,, = 0 in Kirkaldy’s general solutions’
for the ternary system. The solutions can be written

Cl =51 -+ [%_ )+cya_51:|w

Dy —D,, ! erfe{a, /2(Dy,)"?}
_ Dy,(c¥ —¢,) | erfe{z/2(D,,1)/?} )
Dy —D,, erfc{ocl/Z(Dzz)”z}
fciz/2(D,, 1)1}
=+ (e — ) 20 )

erfcio, /Z(Dzz)”z }

where ¢; and ¢}* are the concentrations of component i
in the alloy or bulk austenite and in the austenite at
the austenite/ferrite interface, respectively. The position of
the interface z = Z is given by

Z=ayt' L9

where «, is known as the one-dimensional parabolic rate
constant or parabolic thickening constant.

The interfacial mass conservation conditions for
components 1 and 2 are respectively

o dc dc
(Calw_c?)z"_\}t:Dua—Zl +D126—ZZ I S (10)
z=Z z=2Z
and
oo Oy dc,
=) — = - B 0 8|
(c5 —c% 2\/I Ds, oz, (11)

where ¢f” is the concentration of component i in ferrite
at the interface. Differentiating equations (7) and (8) with
respect to z, combining with equation (9), and substituting
into equations (10) and (11) yields

B,D
fi=H{{Dy}— (—1&>(H1{Dn}—H1{Du})

Dll - DZZ
B (12a)
JSa=H{Dy;} (12b)
where
n \!/2 o ol
Hl {Dii} = (E) erfc {W} exXp {a (]20)
@ __ .ay
B,= =% (12d)
cr—cf
and f, and f; are fractional supersaturations given by
Ei — anx .
ﬁ=m f0r1=1,2 e (13)

1
The term B, represents the slope of the «/y interface
tieline, provided that on orthogonal ternary isotherms,
components 2 and 1 are the ordinate and abscissa,
respectively.

Under the assumption of local equilibrium at the
interface, only one of ¢}, ¢¥, c¥*, and %' is independent,
since they are all linked by a tieline of the equilibrium
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phase diagram. Equation (12) therefore contains two
unknowns and thus can be solved simultaneously to
determine the growth velocity and the tieline governing
interfacial compositions during growth.

The above theory is based upon the assumption that
the diffusion coefficients are concentration independent.
While this is probably a reasonable assumption for
substitutional elements, the diffusivity of carbon is known
to be strongly concentration dependent,'®1° and in diffusion
controlled reactions it is imperative to account for this
effect.® Trivedi and Pound® have demonstrated that for
most purposes, a weighted average diffusivity D,,, given

by
_ i p , T}
Dll{qu}:f ;;{)Clxy—ajdxl o g ]
X% 17— X1

can adequately represent the effective diffusivity of carbon
in austenite. The term x, is the mole fraction of carbon in
austenite, x* is the mole fraction of carbon in austenite at
the interface, and x, is the mole fraction of carbon in
austenite remote from the interface. Even though this
expression is strictly valid only for steady state growth,
Coates'? has suggested that it should also be a reasonable
approximation for parabolic growth. Throughout this
work, D, is used in place of D,,.

Whereas there are many empirical expressions for Dy,
{xy, T}, the theoretical representation due to Siller and
McLellan?!22 considers the kinetic and thermodynamic
behaviour of carbon in austenite. The model takes into
account the concentration dependence of the activity of
carbon in austenite and the existence of a finite repulsive
interaction between nearest neighbouring carbon atoms
situated in octahedral sites.?* The diffusivity is represented
by

Dyyixy, Ty = (kT/h)(exp{ — AG*/kT})(42 /3T, )n{0}

(15a)
where
n{b}/ai =1+ {W(l + O)[1 —(0-5SW + 1)0
+(025W2 + 0-5W)(1 — )67,
+(1/a})(1 + 0)(da3 /26)
(15b)

where k and h are the Boltzmann and Planck constants
respectively, W is the number of octahedral interstices
around a single such interstice (equal to 12 in austenite),
AG* is an activation free energy, I m 18 an activity coefficient,
4 is the distance between {002} austenite planes, and aj is
the activity of carbon in austenite. The term ¢ is given by
¢ =1—exp{—w,/kT}, where w, is the nearest neighbour
carbon-carbon  interaction energy (taken to be
8250 Jmol ') and 6 is the ratio of the number of carbon
atoms to the total number of solvent atoms, given by
6= x;/(1 —x,). Bhadeshia®® found AG*/k =21230 K and
In{I,,/A*} = 31-84. Substitutional alloying elements change
the carbon-carbon interaction energy w,, and therefore
influence D,,. The method adopted here to account for
this effect follows that due to Bhadeshia.2®

The on-diagonal diffusion coefficients D, for substi-
tutional elements can be evaluated from the compilation
due to Fridberg and co-workers.?” Provided the solution

EXTENSION TO MULTICOMPONENT SYSTEM

The kinetic theory developed by Kirkaldy, Coates, and
other workers applies to ternary systems of the form Fe_
C-X and testing of the theory has always been carried
out against ‘model’ ternary alloys. There is obviously
a great desire to develop such kinetic theory for multi-
component steels, because it is these that are important
both practically and commercially. The above analysis is
now extended to multicomponent steels, in which a number
of substitutional components have been added to the
Fe—C binary.

To do this, it is necessary to adopt further assumptions,
which make the problem of ticline choice easier. In the
following analysis, it is implicit that substitutional—
substitutional terms Dy (j, k>1) in the diffusivity matrix
are negligible. This amounts to the assumption that the
flux of one substitutional element is not influenced by the
presence of a (possibly large) concentration gradient of a
second. Although this may be a major assumption, in
many cases experimental measurements of the cross-terms
in the diffusivity matrix have not been carried out.

