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8. Neural Networks

Over the years, linear regression models have attempted to characterise the 0.2% proof stress and

ultimate tensile strength of austenitic stainless steels. Pickering and Irvine [2] carried out a sequence of

tests using 18Cr-8Ni, 18Cr-12Ni and 16Cr-25Ni wt% base steels, varying carbon (0.006-0.11 wt%),

chromium (16-25 wt%), nickel (8-25 wt%), molybdenum (0-4 wt%), vanadium (0-4 wt%), tungsten (0-

4 wt%), aluminium (0-2 wt%), silicon (0.3-4 wt%), manganese (1-8 wt%), copper (0-2 wt%) and cobalt

(0-8 wt%). From this study, they developed some empirical relations for these properties, mainly as a

function of chemical composition:

0.2% Proof Stress / MPa  = 15.4 {4.4 + 23CC + 1.3CSi + 0.24CCr 

+ 0.94CMo + 1.2CV + 0.29CW + 2.6CNb + 1.7CTi 

+ 0.82CAl + 32CN + 0.16(δ-ferrite) + 0.46d-1/2} (8.1)

UTS / MPa  = 15.4 {29 + 35CC + 55CN + 2.4CSi + 0.11CNi 

+ 1.2CMo + 5.0CNb + 3.0CTi + 1.2CAl 

+ 0.14(δ-ferrite) + 0.82t-1/2} (8.2)

where Cx is the wt% of an element x, t is the annealing twin spacing (mm) and δ-ferrite is the volume

fraction of delta-ferrite. Carbon and nitrogen were identified as the most important variables. 

However, there are inherent problems with this approach. Firstly, any extrapolations may be unsafe, as

there is no account for the uncertainty of predictions made beyond a constant standard error. Secondly,

the models are essentially linear. The inputs also appear to be treated independently, even though it is

known that they may interact.

 

A more powerful alternative is the use of neural networks [40,42], a non-linear modelling technique,

which allows more complex relationships. The fundamental principles are quite simple. Examples of

input variables and their outputs are given to the neural network, so that it can “learn” to model the

relationship between them. Bayesian probability theory is used to control model complexity and

indicate prediction uncertainties. 
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In linear regression, the sum of each input xi multiplied with a weight wi and a constant bias value θ,

indicating the influence on an output y:

∑ +=
i

ii xwy θ (8.3)

The function in a neural network looks similar to equation 8.3:

∑ +=
i

iihwy θ (8.4)

However, flexibility is incorporated through the use of hyperbolic tangent functions:









θ+= ∑

j
ijiji xwh tanh (8.5)

Figure 8.1(a) shows how flexible a hyperbolic tangent can be, as the weights are adjusted,
whereas (b) shows two hyperbolic tangents can be added together to make a more complex

function to address the non-linearity of the situation [40].

The integration of equation 8.5 into 8.4, together with the minimum and maximum values for the

inputs, define the network. Non-linear interactions between the inputs and outputs can be encapsulated

by adjusting the weights, as in figure 8.1(a).
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Figure 8.2 shows a simple three layer neural network. It illustrates that inputs and outputs are

connected through "hidden units". These directly relate to the number of hyperbolic tangents used and

hence determine the neural network complexity (figure 8.1(b)).

As previously mentioned, ordinary linear regression does not account for prediction uncertainty. To

solve this problem, neural networks can be trained within a Bayesian framework, developed by

MacKay [42]. The method recognises that there are many functions that can fit plotted data, so a

probability distribution of sets of weights is used. This means that predictions have large error bars if

there are few data, as a multitude of solutions may be equally probable. Hence extrapolation can be

much safer.

Input nodes

Hidden units

Output node

w11x1

w21x1 w13x3

w23x3

C

Mn

Ni

YS

w12x2 w22x2

SUM

Figure 8.2 – An illustration of a three-layer neural network; consisting of inputs
and outputs connected by hidden units that determine the complexity of the model.

