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Abstract

Expressions to obtain composition shifts due to capillarity are presented when the chemical potential shifts of the

precipitate phase are taken into account. These are applied to calculate the precipitate coarsening kinetics in multi-

component systems, showing dependence on the solution thermodynamics followed by the continuous phase. � 2002

Published by Elsevier Science Ltd. on behalf of Acta Materialia Inc.
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1. Introduction

The theory of precipitate coarsening developed
by Lifshitz and Slyozov (LS) [1] andWagner [2] has
recently been extended by Umanstev and Olson [3]
to incorporate multicomponent effects; they fol-
lowed a method consistent with LS and Marqusee
and Ross (MR) [4], which used a time scaling tech-
nique to derive the power law time dependence and
distribution function for the size of the particles of
the new phase. In an elegant treatment, Morral and
Purdy [5] have extended the results form Umanstev
and Olson to include off diagonal terms in the
diffusivity.

In theories of precipitate growth and coarsening
it is commonly assumed that there is a negligible
change in the chemical potential and composition

of the precipitate phase. Trivedi [6] has pointed out
that this leads to a violation of the equilibrium
conditions when a curvature is present; Kulkarni
and DeHoff [7] have recognised this, and provided
the expressions that account for chemical potential
shifts of the precipitate phase in a unary system.

The aim of the present work is to extend the
Gibbs–Thomson effect to multicomponent systems
allowing changes in chemical potential and com-
position shifts of the precipitate phase, and to
apply this to the theory of precipitate coarsening
assessing the effects that this produces.

2. Gibbs–Thomson effect in multicomponent systems

Fig. 1 shows the changes in chemical potential
and composition in a matrix ðaÞ and a precipitate
ðbÞ phase for a binary non-dilute system. When
the particles are characterised by a curvature 1=R,
equilibrium demands the simultaneous satisfaction
of

la
1ðRÞ ¼ lb

1ðRÞ and la
2ðRÞ ¼ lb

2ðRÞ ð1Þ
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which can be expressed as [8]
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where the derivatives are obtained for constant
temperature ðT Þ, pressure ðP Þ and the indicated
concentrations; c, V

b
1 and V

b
2 are the interface en-

ergy per unit area, and the b phase partial molar
volumes of components 1 and 2, respectively.
Dca

i ¼ cab
i ðRÞ � cab

i and Dcb
i ¼ cba

i ðRÞ � cba
i measure

the differences between the composition when a
curvature is present in a and b phases (cab

i ðRÞ and
cba
i ðRÞ, respectively) and in its absence (cab

i , c
ba
i ) for

i ¼ 1; 2.
The terms ðolb

1=oc1ÞT ;P ;c2Dc
b
1 and ðolb

2=oc2ÞT ;P ;c1 -
Dcb

2 have been neglected in previous theories of
precipitate coarsening, which implies no change in
chemical potential of the b phase due to a curva-
ture change [6,7]. Furthermore, it is known that in
the coarsening process of alloys such as steels [9–
11], there is a composition change of the precipi-
tate phase, which causes a shift in the chemical
potential of the b phase.

Matrix algebra can be used to express Eqs. (2)
and (3). In the notation used here a matrix A

can be expressed as ðA�; ½A�or½AÞ, which refer to a
row, square or column matrix. Thus the Gibbs–
Thomson effect can be written as

ðcba�½la�½DcaÞ ¼ ðcba�½lb�½DcbÞ þ 2cV b
m

R
ð4Þ

where V b
m is the molar volume of the b phase and

½la� ¼ ola
i

ocj
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The extension to a system of i; j ¼ 1; 2; . . . ; n
components is immediate.

Eq. (4) and the forthcoming equations can be
reduced to n� 1 independent variables by setting

Xn
i¼1

ci ¼ 1

3. Coarsening rate

Following Morral and Purdy [5], the mass
conservation condition at the interface of a parti-
cle of radius R yields

½DcabÞ dR
dt

þ ½D�½D�ccaÞ
R

¼ 0 ð6Þ

where ½DcabÞ ¼ ½cbaðRÞ � cabðRÞÞ, ½D�ccaÞ ¼ ½cabðRÞ�
�ccaÞ where ½�ccaÞ is the matrix far field concentration
and ½D� ¼ Dij is the square diffusivity matrix. Eq.
(6) can be multiplied by ðcba�½la�½D��1 form which
the term ðcba�½la�½D�ccaÞ can be obtained from the
Gibbs–Thomson Eq. (4) when this is expressed as