By analogy with equations (5) and (6), the multi-
component diffusion equations considered here are

oc n 0%¢;
a_tlzi;D“F""""""(17)
and

de: e

o s fori=2on ... (g

It is possible to demonstrate by substitution that the
solutions to equations (17) and (18) are

_ & | Dyile* —¢) e =
Cl—Cl'f‘{iZZl: Dll—Dii +cq Cq

erfc{z/2(D,1)/?}
X ———EAZnY S
erfeioy /2(Dyy ) 2}

-~ i Dyi(c* —¢;) | erfe{z/2(D;;0)'7?}
i=2| Dy —Dy erfc{a1/2(Dii)1/2}

and

ot (e erfc{z/2(Dy;1)"/?}
O T Y et 2D, T

The mass conservation conditions are now

fori=2-n (20

) o dc n Je;
@ =5 =DuZ| + 3 Dyt 21
z=7 1= z=27
and
oc:
(cf“f—c{a)zﬁj—fuﬁa—cz‘ fori=2-n . . . (22
A% z=27

where ¢f” is the concentration of component i in ferrite.
By differentiating equations (19) and (20) with respect to
z, combining with equation (9), and substituting into
equations (21) and (22), the problem of tieline choice can
be expressed by

o B;D;
fi=HiDu}= 3, <ﬁ>(mwﬁ}—mw“})

is dilute, the cross-terms D;; can be expressed'® in terms (23a)
of the Wagner interaction parameters &;; fi=H{{Dy} fori=2-n (23b)
£q;X
Dyi/Dyy = 1! (1) ~ Where
1+811x1 H,(D,) 7 \1/2 o Otf
The ratio Dy;/Dy; is also concentration dependent, but pe (4 Dﬁ> erfc {2 Dili/z} exp {E} (23¢)
numerical calculations?® suggest that the use of a constant .
Dyi/Dyy, evaluated at the interfacial composition x7?, gives B,=¢ —¢G fori=2—n (23d)
an adequate approximation to the problem.!? P —c¥
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In all the calculations that follow, the terms D,; are
evaluated according to equation (16). Although this equa-
tion was derived'®'” for the ternary system, the assumptions
implicit in writing equation (18) mean that no further
assumptions are introduced if this equation is adopted.

PARAEQUILIBRIUM

There are some problems associated with the above theory.
With decreasing temperature, the local equilibrium assump-
tion predicts® that the width of the solute ‘spike’ rapidly
approaches the width of the interface itself. Even before
the concentration gradient reaches such an unfeasible
magnitude, it is not clear whether the substitutional atoms
possess the atomic mobility necessary to partition ahead
of the interface.

The concept of paraequilibrium has been introduced?®-3!
to describe the kinetically constrained equilibrium in which,
subject to the constraint that substitutional alloying
elements do not redistribute during transformation, the
carbon atoms at the interface are in local equilibrium. In
this case, it is then implicit that the chemical potentials of
iron and the substitutional elements change abruptly at
the o/y interface.

Under the assumption of paraequilibrium, there is only
one possible tieline for the interface to choose at constant
temperature, because the ratio of the concentration of iron
to that of each of the substitutionals is constant. It is
therefore necessary to determine only ¢}* and ¢¥ as
functions of temperature. In this case, the kinetic theory is
once again decoupled from the thermodynamic theory;
the one-dimensional parabolic thickening rate can then
be determined from the equation

fi=H{Dyy . . .29

where D, is the weighted average diffusivity, given by
equation (14).
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Finally, it should be noted that the lack of bulk
partitioning of substitutional alloying elements is
insufficient to distinguish between the NPLE and the
paraequilibrium modes of transformation; the substitutional
alloying composition in austenite must be measured at the
a/y interface. In addition, as will be seen in the calculations
that follow, the difference between the interfacial velocities
calculated under the local equilibrium and paraequilibrium
modes becomes very small at high undercoolings.

Calculation of parabolic thickening rate

If the /(e + y) and 7/(y + «) surfaces are known as functions
of alloy chemistry, the above equations can be solved to
yield a value for the one-dimensional thickening constant
o, for the multicomponent system. It is therefore necessary
to couple the thermodynamic model to the kinetic model,
because the multicomponent tielines need to be known.
The calculations must necessarily involve iterative pro-
cesses, since the equations are non-linear. In the following
calculations, one further assumption is made that

= a = ya
¢ —cl o Xi—X]

~ oy ya
Xi'—X

fi=

T o fori=1-n . . . . (29
so that the supersaturations in equations (23) and (24) are
calculated using concentrations expressed as mole fractions.
This is equivalent to the assumption that the densities of
austenite and ferrite are equal.

To illustrate the behaviour predicted by the theory,
calculations have been carried out on three alloys, namely,
a ternary alloy Fe—-0-33C-1-00Mn (wt-%), as well as En 16
and En19,*? the last two being multicomponent steels.
The rate constants calculated under the local equilibrium,
and paraequilibrium assumptions, are presented in Figs. 1,
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2, and 3 respectively, together with the values of the
supersaturations, as given by equation (13).