All the hyperbolic tangents are added to produce an output. The notation
expressing the connection between each input and hidden unit is defined by

equation 8.5 [40].
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For a given model, it is possible to overfit the data by producing an overly complicated function, as

shown in figure 8.3. To combat this problem, the data are separated into two random groups. The first

set is used to train the neural network to produce models of varying complexity. Generally, as the

model becomes more complicated, the associated error decreases. The second set of data, hidden from

the initial training, are then used to assess how well the model generalises the unseen data. This

analysis helps optimise the complexity of the neural network function.

Figure 8.3: The first diagram shows plotted points on an x-y axis. The neural network has to decide
whether a line of best fit is complex enough, or a line through all the lines is more appropriate. The

second diagram shows that the training database will gradually set the function go through all the data
points, hence reducing the overall error. However, the testing database can detect when the function is

“overfitting”, when it goes beyond the minimum on the test error curve [40].

Once a model has been trained, many models with varying complexity are produced. To calculate the

error associated with each model, a regularisation function (Mw) is used: 

wDw EEM αβ += (8.6)

where α and β are parameters control model complexity. ED is the test error; the difference between

predicted and target values:

∑ −=
i

ii
D ytE 2)(

2
1 (8.7)
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where t is the target, y is the predicted value and i is the number of collective inputs and outputs

involved. Also, to penalise heavily weighted models, the parameter Ew is used to limit overfitting:

∑=
i

iw wE 2

2
1

(8.8)

The α and β parameters, as stated in equation 8.6, define the assumed weight variances (equation 8.9)

and Gaussian noise (equation 8.10) respectively:

α
σ ω

12 = (8.9)

β
σν

12 = (8.10)

where σv is the inferred noise as defined by the model. 

α encourages the weights to decay in equation 8.6, so that simpler models are preferred to explain

output variation, in accordance with Occam's Razor [43]. A low α value results in a large σw value, and

is therefore a good measure of the significance of each input. 

Models are usually ranked by minimum test error. Sometimes it may be more appropriate to evaluate

the performance of a model by using the log predictive error (LPE). This error penalises large test

errors, but compensates if the prediction has large error bars:
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(8.11)

where σy
(m) is the fitting uncertainty for a given set of inputs x(m).
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 It may be reasonable to use a single model with the lowest test error. However, a group or

“committee” of models used together could reduce the overall test error and allow more reliable

predictions (figure 8.4) by minimising an error function. The average prediction of a committee p is:

∑=
n

ny
L

p )(1 (8.12)

where L is the number of models. The standard deviation error (σ) of p is as follows:

∑ ∑ −+=
n n

nn
y py

LL
2)(2)(2 )(11 σσ (8.13)

Figure 8.4: Shows how the combined test error goes through a minimum when models are grouped into
a committee. In this case, four models is considered to be the optimum [44].
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8.1 Database

The aim of this neural network analysis is to predict the yield strength and UTS for austenitic stainless

steels as a function of multiple variables. This includes chemical composition, heat treatment

temperature and test temperature. The dataset for both the yield strength and UTS are the same, except

that the targets change for each case.  The database was created based on published data, including the

British Steelmakers Creep Committee (BSCC) [45], 16B, 33A and 38A datasheets from the National

Research Institute for Metals (NRIM, Japan).  These include the stainless steel types AISI 304, AISI

316, AISI 321 and AISI 347.

In total, 2011 experimental results were compiled to introduce as much diversity to neural network

training as possible. A total of 184 results of data were omitted from the database due to missing

variables. If there are missing variables, then the lines cannot "remain". For grain size, the majority of

the database did not have a grain size measure, hence this input was removed. In 155 cases for sulphur

and 171 cases for phosphorus, concentrations were found to be missing or recorded as zero. These

elements are found in small quantities in virtually all metals, but their importance is hard to define in

the context of a tensile test. Values of 0.021 wt% and 0.013wt% were therefore set for each case of

phosphorus and sulphur respectively. 

The range, mean and standard deviation of each input and output can be found in table 1. It lists each

variable and indicates the range of data. However, the values do not define the range of applicability of

the neural network model, as in linear regression analyses. Instead, the previously mentioned Bayesian

framework is used to define the trained network applicability through the calculation of error bars. This

is because each input may interact with others.

