Model for solidification cracking in low alloy
steel weld metals
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Data on the occurrence of solidification cracking in
low alloy steel welds have been analysed using a
classification neural network based on a Bayesian
framework. It has thereby been possible to express
quantitatively the effect of variables such as the chemi-
cal composition, welding conditions, and weld geometry,
on the tendency for solidification cracking during solidi-
fication. The ability of the network to express the
relationship in a suitably non-linear form is shown to
be vital in reproducing known experimental phenomena.
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INTRODUCTION

Solidification cracking occurs in welds during cooling from
the liquidus temperature, if the density changes associated
with solidification and thermal contraction can not be
accommodated by fluid flow or by the motion of the solid
components which constitute the weld assembly. This kind
of cracking depends partly on the chemical composition of
the weld metal, since that in turn determines the solidifi-
cation temperature range. However, the cooling rate and
weld geometry (including the extent of constraint) also
control the susceptibility to solidification cracking. Modern
low alloy steels for structural applications have compos-
itions which are designed to avoid solidification cracking,
for instance by minimising the sulphur concentration.
Significant difficulties nevertheless remain with very high
heat input welding of high tensile strength steels.

A great deal of excellent research has been reported in
the published literature on the factors controlling solidifi-
cation cracking in welds.!™** The essential phenomena are
well characterised although difficulties remain with respect
to the detailed mechanisms; the subject has been reviewed
recently.!®14

The results of standard tests on the tendency for solidifi-
cation cracking are usually expressed in terms of the
chemical composition of the weld metal.>®8-° Relationships
like these are very useful in that they help in the selection
of weld metals. However, they are usually linear functions
of the chemical composition and are unable to express
certain known more complex effects. Unlike the pro-
portional influence of carbon on the cold cracking suscepti-
bility of welded steels (as evident in the famous carbon
equivalent formulae), Fig. 1a shows a well established non-
linear effect of carbon on the solidification cracking suscepti-
bility.!? The temperature range over which solidification to
delta ferrite occurs increases with the carbon concentration
(Fig. 1b), but the density change on solidification decreases
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1 Schematic diagram of the effects of carbon on the
solidification cracking susceptibility in low alloy steel
welds a, b and d are after Homma et al.'

at the same time (Fig. 1¢),'* giving rise to the first peak
illustrated in Fig. la. At even larger concentrations, the
mode of solidification switches from ferrite to austenite;
impurities such as sulphur and phosphorus have a lower
solubility in austenite so that segregation to the residual
liquid is enhanced, thereby increasing the risk of solidifi-
cation cracking (Fig. 1d).}?> As a further example of well
established non-linear effects, the ability of sulphur to
induce solidification cracking is greatest when the nickel
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concentration is large, because nickel also promotes solidi-
fication to austenite.?

All of these issues can be handled better using an artificial
neural network, which has the capability of addressing
complexity with relative ease. The aim of the present work
was, therefore, to quantitatively model the tendency for
solidification cracking using a classification neural network
approach.

TECHNIQUE

Neural networks are parameterised non-linear models, used
for empirical regression and classification modelling. Their
flexibility makes them able to discover more complex
relationships in data than traditional statistical models
which assume a linear dependence of the predicted ‘output’
variable on the given ‘input’ variables. Neural networks are
able to implement more general (and more complex) non-
linear relationships. When the neural network is ‘trained’
on empirical data, its parameters are adjusted so as to
produce a non-linear interpolant which fits the data well.

The outcome of training is a set of coefficients (called
weights) and a specification of the functions which in
combination with the weights relate the input to the output.
The training process involves a search for the optimum
non-linear relationship between the inputs and the outputs,
and is computer intensive. Once the network is trained,
estimation of the outputs for any given inputs is very rapid.

Because the neural network is able to implement more
complex relationships than linear regression, it is also able
to ‘overfit’ the training data; there is therefore a potential
problem of obtaining a model that fits the training data
well, but generalises poorly to test examples. To solve this
problem, Bayesian regularisation theory can be used to
control the complexity of the model.’®2? It is then possible
to identify automatically which of many possible relevant
input variables are in fact important factors in the
regression.