The predicted behaviour can be summarised as follows.
Under PLE, the supersaturations of the substitutional
solutes increase with decreasing temperature, finally becom-
ing very nearly equal to unity on entry into the NPLE
regime; at this temperature, o, increases dramatically. At
lower temperatures, a; decreases in magnitude, reflecting
the decreasing diffusivities. At temperatures below Ae,
a, calculated under the paraequilibrium assumption
is greater than that calculated under local equilibrium.
However, at temperatures within the NPLE regime, the
difference is only marginal. This effect occurs because,
at low temperatures, the substitutional-substitutional
diffusional interaction has little influence on the growth
kinetics, because the carbon distribution becomes too steep
to respond to the X distribution.'® In this case, equation
(23a) reduces to

- BiDy;
f1=H1{D11}—izz<r_ll)ii>(H1{Dii}—H1{D11})
~H,{D,} N 1)

The results are in qualitative agreement with the recent
calculations of Enomoto,> although this analysis was
limited to ternary systems.

Nucleation and growth theory

Recently, Bhadeshia et al* described theory capable of
modelling the nucleation and growth of allotriomorphic
ferrite. The allotriomorphs, before site saturation, are
modelled as discs having their faces parallel to the austenite

Plane surface of area O, parallel
to 7 grain boundary

Allotriomorphs of half-thickness ¢, radius 3¢

v grain boundary

4 Model for nucleation and growth of allotriomorphic
ferrite: allotriomorphs are modelled as discs of half-
thickness g and radius 3q such that their faces lie
parallel to austenite grain boundary

grain boundary plane (Fig. 4). The discs are assumed to
grow radially, with the half-thickness ¢ and radius 7nq
varying parabolically with time, through the equation g =
a; t'/2. The aspect ratio 7 of the allotriomorphs is considered
constant, because the lengthening and thickening processes
are actually coupled; consistent with the experimental
evidence, 7 is taken as 3-0.

The approach closely follows Cahn’s analysis®® of grain
boundary nucleation and growth kinetics and is as follows.
Consider a plane surface of total area O, parallel to a
particular boundary; the extended area O%* is defined as
the sum of the areas of intersection of the discs with this
plane. It follows that the small change 60¢* in O¢* due to
a disc nucleated between t =1 and ¢t =7 + ot is

003 =10, I [(n, )*(t — 1)]0t if o (t—1)'2 >y
(27a)
and
005 =0 ifa(t—1)'%<y (27b)

where Iy is the grain boundary steady state nucleation
rate per unit area of boundary. The term t is the incubation
time for the nucleation of one particle. Only allotriomorphs
nucleated for 7> (y/a;)* can contribute to the extended
area intersected by the plane at y; if ¢ takes a value less
than (y/o,)?, then the allotriomorph has not had sufficient
time to grow the distance y to the arbitrary plane. It
follows that the entire extended area is given by

ex
0;

t=(y/as)?
f (noty ) *mOy I(t — ) dt

0
=30 Iy, P 2(1—0%) . . . . . . . (28)

where 0= y/(a;1/?), corresponding to the ratio between
the distance to the arbitrary plane and the half-thickness
of the allotriomorph at time ¢.

The actual area O, which intersects the plane 0, will be
somewhat smaller than the extended area, because the
extended area includes a fraction [1 —(0,/0y)] of ‘phantom’
area which has already transformed to ferrite. The relation-
ship between the extended area and the actual area O, is
then given by3%-37

05/0,=In{1—(0,/00)} . . . . . . . . . (29

Assuming that there is no interference with allotriomorphs
from other boundaries, the total volume V¥, of material
originating from this grain boundary is given by integrating
y between negative and positive infinity; in terms of 0 this
gives

1
Vp=2 j Oyot; t'2(1 —exp{—05*/0y}) d6

0

1
= ZJ Opay 121 —exp{ —0-5nly(na,)?t3(1 — 6%)}] dO
0

=20na, "2 f{nay, Is, 8} . . . . . . . . (30)
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where
1
Sinoy, Iy, t} = J I —exp{—0-5nly(noy ) t2(1 — 6*)} do

0
(1)

If the total grain boundary area is Oy =Z0,, then, by
substituting Og for O, in the above equation, the total
extended volume V¢ of material is found; this is an
extended volume, because allowance was not made for
impingement of discs originating from different boundaries.
Thus,

Ve =205t 2 finay Iy, ty . . . (32)

and if V is the total volume, and Sy the y grain surface
area per unit volume, then

VIV =28Sva, t" 2 f oy, g, ey . . . . (33)

This can be converted into the actual volume V, using the
following equation (related to equation (29))

V(Ve)=1—exp{—V& /i)y, . . . . . . . (34

where ¢ is the equilibrium volume fraction of ferrite, so
that V4 is the volume of ferrite in the austenite matrix.
The term ¢ can be estimated from the phase diagram, by
calculation of the tieline passing through the mean alloy
composition

C_i — Ciya

b= (35)

T
Since the tieline under consideration passes through the
overall alloy composition, ¢ can be evaluated using the ¢
values of any of the components in the system. It should
be noted that in the paraequilibrium mode of transform-
ation, ¢ is equal to f;, independent of the volume fraction
transformed. Under local equilibrium, ¢ does not equal
any of the values f; until the end of the transformation,
when austenite and ferrite reach their equilibrium volume
fractions.

It follows that

—Inil =G =2Sy/d)us t 2 f{nay, Ig, 1} . . .. (36)

where {=V,/(V$) is often referred to as the extent of
reaction. It corresponds to the volume of o divided by its
equilibrium volume.

The value of the integral f tends to unity as I increases
or time increases, since site saturation occurs. In the limit,
as the integral tends to unity, equation (36) simplifies to
one-dimensional thickening governed by the equation

—In{l =0 =2Sy/g)o > . . . L (37)

In summary, the theory takes into account hard impinge-
ment between allotriomorphs growing from the same, or
adjacent, austenite grain boundaries. It should be noted,
however, that soft impingement (the overlap of diffusion
fields) between neighbouring allotriomorphs is ignored.