The stoichometric stabilisation ratio for titanium and niobium additions is:

NC

NbTi

CC

CC

Ratio
+







+








=
84

(8.14)
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As the elements in equation 8.14 are involved in fine MX carbide and nitride precipitation, they may

affect strength. However, each compositional element should still be included as an independent input

in order to avoid bias in the analysis. Each input has its own effect on steel strength, but there may be a

collective influence where an optimum value may offer superior mechanical properties. 

All the variables used within the model were normalised to allow an easy comparison of variables:

5.0
minmax

min −







−

−
=

xx
xx

xn (8.15)

where xn is the normalised value, x is the real value, and xmin and xmax are the minimum and maximum

values of the dataset respectively. Through this operation, the input and output values are normalised

between ±0.5. Nevertheless, any predictions made from the model can easily have values outside this

region. 

Figures 8.5(a) to (r) offer a visual picture of the spread of data for 0.2% proof stress, although it is very

similar for UTS. Since the inputs interact with each other, the charts should not be scrutinised too

heavily. Generally, inputs such as chromium, carbon, sulphur, phosphorus and test temperature were

well studied by the model. However, certain gaps in knowledge were visible from the plots. Nickel

concentrations between 15-30 wt% were not in the database. However, this range may not be useful for

austenitic stainless steels. Molybdenum between 1-2 wt%, manganese at 0-0.8 wt%, niobium in the

range of 0.2-0.6 wt%, including boron at much greater concentrations than the maximum of 0.02 wt%

should also be studied. 
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Variable Minimum Maximum Average Std.
Deviation

Cr 15.90 21.06 17.81 0.99
Ni 8.40 34.45 12.57 5.14
Mo 0.00 2.91 1.02 1.17
Mn 0.61 1.82 1.46 0.23
Si 0.00 1.15 0.50 0.14
Nb 0.00 0.95 0.10 0.26
Ti 0.00 0.56 0.15 0.20
V 0.00 0.06 0.0022 0.01

Cu 0.00 0.35 0.0424 0.0812
N 0.00 0.08 0.01 0.01
C 0.01 0.12 0.06 0.01
B 0.00 0.02 0.0004 0.0012
P 0.00 0.04 0.02 0.01
S 0.00 0.05 0.01 0.01

Co 0.00 0.54 0.04 0.1
Al 0.00 0.52 0.03 0.1

Addition ratio for Nb and Ti 0.00 3.0625 0.7737 0.9268
Heat Treatment Temperature / K 1279 1473 1360.83 35.77

Test Temperature / K 293 1273 674.42 232.98
0.2% Proof Stress / MPa 35 341.27 158.49 46.5

Ultimate Tensile Strength / MPa 47 713.92 433.39 93.63

Table 8.1: Analysis of the dataset
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Figure 8.5a: Distribution of chromium data
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Figure 8.5b: Distribution of nickel data
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Figure 8.5c: Distribution of molybdenum data
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Figure 8.5d: Distribution of manganese data
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Figure 8.5e: Distribution of silicon data
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Figure 8.5f: Distribution of niobium data
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Figure 8.5g: Distribution of titanium data
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Figure 8.5h: Distribution of vanadium data
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Figure 8.5i: Distribution of copper data
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Figure 8.5j: Distribution of nitrogen data
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Figure 8.5k: Distribution of carbon data
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Figure 8.5l: Distribution of boron data
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Figure 5m: Distribution of phosphorus data
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Figure 5n: Distribution of sulphur data
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Figure 5o: Distribution of cobalt data
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Figure 8.5p: Distribution of aluminium data
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Figure 8.5q: Distribution of heat treatment temperature data
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Figure 8.5r: Distribution of test temperature data
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8.2 Randomising the dataset

The conventional method for randomisation is to take out every other line from the

training set, and place it in the test set. However, each composition had many test

temperature results that were grouped together. This meant that the dataset may be

unfairly split using this method. 

Because of this, a different method was used whereby a set of four compositions were

distributed at a time. In each group, every third line would be moved to the test set.

This would continue until the fourth composition group was reached, which was

totally transferred into the test set. 