Fig. 1. To illustrate chemical potential and composition shifts during coarsening [3].
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ðcba�½la�½D�ccaÞ þ ðcba�½la�½D�ccabÞ

¼ ðcba�½lb�½DcbÞ þ 2cV b
m

R
ð7Þ

where ½D�ccabÞ ¼ ½�cca � cabÞ, this can be substituted in
Eq. (6) to give

ðcba�½la�½D��1½DcabÞ dR
dt

¼ 1

R
ðcba�½la�½D�ccabÞ
�

� ðcba�½lb�½DcbÞ � 2cV b
m

R

�
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ð8Þ

It is seen that the critical radius at which a particle
dissolves is given by

Rc ¼
2cV b

m

ðcba�½la�½D�ccabÞ � ðcba�½lb�½DcbÞ ð9Þ

which includes the term ðcba�½lb�½DcbÞ in the
denominator which is lacking in Umanstev and
Olson’s expression for critical radius [3], this ac-
counts for the b phase energy contribution to keep
the particle in equilibrium with the matrix as a
curvature is present.

To solve Eq. (8) it is recognised that DðtÞ ¼
ðcba�½la�½D�ccabÞ is a function of time [3,5] and
ðcba�½lb�½DcbÞ depends on R only; the functional
dependence of the last term can be approximated
as

ðcba�½lb�½DcbÞ ¼ ðcba�½lb�½Dcb
r Þ
Rr

R
ð10Þ

where Rr is an average reference particle radius
and ½Dcb

r Þ the difference in concentration between a
b particle of this radius and that of an infinite
radius or ½Dcb

r Þ ¼ ½cbaðRrÞ � cbaÞ. Eq. (10) describes
the locus of the points that join X and Y in Fig. 1,
and on substitution in Eq. (8) gives

U
dR
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¼ 1

R
DðtÞ
�

� X
R

�
ð11Þ

where U ¼ ðcba�½la�½D��1½DcabÞ characterises the
coarsening resistance of the material and X ¼
2cV b

m þ ðcba�½lb�½Dcb
r ÞRr the total energy increase of

b phase as a curvature is present.
The second element of the theory is mass bal-

ance of the alloy, this can be expressed as

c0j ¼ ð1� uÞ�cca
j þ ucba

j ðRÞ;

u ¼ 4p

3V b
m

Z 1

0

R3f ðR; tÞdR ð12Þ

for j ¼ 1; 2; . . . ; n components, where u is the
volume fraction of b phase and f ðR; tÞ the particle
radius distribution function. Subtracting cab

i from
Eq. (12) and multiplying it by cbala

ij it is obtained
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or

D0 ¼ ð1� uÞDðtÞ þ uC þ uK ð13Þ

where D0 ¼ ðcba�½la�½�ccab
0 Þ is the initial cumulative

supersaturation of the alloy before precipitation
starts, C ¼ ðcba�½la�½DcabÞ is a time-independent
scalar that accounts for the interactions of the
system at equilibrium [3,12], K ¼ ðcba�½la�½DcbÞ
characterises the binary interactions of the solute
concentration increment in b phase as curvature
changes, this is a function of curvature and can be
approximated for a reference radius and compo-
sition shift as

D0 ¼ ð1� uÞDðtÞ þ uC þ uKr

Rr

R
ð14Þ

where Kr ¼ ðcba�½la�½Dcb
r Þ.

After long time coarsening, excess solute will
vanish in the matrix as the particles thicken to
large radii, causing the volume fraction to tend to
the limiting value �uu ¼ D0=C.

The last element of the theory is the application
of the continuity equation to the particle radius
distribution function f ðR; tÞ
of
ot

þ o

oR
f
oR
ot

� �
¼ 0: ð15Þ

As shown in Appendix A, Eqs. (11), (14) and
(15) can now be solved using the methods of LS or
MR [1,3,4] assuming a small precipitate volume
fraction, leading to the next expressions for aver-
age particle size RðtÞ, supersaturation DðtÞ and
number of precipitate particles NðtÞ

R
3ðtÞ ¼ ð2=3Þ2Kt þOð1Þ; K ¼ X=U ð16Þ
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DðtÞ ¼ ð3cV b
mÞ

2=3U1=3t�1=3 þOðt�2=3Þ ð17Þ

NðtÞ ¼ ð3�uuU=4pcÞt�1 þOðt�4=3Þ: ð18Þ

To assess the effects of adding ðcba�½lb�½DcbÞ in
the Gibbs–Thomson equation and in coarsening
kinetics, it is frst recognised that the product of the
vectors ðcba� and ½lb�½DcbÞ represents a dot product
which accounts for the change on the Gibbs energy
of the b phase projected in the composition ðcba�;
similarly, ðcba�½la�½DcaÞ represents the Gibbs energy
change of the a phase projected in the composition
ðcba�. The generalised form of the Gibbs–Thomson
equation is shown schematically in Fig. 2, showing
that the satisfaction of Eq. (4) requires a negative
value of ðcba�½lb�½DcbÞ; this represents the energy
‘‘stored’’ in the b phase when a curvature is present,
and ‘‘released’’ upon precipitation as thickening
occurs.