Classical nucleation theory

To use the above theory to estimate the time—temperature—
transformation (TTT) curves for the decomposition of
austenite to allotriomorphic ferrite, it is necessary to
derive a function that describes the process of nucleation.
Following classical nucleation theory (e.g. Ref. 6), the steady
state rate of nucleation on grain boundary faces per unit
area of boundary is given by
f _ arf kT —(AGirit + Q)
Iy=N I exp { T }

where NP is the number of face sites per unit area of

(38)

boundary supporting nucleation, k is the Boltzmann
constant, h is the Planck constant, T is the absolute
temperature, AG';, is the critical activation free energy per
atom for nucleation on faces, and Q is an activation free
energy per atom, for atoms crossing the austenite/ferrite
nucleus interface. The term kT/h is in effect a frequency
factor for atomic vibrations in the crystal lattice.

In the calculations that follow, Nf is defined through
the equation

N'=Kya® . . ... 39

where K is the fraction of face sites supporting nucleation
and a is the interatomic spacing, taken as 0-25 nm. The
term K allows for the ‘poisoning’ of possible nucleation
sites on the boundary.

There are many expressions available for the critical
activation energy AGL,,. If the strain energy associated
with the nucleus is ignored, common expressions are of
the form (e.g. Refs. 38, 39)

O.3

AGf:rit = Ah(;‘zl
where AGy is the free energy per unit volume for ferrite
nucleation from supersaturated austenite (calculated here
using the parallel tangent construction) and o is the
austenite/ferrite nucleus interfacial energy per unit area,
which is taken as 02Jm™2, which is assumed not to
vary with interfacial orientation or alloy chemistry. The
multiplication factor K% takes into account non-spherical
nucleus shape (e.g. Ref. 39).

Nucleation is also possible on grain boundary edges and
corners, where different site densities and activation energies
apply. For nucleation on edges, the following expression
is adopted for the rate of nucleation on grain boundary
edges per unit area of boundary I§

§=$k_Texp{—(AGim+Q)} _

a h kT

where N° is the number of edge sites per unit edge of
boundary supporting nucleation and AG¢,;, is the critical
activation free energy per atom for nucleation on grain
edges. The term N° is defined through the equation

_K
B a

Ky © . .. @

(1)

N¢ (42)
where K is the fraction of edge sites supporting nucleation
and AG¢,, is given by

0.3

AG%
where K5 is a constant taking into account the shape of
the critical nucleus.

For nucleation on corners, the expressions considered
are as follows

NKT  [~(AGEw+Q)
a* h kT )
where I§ is the rate of nucleation on grain boundary
corners per unit area of boundary and N°= K¢ represents
the fraction of corner sites supporting nucleation. The
term AG¢,;, is given by

0.3

AGg,“=A—G%K§ e N 3]
where K$ is the shape factor for corner nucleation.

Summing the contributions from faces, edges, and
corners, the total nucleation rate (to be used in
equation (36)) is given by the expression

=It+I5+Iy . . . . . . . .. .. . @46
As discussed by Cahn3® and Christian®

AGiuw=-—=KS . . . . . . @

(44)

c
B

the order
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K% > K$ > K$ is expected, so that AGL; > AGS, > AGE,,,.
However, the relative nucleation rates do not necessarily
increase in the same order as the activation energies for
nucleation decrease,® since the density of sites also decreases
as the mode of nucleation changes from faces, to edges,
and finally to grain boundary corners. It is to be expected
that N*> N¢/a> N°/a?. This means that, with decreasing
temperature, corners, edges, and finally faces make the
greatest contribution to the nucleation rate.

It is possible to make approximations to equations (38),
(41), and (44). For example, at temperatures well below the
Ae,, nucleation at faces is likely to dominate; moreover,
the activation free energy for nucleation becomes relatively
small and the diffusion of atoms across the austenite/ferrite
nucleus is the rate controlling step; equation (38) then
approximates to

KT (=0
f o~ f .
IBNN—h exp{TT} N CY))

At slightly higher temperatures, nucleation is dominated
by a high AG',, which is in turn dependent upon the
driving force for transformation and the interfacial energy;
equation (38) then approximates to

kT —AGE,
It~ Nf— —==L 4
BN A exp{ T } (48)

Method of fit to experimental data

The experimental data chosen for analysis are contained
in the BISRA atlas,* which is one of the more meticulously
determined sets of TTT curves. Since it is necessary to
distinguish between the parts of the C-curves representing
the formation of allotriomorphic ferrite due to recon-
structive  diffusion or displacive reactions (such as
Widmanstitten ferrite of bainite), only those diagrams
having readily distinguishable component curves were used
in the following analysis. The analysis is also restricted to
steels that are sufficiently dilute for the thermodynamic
model to be applicable; following Kirkaldy and Baganis*®
the total substitutional alloying content of the steels
analysed is less than 6 wt-%. The steels selected, together
with the chemical compositions and ASTM grain size
numbers are given in Table 1. Also tabulated are the Aey
and Ae temperatures calculated using the thermodynamic
model.

The term Sy required in equation (36) has been calculated
from the ASTM grain size numbers presented in the BISRA
atlas using the following equation*!