8.3 Yield Strength Model

Around 200 neural network models were trained using a randomly selected training

dataset, which accounted for half the total database. The remaining data later became

part of the testing dataset to see how the model generalised the unseen data. Each

generated model had a different number of hidden units or random starting-seed, but

the same source of input variables, as in table 8.1. The results for this can be found in

figure 8.6, which include the sigma noise, test error and LPE.  

Figure 8.6a shows that the perceived noise level of the output decreases as the number

of hidden units involved increase. This is consistent with expectation. The test error

was smallest when it involved 6 hidden units (fig. 8.6b), or a maximum of 4 hidden

units with the LPE (fig. 8.6c). 

Figures 8.6e and 8.6f show how well the best model generalised the test set. In the

latter figure, there are a number of outliers in the test dataset plot for predicted vs.

measured yield strength. However, these were seen to be unique points not found

within the training set.

Note that any error bars plotted in these figures include ±1σ and fitting uncertainty, as

calculated by the Bayesian framework. 
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σ v

Figure 8.6a: The perceived level of noise σv vs hidden units

Figure 8.6b: Test error vs hidden units

Figure 8.6c: Log predictive error vs hidden units
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Figure 8.6d: Test error vs models in committee

Figure 8.6e: Predicted vs measured yield strength (training set)

Figure 8.6f: Predicted vs measured yield strength (test set)
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As mentioned previously, a committee of models may allow predictions to be more

reliable by lowering the test error. This is certainly the case here, where the error of

the best single model is 3.236 with four hidden units, but the committee is 2.277

(figure 8.6d). This combined test error was optimised by combining 6 models

together. After this selection process, the model committee was fixed and

subsequently re-trained on the whole database. A final comparison of predicted and

measured yield strength is shown in figure 8.10a. It can be seen that the plot has fewer

outliers. 

The significance, σw, is a measure of how much the inputs influence the output. Each

variable was investigated for the best 4 models, and presented in figure 8.7. The test

temperature is seen to have a large influence on the output, which is consistent with

metallurgical theory. However, each input was seen to offer at least a moderate

contribution to the output. This therefore confirmed that they were a good choice of

inputs.

In summary, it was important to find out which variables are considered to be most

significant, or those that contributed very little to the output. However, it is well

understood that many of the variables have some bearing on steel strength. Overall,

the aim was to obtain meaningful inputs that allow optimisation of mechanical

properties within a predictive framework.
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8.4 Ultimate Tensile Strength Model

Around 125 neural network models were trained identically to the yield strength

model, with the database split in the same manner. The procedures followed for yield

strength were also identical for this model, with figure 8.8 showing the results. Figure

8.10b highlights the performance of the final optimised committee of 5 members. The

significance σw of the best 4 models (fig. 8.9) shows that test temperature is again the

most influential variable. Again, the plotted error bars include ±1σ and the fitting

uncertainty.
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Figure 8.7 – A chart illustrating the perceived significance σw for the four best performing models,
based on highest LPE. The inputs compromise of elements, ratios and temperature treatments. “Ratio”

refers to the stoichometric addition of niobium and titanium, whereas “HTT” and “TST” are heat
treatment temperature and test temperature respectively.
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σ v

Figure 8.8a: The perceived level of noise σv vs hidden units

Figure 8.8b: Test error vs hidden units

Figure 8.8c: Log predictive error vs hidden units
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Figure 8.8d: Test error vs models in committee

Figure 8.8e: Predicted vs measured UTS (training set)

Figure 8.8f: Predicted vs measured UTS (test set)
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Figure 8.9 – same as figure 8.7, but shows the perceived significance σw for the four best
performing models for UTS, based on highest LPE. 
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Figure 8.10a – Final committee model of predicted vs. measured yield strength.
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Figure 8.10b – Final committee model of predicted vs. measured UTS.

8.5 Applications

Once the models were developed, their behaviour was compared to findings in the literature using

compositions in table 2. The aim was to show that they agreed with existing knowledge of stainless

steels had enough complexity to describe different relationships. All error bars plotted in this section

include ±1σ and the fitting uncertainty.