Neural networks are frequently used for regression prob-
lems in which continuous variables are modelled. In a
recent example of this kind, the impact toughness of steel
welds was expressed as a function of chemical compositions
and temperature.”> There are many problems where the
variables to be predicted adopt discrete values. For example,
the solidification cracking tests used in the assessment of
welds give a result which indicates whether the weld will
crack (1) or not (0). Such a problem is known as a binary
classification problem, and a neural network can be made
to model the probability of a crack (1) as a function of the
input variables. The neural network implements a para-
meterised function y(x, w) where x are the input variables
and w are the parameters; the output y is a real number
between 0 and 1. Bayesian methods can be applied to

Table 1 The input variables used in the present study

Table 2 The output variables used in the present study

Classification label Value Number
No cracks 0 95
Cracked 1 59

neural network classifiers'®?> and have two important
consequences. First, it is possible automatically to control
the complexity of a neural network, and, as in MacKay 2°
and Bhadeshia et al,? to infer which input variables are
most relevant in the non-linear regression. Second, Bayesian
methods allow us to take into account the parameter
uncertainty when making predictions by the process of
marginalisation. In a classifier, the effect of marginalisation
is to take the output of the best fit neural network and
move it closer to 0-5 by an amount depending on the
parameters’ uncertainty. The value 0-5 in the output indi-
cates the highest level of uncertainty.

This paper deals with the application of a classification
neural network to the solidification cracking problem for
welds.

VARIABLES

It is possible to choose a set of variables which should
affect the solidification cracking susceptibility in steel welds
using metallurgical experience on welding. The input and
output variables considered in this study are listed in Tables
1 and 2 respectively.

As suggested by previous work based on linear regression
methods,> %% alloying elements such as carbon, silicon,
manganese, phosphorus, sulphur, nickel, chromium, and
molybdenum should all have an influence on the develop-
ment of solidification cracks during welding; these elements
were all included as input variables. Similarly, microalloying
and impurity elements, such as niobium,” vanadium,!
boron,™® and oxygen® may influence cracking susceptibility,
but were not included because of a lack of systematic data.

It is well known that the tendency for solidification
cracking varies with the welding process parameters such
as the welding conditions, joint configuration, and preheat
temperature because of their influence on the solidification
structure, and stress and strain development as the weld-
ment cools. Consequently, the welding current, voltage, and
travel speed were included as input variables. The joint
configuration was represented by the groove angle which
to a large extent controls the growth direction of solidifi-
cation microstructure.

There is a significant problem in determining a uniform
representation of cracking susceptibility, the output vari-
able, because of the variety of tests used in the welding

Variables Range Mean Standard deviation
Carbon, wt-% 0-012-0-19 0-07492 0009304
Silicon, wt-% 0-18-0-77 0-5225 0-02001
Manganese, wt-% 0-90-1-82 1-463 0-02885
Phosphorus, wt-% 0-01-0-10 001539 0-00684
Sulphur, wt-% 0-006—0-028 0-01176 0-001313
Nickel, wt-% 0-00—6-50 1-417 04117
Chromium, wt-% 0-00-0-08 0-04539 0-002798
Molybdenum, wt-% 0-00-0-22 0-07799 001148
Welding current, A 422-800 580-7 1773
Voltage, V 28-:0-36'5 3323 0-2646
Travel speed, cm min ! 30-55 41-65 1-079
Groove angle, deg 0-90 43-05 3796
Preheat temperature, °C 20-150 22-53 10-31
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2 Schematic illustration of the neural network model used;
only the connections originating from the first input are
illustrated, and two bias units are not illustrated

industry. Thus, a binary index was used, with values of 0
or 1 corresponding to a ‘no cracks’ or ‘cracked’ result
respectively. In some literature, the cracking susceptibility
was stated as a fractional cracking ratio rather than a
binary index, in which case the outputs were defined as 1
if the ratio was greater than 0-05 and 0 if it was less than
or equal to 0-05 in the neural analysis.

EXPERIMENTAL DATA

There were numerous difficulties in compiling a data set for
analysis, primarily because many of the publications on the
subject do not rigorously report the values of important
variables. The exercise of data collection therefore had to be
done pragmatically in order to collect a reasonable number
of cases. Nevertheless, a positive aspect of this attempt at
modelling is that it identifies for future work the variables
that must be controlled in order to do reliable research.
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The database was composed using published re-
sults.>*71112 Homma et al'? have reported the complex
effect of carbon for ultralow carbon steels to a maximum
concentration of about 0-15 wt-%. They did not disclose
the exact chemical composition of the steel used for each
test, but published the range of concentrations; we therefore
specified the composition in terms of the average of the
range quoted; the chromium concentration was assumed to
be zero for their data. Masumoto and Imai* published data
on the effects of nickel and phosphorus on solidification
cracking; the chromium and molybdenum compositions,
which they did not state, were again assumed to be zero.
Sekiguchi et al.® reported the complex effects of nickel and
sulphur but only the sulphur and nickel concentrations of
the welds were stated; the mean chemical composition of
the welding electrodes they used in their study was therefore
taken to represent the weld composition. In those cases
where the published work did not report a preheat temper-
ature, it was assumed that the base plate was not heated
prior to welding so that the temperature was taken to
be 20°C.

The variety of approximations stated above should, if
incorrect, reflect in the perceived uncertainty in the output.