SV = 2000 x 10(ASTM+3'298)/6-6457 A (4())

Table1 Chemical compositions, equilibrium (Ae;)
and paraequilibrium (Ae’;) (x+7y)/y boundary
temperatures, and ASTM grain size numbers

of steels analysed in present work

Composition, wt-% ASTM

Aes;, A€, grain

Steel C Si Mn  Cr Mo Ni °C C size no.
En13 019 014 137 020 031 056 792 774 7
En16 033 018 148 016 027 026 770 748 8
En17 038 025 149 014 041 024 764 740 8
En18 048 025 086 098 004 018 753 734 55
En19 041 023 067 101 023 020 768 753 §
En20 027 013 060 074 055 019 796 786 8
En20 041 028 058 139 074 015 773 757 75
En24 038 020 069 095 026 158 749 725 7
En100 040 021 134 053 022 103 745 715 6
En110 039 023 062 111 018 144 751 728 7
En354 019 021 090 108 018 187 772 746 8
En355 020 023 061 165 019 200 771 746 8

where ASTM is the ASTM grain size number and Sv
(m~') is the austenite grain boundary area per unit
volume.

In principle, the model developed is capable of calculating
the experimental C-curves, before the onset of soft impinge-
ment. However, the constants K, K$, K$, K5, K§, K&,
and Q remain unknown. The method adopted here involves
determining the values of these constants, by fitting against
the experimental C-curves. The values chosen could then
be regarded as universal constants, which should be
applicable to all low alloy steels. In this way it would then
be possible to extrapolate with confidence between steels
of different compositions.

Thus, the nucleation rate I, necessary to reproduce the
experimentally determined C-curves has been calculated
as a function of temperature. Because soft impingement
must eventually occur, only the C-curves corresponding
to 0, 10, and 50% transformation in the BISRA atlas are
considered and, for the purposes of calculation, the 0%
curve is taken as corresponding to 0-1% transformation.

From equation (47), a plot of In{Ig} —In{kT/h} versus
1/T should yield a straight line of gradient Q and intercept
N at low temperatures. From equations (41), (44), and
(48) a plot of (In{lg} —In{kT/h} + Q)/kT versus 1(TAG?)
should yield three straight lines, with decreasing intercepts
N, N®/a, and N¢/a?, and decreasing (negative) gradients
o> K5 [k, > K5 [k, and 6> K5 /k as the temperature increases;
these lines correspond to the regimes in which face, edge,
and finally corner nucleation dominate.

However, as is shown below, the scatter associated with
the experimental data means that it is difficult to determine
the boundaries between the regimes with precision. After
some trial and error, the ranges of application for the
equilibrium and paraequilibrium mechanisms were decided
and are presented here in Table 2.

Results

Figures 5 and 6 (for equilibrium and paraequilibrium
respectively) illustrate the extent to which the data fall on
straight lines. Linear regression analysis was used to
determine the best-fit lines through the data points; from
these lines the constants necessary to define the nucleation
function were calculated. The values are given in Tables 3
and 4 together with errors based upon the standard
errors in the gradients and intercepts of the best-fit lines in
the figures. The values of Q determined correspond
to 800 kJmol™" (equilibrium) and 350 kJ mol~! (para-
equilibrium). It seems intuitively reasonable to expect
that Q should be comparable to the activation energy
for self-diffusion in iron, which is close to 250 kJ mol !
(Ref. 27).

Table 2 Equations and corresponding ranges
of application for equilibrium and
paraequilibrium mechanisms

Equation no. Range of application

Equilibrium

(47) T<640°C

(48) 1/(TAG2) <2 x107"8K~" (J atom™')"2

(41) 2x1071® K™" (Jatom™')"2<1/TAG2
<675x 1078 K~ (Jatom~")"2

(44) 1/TAGE>675x10""8 K" (J atom™")"2

Paraequilibrium

(47) T<640°C

(48) 1/TAGE<5x 107" K~ (J atom ™) 2

(41) 5><10"8K’1(Jatom’1)’2<1/TAG€
<3x107"7 K" (Jatom™)"2

(44) 1/TAGE>3x 1077 K" (Jatom™') "2
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a equation (47); b equation (48); c equation (41); d equation (44)

5 Determination of constants for nucleation assuming
equilibrium mode for nucleation and growth

aequation (47); b equation (48); ¢ equation (41); d equation (44)

6 Determination of constants for nucleation assuming
paraequilibrium mode for nucleation and growth
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Table 3 Values _of nucleation constants, assuming nucleation and growth by equilibrium mode of transformation:
from Fig. 6a, @=(1-34£02) x 10 " J atom ' and value of K] derived from Fig. 5b is used throughout rest

of work
Fraction supporting nucleation K,
Fig. no. Average Standard error Shape factor K,
5a Ki=1x10% Ki=5x10"2-2 x 102°
5b Ki=19x 102 K} =74 x 10%°-4-4 x 102" Ky=(40+20)x10°2
5¢ K3 =49 x 10%° K$=1-8 x 10%°-1-3 x 102 K5=(23+06) x 1073
5d K5 =33 x 10" K$=11x10"7-1-0 x 1078 K;=(42+22)x107°

Figures 7 and 8 illustrate the level of agreement between
the experimentally observed C-curves and those calculated
using the model developed here.

Discussion

It has been demonstrated that the kinetic model, based
upon the general principles of thermodynamic and phase
transformation theory, is capable of reproducing the
C-curve behaviour exhibited by allotriomorphic ferrite
transformation from supersaturated austenite. It could
therefore be argued that the general kinetic features of the
transformation have been explained. However, there are
points which have arisen during this analysis which warrant
further discussion.