Eqs. (9) and (16) show that for ðcba�½lb�
½DcbÞ > 0, Rc and K are larger, and the opposite is
true for ðcba�½lb�½DcbÞ < 0; however, the maximum
particle radius scaled to the critical radius remains
1.5, as in LS theory (see Appendix A). Further-
more, Eqs. (11) and (16) show that coarsening in a
multicomponent system is not independent of the
solution thermodynamics followed by the contin-
uous phase due to the term ½DcbÞ represents a
curve in an n dimensional space which connects
the initial and final states of the b composition as
coarsening progresses. This is consistent with
Gibbs phase rule, which requires that for a 2 phase
system where the pressure and temperature are set,
the number of degrees of freedom is n� 2. Previ-
ous investigations have reached opposite conclu-

sions when the thermodynamics of b phase are
neglected [5,13].
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Appendix A

Eqs. (11), (14) and (15) can be expressed using
dimensionless reduced magnitudes

dq3

dt
¼ 3

q
x

�
� 1
�

ðA:1Þ
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1 ¼ ð1� uÞ 1
x
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R3
c0

Z 1

0

fq3dq3 ðA:3Þ

where q ¼ R=Rc0, t ¼ t=T ; Rc0 ¼ X=D0 is the ini-
tial critical radius, T ¼ R3

c0U=X, xðtÞ ¼ Rc=Rc0 is a
dimensionless critical radius such that xð0Þ ¼ 1,
f ðq3; tÞ is a function which within a factor 4p=3 is
the volume distribution of the precipitates, and
vq ¼ dq3=dt is the rate of growth of the precipitates
in dimension space. Eqs. (A.1)–(A.3) are now ex-
pressed in terms of a reduced volume z ¼ q3=x3ðtÞ,
the time expressed as s ¼ ln x3ðtÞ and a new vol-
ume distribution function /ðz; sÞdz ¼ f ðq3; tÞdq3

dz
ds

¼ vðz; cÞ ¼ ðz1=3 � 1ÞcðsÞ � z; cðsÞ ¼ 3
dt
dx3

ðA:4Þ

d/
ds

þ d

dz
/vðz; cÞ ¼ 0 ðA:5Þ

1 ¼ ð1� uÞe�s=3 þ 4p

3V b
m

R3
c0e

s

Z 1

0

/ðz; cÞzdz: ðA:6Þ

An asymptotic analysis of Eqs. (A.4)–(A.6) [1]
shows that mass balance requires cðsÞ to tend to an
asymptotic value c0, and the solution of Eq. (A.5) is

/ðz; c0Þ ¼
Ae�se�w=gðz; c0Þ ¼ NðsÞpðz; c0Þ z6 z0 ¼ 27=8
0 zP z0

	
ðA:7Þ

Fig. 2. Schematic representation of the equilibrium conditions

required by Eq. (4).
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where gðz; c0Þ ¼ �vðz; c0ÞP 0, w ¼ 4
3
lnðz1=3 þ 3Þþ

5
3
lnð3

2
� z1=3Þ þ ð1� 2

3
z1=3Þ�1 � lnð332�5=2eÞ, A ’

0:22D0=R3
c0

NðsÞ ¼
Z 1

0

/ðz; sÞdz ¼ Ae�s ðA:8Þ

is the number of grains per unit volume, and

pðz; c0Þ ¼
e�w=gðz; c0Þ ¼ 332�5=3e ðz1=3 þ 3Þ�7=3

ð3
2
� z1=3Þ�11=3 expð�ð1� 2

3
z1=3Þ�1Þ z6 z0

0 zP z0

8<
:

is the probability that a grain shall have a reduced
volume between z and zþ dz. LS [1] showed that
pðz; c0Þ vanishes for values of z1=3 approximately
larger than 1.5, this result remains unaltered in the
present analysis.

The total number of particles and average
radius are obtained by inserting the original
parameters in Eqs. (A.4)–(A.8).
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