8.5.1 Chromium

Predictions were made using composition A, shown in figure 8.11. For a typical type 316 stainless

steel, the variations are well within uncertainty. The model indicates a negligible effect of Cr, as shown

by Sourmail in another context [44]. 
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Figure 8.11 – The effect of chromium on the YS and UTS using composition A.

The dataset contained chromium values mainly between 17-19 wt%. This was the region where the

most reliable predictions are made, but the large error bars outside this region indicate that more

knowledge and data are required. Nevertheless, consistent with literature [2], chromium is found to

have little effect on tensile properties.
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Cr /
wt%

Ni /
wt%

Mo /
wt%

Mn /
wt%

Si /
wt%

Nb /
wt%

Ti /
wt%

V /
wt%

Cu /
wt%

N /
wt%

C /
wt%

B /
wt%

P /
wt%

S /
wt%

Co /
wt%

Al /
wt% Ratio

HTT /
K

Temp /
K

Composition
A - 10.26 0.31 1.58 0.6 0.04 0.04 0 0.12 0.028 0.07 0 0.0220.012 0 0.014 0.153 1343 298

Composition
B 17 12.2 0.5 0.81 - 0 0 0 0 0 0.06 0.0039 0.0260.017 0 0 0 1373 298

Composition
C 17.05 12.6 2.24 1.1 0.7 0.001 0.03 0 0.31 0.017 0.05 0.03 0.0340.013 0 0.002 0.114 1373 -

Composition
D 17.34 12.66 - 1.44 0.42 0 0 0 0 0 0.06 0.005 0.0250.013 0 0 0 1373 298

Composition
E 18.5 10.3 0 2.0 1.0 0 0 0 0 0 0.03 - 0.0250.013 0 0 0 1373 298

Composition
F 18.05 12.13 0.06 1.76 0.49 0.88 0.036 0.08 0 0.0241 0.065 0.0018 0.0270.019 0.22 0.007 1.336 - 298

Table 8.2: Composition information used for making predictions for both YS and UTS.
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8.5.2 Silicon

In the database, there were more values below 0.6 wt% than above (fig. 8.5e). This is reflected in figure

8.12, where the error bars get larger at high silicon concentration. Much more data are needed in this

region, where effects such as increased solid solution hardening may occur [46]. 
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Figure 8.12 – The effect of silicon on the YS and UTS using composition B.

In 1991, Kivineva and Karjalanen [46] conducted work on high silicon austenitic stainless steels. The

neural network model had not seen silicon above 1.15 wt%. Nevertheless, a prediction was made with a

quoted steel composition to see how the model would perform.
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Figure 8.13a – Predicted effect of high silicon concentration on the YS using Fe-17.5Cr-8.9Ni-0.13Mo-
1.38Mn-xSi-0.017C-0.024N-0.03P-0.004S-0.19Cu-0.06Al wt% steel.

From both figures 8.13(a) and (b), large error bars can be seen as expected. However, it is interesting to

note that the measured value of yield strength at 3 wt% is 240 MPa, compared to 272 MPa by the

network. The UTS is more unsure, but predictions in the mid-range of the plot are quite good. For

example, at 4.5 wt%, the measured value from [46] is 654 MPa, whereas the predicted value is 676

MPa. 

This shows that good predictions are being made, even though large error bars signify great

uncertainty. 
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Figure 8.13b – Predicted effect of high silicon concentration on the UTS using Fe-17.5Cr-8.9Ni-
0.13Mo-1.38Mn-xSi-0.017C-0.024N-0.03P-0.004S-0.19Cu-0.06Al wt% steel.
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8.5.3 Test temperature

It has been shown in the literature that high temperature conditions have many consequences. This

includes easier dislocation motion and lower SFE values. Using composition C, figure 8.14 correlates

well with this reasoning, showing a strong decrease with increasing test temperature.

Notice that the difference between yield strength (YS) and UTS decreases at high temperatures, which

indicates that work hardening occurs less readily, as thermal activation allows barriers to be overcome.
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Figure 8.14 – The effect of test temperature on the YS and UTS using composition C.