The constants K%, K¢, and K¢ represent physically the
fraction of face, edge, and corner sites supporting nucleation.
The maximum value which each can take is then unity,
but in practice a somewhat lower value is expected because
not all heterogeneous sites are likely to support nucleation.
The values of K, K¢, and K¢ inferred assuming local
equilibrium during both nucleation and growth are there-
fore physically unreasonable (Table 3). In addition, the
shapes of the computed C-curves (Fig. 7) reflect the large
increase in the interfacial velocity predicted when the
temperature falls into the NPLE regime. This is not
detected in practice.

On the other hand, the values of K%, K¢, and K¢
inferred assuming paraequilibrium are physically reasonable
(Table 4), as are the shapes of the calculated C-curves
(Fig.8). For this reason, this work suggests that, at
temperatures only slightly below the Ae}, austenite decom-
poses to allotriomorphic ferrite by paraequilibrium trans-
formation and that this growth mode operates over a large
part of the observed range of transformation. However, it
should be pointed out that this work does not deny the
fact that substitutional element mobility, and thus partition
between the parent and product lattices, remains a
possibility for some or all of the substitutional components,
becoming increasingly likely as the supercooling below Ae,
decreases. Ultimately, at temperatures between Aey and
Aej, any observed growth must occur with partition, this
being a thermodynamic necessity.

That the paraequilibrium mode of growth might be
dominant has often been suggested (Refs. 29-31), but there
is a problem in distinguishing experimentally between the

Table4 Values of nucleation constants,

NPLE and paraequilibrium modes of growth. This occurs
because both modes imply lack of partition between parent
and product phases, so that direct observation*2*? of lack
of partition does not in itself constitute proof that one or
other of the modes is operating. (Conversely, direct
observation of partition between parent and product phases
does imply substitutional element mobility and thus PLE
growth.) Thus, arguments concerning whether the NPLE
or paraequilibrium mode is operative have hinged upon
whether the observed parabolic thickening rates are
consistent with values calculated assuming the proposed
growth modes.**~*¢ One problem is that the methods used
for direct measurement of the parabolic thickening rates, '
although rather ingenious, are subject to experimental
complications that lead inevitably to large uncertainties in
the reported values. More direct evidence could be gleaned
by very fine scale microanalytical techniques having
resolution down to atomic level. Energy dispersive X-ray
spectroscopy (EDX) in the scanning transmission electron
microscope (STEM) is not likely to have sufficient resolution
for this purpose, but it is suggested that the use of an
atom probe could be appropriate.

There remains a problem with the paraequilibrium mode
for purely reconstructive transformations, which does not
appear to have received much attention. It arises because
the definition of paraequilibrium appears to prohibit the
necessary mass transport, for the following reason. During
a reconstructive transformation, as already noted, the
solute and solvent atoms must in general have atomic
mobility both within and outside the interface itself. Atomic
mobility within the interface accomplishes the destruction
and reconstruction of the parent and product lattices
respectively. The necessity for atomic mobility outside the
interface depends upon ‘the type of interfacial structure
envisaged. If the Bain strain is assumed to represent the
lattice correspondence between austenite and ferrite, then
it can be shown® that the «/y interface must be either
incoherent or semicoherent. For sizable « particles, it
cannot be fully coherent. This applies whether the trans-
formation mechanism is reconstructive or displacive. If the
a/y interface is semicoherent, atomic mobility outside the
interface is necessary because some of the misfit dislocations
which maintain semicoherency have to climb normal to
the interface. Regardless of whether the «/y interface is
incoherent or semicoherent, atomic mobility outside the
interface is necessary because there is a volume change
(4%) associated with the stress free a—y transformation.
This difference must be compensated for by a flux of

assuming nucleation and growth by paraequilibrium mode of

transformation: from Fig.6a, Q= (59+1-3) x 10" '*J atom~' and value of K} derived from Fig. 6b is used

throughout rest of work

Fraction supporting nucleation K,

Fig. no. Average Standard error Shape factor K,
6a Ki=4x10"8 Ki=1x10""2-1 x 1073
6b Ki=69x1078 Ki=31x10"8-15x10""7 Ki=(27+06) x1073

6¢c $=13x10"8 K$=18x10"°-89 x 10~8
K$=21x10""-7.0x 10~ 1°

6d K$=12x10"1°

Ki=(10+03) x 102
K5=(33+05) x 103
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vacancies between the growing precipitate and the dis-
locations, grain boundaries, and (ultimately) the free surface
of the parent phase. The problem then arises that the
reconstructive transformation requires atomic mobility
outside the interface and yet, by the definition of para-
equilibrium, the substitutional alloying elements should be
configurationally frozen and thus unable to redistribute
during transformation. Since the self-diffusivity of iron
in austenite is at least comparable to or less than the
diffusivities of substitutional elements,?’ it is probable that
the iron atoms are also configurationally frozen.

Summary

The thermodynamic model used in this work (see
Appendix) has been coupled with simplified kinetic
theory, so that, subject to a number of assumptions, the
one-dimensional parabolic thickening constant a, for
the growth of allotriomorphic ferrite from supersaturated
austenite can be estimated. This can be done assuming
either the local equilibrium or the paraequilibrium mode
of transformation.

To model the transformation from an input of the steel
chemistry only, it is necessary to have a knowledge of the
nucleation kinetics. Unfortunately, this is the least well
understood part of the transformation and so, in this work,
an indirect method has been used to deduce a suitable
nucleation function. This involves using a simple model
for the nucleation and growth of allotriomorphs as discs
on the prior austenite boundary and the examination of
experimental TTT curves. A form of equation consistent
with classical nucleation theory was used and the resulting
nucleation function should in theory be applicable across
the compositional range of low alloy steels.

It is shown that the nucleation function derived assuming
local equilibrium with respect to all components is
unreasonable, as are the shapes of the calculated TTT
diagrams. On the other hand, the nucleation function and
the shapes of the TTT curves calculated assuming the
paraequilibrium mode are more reasonable. For this reason,
this work suggests that at temperatures only slightly below
the Ae’y austenite decomposes to allotriomorphic ferrite by
paraequilibrium transformation and that this growth mode
operates over a large part of the observed range of
transformation. At temperatures near the Ae) partitioning
of substitutional elements becomes more feasible and
at temperatures between Aes and Ae, it becomes a
thermodynamic necessity if transformation is to occur.

Finally, it is pointed out that there is a problem
associated with the paraequilibrium mode of transform-
ation, as applied to reconstructive transformations. It
occurs because the paraequilibrium mode appears to
preclude the reconstructive diffusion that is necessary to
accomplish a stress free transformation.
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Appendix

The thermodynamic model employed here is a modified
form of the work of Hashiguchi et al.*” The method allows
the accurate prediction of Fe—C base multicomponent
phase diagrams, provided that the total substitutional
alloying content is less than 5 wt-% and the silicon content
is less than 1 wt-%. This limitation on composition arises
because the logarithm of the activity coefficient of each
solute is expressed as a Taylor series in the mole fractions
of solutes present:*® following the Wagner formalism, terms
of order greater than unity are neglected. The formalism
is expected to fail for highly alloyed steels, when solutes
are expected to interact strongly. There is, however, an
advantage in using the Wagner formalism for the purpose
of the present work, because the cross-terms in the
diffusivity matrix are a function of the Wagner interaction
parameters (equation (16)) and can therefore be evaluated
readily.

Since the accuracy of all thermodynamic models depends
ultimately upon the reliability of the experimental data
used to calibrate it, as well as the type of model, an effort
has been made to examine and evaluate the available data.

Gibbs energy change for ferrite-austenite
transformation of pure iron

In the model of Hashiguchi et al., the effect of an alloying
element i on the relative stability of austenite and ferrite is
expressed by the term AG§*~" which represents*® the free
energy change for the transfer of one mole of solute i from
ferrite to austenite, in the limiting case of an alloy of pure
iron.

Since the present work is concerned with low alloy
steels, it is important that AGP*~7 (i = 0) is known reliably.
Values have been measured by several investigators, e.g.
Refs. 50, 51. More recent evaluations (e.g. Refs. 52-54) have
been based upon ‘optimising’ the existing data.

On examination of the above data, it becomes apparent
that between 750 and 950°C the data are consistent within
~20 J mol~'. However, below 500°C, the data of Kaufman
and co-workers diverge from that of Orr and Chipman®2
and Agren;** at 400°C, they differ by >300J mol~’. In a
review of the available thermodynamic data, Bhadeshias’
came to the conclusion that the data of Kaufman and co-
workers®**! are well established, reliable, and accurate for
low temperature applications. This tabulation was used
throughout the present work.

Gibbs energy change for ferrite-austenite
transformation of substitutional solutes

A large part of the thermodynamic dataset of Hashiguchi
et al. was evaluated by considering the Uhrenius’®
adaptation of the regular solution model derived by Hillert
and Staffanson.>” According to the Uhrenius subregular
solution model, AG{**"" is given by the expression

AGY*™7 = G — Gi* + °LY7 + 'Ly + °LY + 'Ly
(50)

where the terms in G represent the standard molar free
energies of the component i and the terms in L are
interaction parameters. For example, °LY;" and 1LY are
interaction parameters representing the iron-substitutional
interaction in austenite, when all interstitial sites are filled
with vacancies.

The terms AG{**”" can be evaluated by substitution of
Uhrenius data into equation (50), which does not appear
in the paper of Hashiguchi et al.*’ The results are presented
in Table 5 and correct a number of typographical errors
in the work of Hashiguchi et al. A typographical error in
the Uhrenius®® paper is taken into account. The term
(SEd)mag is the magnetic contribution to the Gibbs free
energy change of pure iron.’®%° The tabulation from
Kaufman and co-workers®*-3! has been used for this term
for the sake of consistency, because the tabulation due to
these workers has been chosen for AGH*Y,

Gibbs energy change for ferrite—austenite
transformation of carbon

Following Kirkaldy and Baganis,** AG*~ (in Jmol ™ 1)
is evaluated according to the expression

AGY™™ "= —641114+32158T . . . . . . (5])

where T is expressed in Kelvin.

Calculation of Wagner interaction
parameters for substitutional solutes

The Wagner interaction parameters are defined by the
expressions®-61

811=<%) e e (Y

X1 Jxo—1

8“=<M> Ly
axi xo—1

_ (2Iniry

£i1—<ax1>xoﬂ...........(54)

g“=<aln{ri}> e N 2
0x; xo—1

where I'; and T represent the activity coefficients of carbon
and substitutional solute i.

Following Hashiguchi et al, In{I'y} and In{I}} are
evaluated according to the Uhrenius subregular solution
model. The appropriate expressions are

In{l'}= =In{—x; +c(1—x,)} +G}/(RT) . . . (56)
In{l;} = —In{l — x,} + cIn{l —x1/[c(1 —x1)]}
+GE/RT) . . . . . . .. (57)

Table5 Gibbs free energy change per mole of
substitutional solute passing from a—y, in
limiting case of pure iron: (S%S ) mag is magnetic
contribution to free energy change and
temperature T is expressed in Kelvin

Element AG?*™7, Jmol ™!