To show this, compositions A and C were tested, where the former was considered to have a lower SFE

due to higher concentrations of manganese and nitrogen (as described in section 3.2). From figure 8.15,

it is shown that the (UTS - YS) difference is larger for the low SFE steel. This indicates that low SFE

elements included in the models may predict increased work hardening at high temperatures.
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Figure 8.15 – Investigating the effect of SFE at higher temperatures using compositions A and C (error
bars have been omitted for clarity).
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8.5.4 Heat treatment temperature

This property was also considered, as it was the second most important variable in the model. The aim

of heat treatment is to dissolve precipitates and allow MX carbide formation upon cooling to ambient

temperature. Hence niobium and titanium were included as inputs for predictions, composition F. The

UTS in figure 8.16 is predicted to behave differently at various temperatures. However, large error bars

at either ends of the curve indicate large uncertainty. The main area of interest lies around 1300-1400

K, where a steady decline is shown. This confirms the belief that increased temperatures cause more

carbides to be drawn into solid solution. 
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Figure 8.16 - The effect of heat treatment temperature on the YS and UTS using composition F.
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8.5.5 Boron

Wilkinson and King [47] reported positive correlation between boron and yield strength with values up

to 2 wt%. However, the neural network database was limited by a maximum boron concentration of

0.015 wt%, as well as small amounts of data. Nevertheless, the yield strength was still to found to

increase with boron addition using the same composition in [47]; composition E, figure 8.17. The UTS

also predicted very well in higher concentrations, even though it was accompanied with expected large

error bars. The results show that the model is making good predictions, but the large error bars

underline the need for more information to improve model predictability.
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Figure 8.17 – The effect of boron on the YS and UTS using composition E.
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8.5.6 Non-linear effects

It would be interesting to find any non-linear relationships that are not captured by linear regression

methods, as with Pickering in equations 8.1 and 8.2. This would show that the flexibility of neural

networks may be more suitable for making predictions. To illustrate this, contour plots of YS and UTS

were made for heat treatment temperature against test temperature (fig. 8.18). As curves are found for

these plots, it is shown that neural networks can capture more complex interactions, as linear regression

would simply be a set of straight lines. Chromium vs. carbon was also plotted for YS and UTS. As

carbon is principally a solid solution strengthener, it is thought to have more effect on YS than on work

hardening, hence the presence of linear lines in figure 8.19b. 

(a) (b)

(c) (d)

Figures 8.18 (a) and (b): Contour plots of YS and UTS respectively for heat treatment temperature vs.
test temperature using composition D; (c) and (d) are plots of YS and UTS error bars respectively.
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Figures 8.18(c) and (d), along with 8.19(c) and (d), indicate the error for each prediction, which

includes ±1σ and fitting uncertainty. Note that features found for the prediction contour plots may not

be realistic if the corresponding error bars are large enough to cause doubt. 

 

(a) (b)

(c) (d)

Figures 8.19 (a) and (b): Contour plots of YS and UTS respectively for chromium vs. carbon using
composition D;  (c) and (d) are plots of YS and UTS error bars respectively.
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8.5.7 Software

There were a number of trends examined, however there are too many to report upon, due to the

countless permutations possible. Despite this, the results appeared reasonable from metallurgical

understanding. It has been shown that the neural network has a good understanding of the complexity

of modelling steel strength. As mentioned previously, the advantage with this technique is the safer

extrapolation, with error bars associated with all predictions. The software for calculating these tensile

properties can be obtained from the web:

http://www.msm.cam.ac.uk/map/map.html

8.6 Summary

The yield strength and UTS have been analysed using neural networks with a Bayesian framework. A

variety of sources were used to form the database of composition and temperature information. Good

agreement was found when the models were tested against the literature. This includes the effects of

varying boron and silicon concentrations, and work hardening behaviour at high temperatures. Their

ability to perceive non-linear interactions between different inputs was also indicated by the curves

from contour plots. 

Now that a feasible predictive model exists, it would be useful to find new compositions for austenitic

stainless steels. Each input variable has some influence on the final steel strength. So to aid this

investigation, a useful approach would be the use of “genetic algorithms”. By using this technique in

conjunction with neural networks, it is hoped that an efficient search of the envelope of all inputs can

lead to the same or improved strength. 

http://www.msm.cam.ac.uk.map.map.html/
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