Mn —20520 +4-086T + 1500(S%: ) mag
Si 7087 —4127T

Ni —12950 + 5-02T7 + 383(SE ) mao
Cr —15634-19472T+274TIn T
Mo 310-0-284T + 400(S%) mag
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where T is the temperature, R is the gas constant, and c is
the ratio of interstitial to substitutional sites available; thus
c¢=1 for austenite and ¢ =3 for ferrite. The terms G} and
G are excess energies, which can be evaluated by the
expressions and data in Ref. 56.

Combining equations (52)—(57)

8“=c+1+i<a_c'f> N C. )
c RT\0x; Jyy=q

.s“=R—lT<€6iF>xw )
g”z%@%f)mﬂ 60
8“=RLT<%%}E>WI N (30

Thus, using equations (58)—(61), the Wagner interaction
parameters can be calculated by differentiation and by
then taking the limiting case of pure iron. Expressions for
Wagner interaction parameters derived in this way are
given in Table 6. Expressions calculated for parameters
involving nickel and silicon differ from those reported by
Hashiguchi er al.*” In addition, expressions for the carbon
substitutional terms in ferrite are included; these do not
feature in Ref. 47.

Calculation of Wagner interaction
parameters for carbon

An attempt has been made to calibrate the thermodynamic
model used here against the calculation of the Fe—C binary
carried out by Bhadeshia®> using the quasichemical theory
developed by Lacher,®® Fowler and Guggenheim,®* and
McLellan and Dunn.?* Quasichemical models have received
considerable attention in the literature (e.g. Refs. 62, 65);
they represent attempts to model departures from an ideal
entropy of mixing. The 7/(y+«) and o/(y + o) phase
boundaries can then be extrapolated beyond the eutectoid
temperature with greater confidence. The calibration has
been carried out as follows.

The condition of equipotential for carbon at equilibrium
can be expressed by

oady I3

AG} f—RTln{xg”)} N ()]
oty _ xiI

AGS /_ern{xm} (6

The activity coefficients for the binary Fe—C system, written
in terms of the Wagner interaction parameters, are given
by the expressions*’

In{ry=—4elyxing . . . . . . ... (64)
In{lrgt=—3efxixi . . . . . . . . . . (69
In{ril=el,x{ . . . . . . . . . . .. (66
In{l'} =¢}; x% Y (YA

Assuming the x} and xj values calculated by Bhadeshia,5?
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9 Variation of carbon-carbon Wagner interaction
parameters in ferrite and austenite as function of
temperature

the unknowns are the Wagner interaction parameters ¢},
and &};. These can be calculated by combining equations
(62)-(67) to arrive at the expressions

R 2 AGy*™? X3
= —In{—
(x{ —x7)x] RT X0

x§ AGT*Y x§
—n{X ... (68
+(x"{—x“{)x"{< RT “{ﬂ}) (68)
2 AGH*™ 2
&, = Go —In{X
(x{ —=xi)xi\ RT X
y o, a7y a
I AGITT 6 L (69)
(x] —=x})xi\ RT x]

This procedure ensures that the binary Fe-C phase diagram
is equivalent to that calculated from the quasichemical
model. The values of the Wagner interaction parameters
calculated in this way are shown in Fig. 9.

Table 6 Expressions derived for Wagner interaction parameters

Element & & &4 &4

Mn 2:406 —1756/T 3082 —4679/T + 360-8(S2¢ ) mag/ T —4811/T —5834/T

Si 26048/T —16-35+44829/T 14795/T 16205/T

Ni —2839/T 2013 —4595/T + 921 (S¢S ) mag/ T 55633/T 55633/T

Cr 7655 —3154/T - 0-661 In{T} 2:819-6039/T 1419-30210/T 1-658 - 6160/ T
Mo —2330/T —0219—-4772/T+ 96-2(S3 ) mag/ T -10714/T —-10714/T
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Method of solution

The method used here for the calculation of equilibrium
and paraequilibrium tielines has been described fully by
Hashiguchi er al. %’

An additional requirement here is the calculation of the
driving force per unit volume AGy associated with the
formation of a critical nucleus of ferrite, the composition
of which differs from that of ferrite at equilibrium because
of the capillarity effect. Assuming that the partial molar
volumes of iron, carbon, and substitutional solutes are
equal, the parallel tangent construction takes into account
this effect. The driving force calculated in this way
corresponds to the maximum value of AGy. Enomoto and
Aaronson®® have shown that calculated values of AGy are
changed only slightly when the variation in partial molar
volumes is taken into account. Therefore, it seems reason-
able to employ the parallel tangent construction throughout
the present work.

Assuming that substitutional solutes as well as carbon
can partition during nucleation, the composition of the
ferrite nucleus is given by solving the equations

a,nuc

Mo — p§

a,nuc

=M™ = - fori=2-n

(70)

where pu&™e p%™c and u™ refer to the chemical
potentials of iron, carbon, and substitutional solute i in
the ferrite nucleus, and U, 17, and pf refer to the chemical
potentials in the bulk austenite. Equation (70) can be
solved by only a slightly modified version of the model
derived by Hashiguchi et al.

Under  paraequilibrium conditions,  the
composition is given by solving the equations

nucleus

X (Hh — ™) + _ZZ X (i = ™) = x4 (1 — )

(71)

under the constraint
B _

Y g .
. (72)
l—x] 1—-x% 1-x,

For both the equilibrium as well as the paraequilibrium

mode of transformation, AGy is given by
X (MG ™ — ) + X7 (5™ — u}) + .ZZ X[ (™ — pf)
£
%4

AGV =

(73)

where V is the molar volume, which is taken as
72x107° m3 mol 1,
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