ANALYSIS
The input and variables were normalised between —0-5
and +0-5, as follows

Ny= s ()

Xmax ™ Xmin

where xy is the normalised value of x which has maximum
and minimum values given by x... and x.;, respectively.
The neural network consisted of 13 input units (one for
each of the input variables), a number of hidden units, and
one output unit for the crack susceptibility (Fig. 2). The
network was trained using 77 randomly chosen samples
from the 154 available in the assembled dataset. The
remaining 77 samples were used in order to test each model
for its behaviour on unseen data.

Linear functions of the inputs x; are operated on by a
hyperbolic tangent transfer function

h; = tanh <2 wix; + 0§1’> N )
J

so that each input contributes to every hidden unit. The

bias of each hidden unit i is designated 0{" and is analogous

to the constant that appears in linear regression. The

strength of the transfer function is in each case determined

by the weight w{’. The transfer to the output y is

1
= . (3
¥ 1+ exp(—a) (3)
where a is linear against h;
a=Yy wPh+60® . . . . . . ... (4

1

This specification of the network structure, together with
the set of weights is a complete description of the formula
relating the inputs to the outputs. The weights are deter-
mined by training the neural network. The details are
described elsewhere.'®2*> The targets are discrete binary
classification labels: ‘cracked’ or ‘no crack’. The neural
network’s output y is bounded between 0 and 1 and

Table 3 Chemical compositions used to predict the effects
of carbon, wt-%

C Si Mn P S Ni Cr Mo

0-00-0-14 0215 1-54 0015 0006 000 0-00 022
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corresponds to ‘cracked’ and ‘no crack’ respectively. The
value of y indicates the probability that the test will result
in a cracked sample. As stated earlier, y = 0-5 indicates the
highest levels of uncertainty, where the tendency for crack-
ing is the same as that for avoiding crack.

The error function in a regression neural network model
is then replaced by the logarithmic likelihood!®-**

G=Ytalny,+(1—t,)In(1—y,) . . . . . . (5)

where y, is the output for example m and t, is the
target value.

Training involves minimisation of the sum of this error
function and a regulariser which penalises overcomplex
models. The degree of regularisation is controlled by a set
of hyperparameters denoted a,,.!°

It is possible to have multiple classification models which
are obtained by choosing different numbers of hidden units,
initial values of weights, and regularisation constants oy,
A single prediction can then be made by a committee (i.e.
by averaging the prediction of each model), i.e.

F=EL— (6

where N is the number of models in the committee and y,
is the estimate of a particular model k. The testing error is
now obtained by replacing the y,, in equation (5) by y.
The complexity of the model is controlled by the number
of hidden units, and the value of the fifteen o, one

Table 4 Process parameters used in the prediction of the
carbon and molybdenum effects
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Welding Welding  Groove Preheat
current, Voltage, speed, angle, temperature,
A A% cmmin~!  deg °C

650 31 40 60 20

associated with each input, one for each of the biases, and
one for all weights connected to the output.

Four hundred and thirty-two models were obtained by
training on half the data by choosing different numbers of
hidden units, different seeds, and initial values of ¢,. The
best 126 models (i.e. models with the smallest values of
marginalised test error) were then examined to construct a
committee model.?® A ‘committee’ is a collection of models.
It is often found that the mean prediction from a committee
is more reliable than from the best individual models.

Figure 3 illustrates the marginalised test error calculated
for the best 20 individual models. Figure 4 shows clearly
that a committee consisting of the four best models has
the minimum test error. This committee consists in fact of
three models with 11 hidden units and one with just two
hidden units. The four models were then retrained using all
available data.

The committee model was then tested extensively to
examine how well it represents metallurgical experience.
There is a lot of research which indicates that carbon,
sulphur, and nickel should be prominent in controlling the
tendency for solidification cracking. Figure 5 shows the
models’ perceived role of each of the inputs in explaining
the variations in the experimental data on the tendency for
solidification cracking. These models are therefore consist-
ent with metallurgical experience. Figure 6 shows the
reasonable accuracy obtained for the predictions for both
the training and test data. It was therefore decided to
choose this committee consisting of four individual models,
both because it gave reasonable statistical accuracy and
because it reproduced metallurgical expectation rather well.

The calculated influence of the carbon concentration on
the tendency for solidification cracking represented by the
marginalised probability for the data listed in Tables 3
and 4 using the retrained four models is illustrated in
Fig. 7a. All the models, in this case, correctly reproduce the
fact that solidification cracking does not occur at intermedi-
ate concentrations, as illustrated schematically in Fig. 1.
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Figure 7b shows the best fit and marginalised predictions
by the committee model. It can be found that marginalised
prediction is moderated from the best fit one. Figure 7a and
b also show a significant tendency towards reduced cracking
when the carbon concentration decreases towards zero
(see Fig. 1).

Figure 8 shows results of prediction of the effect of carbon
and sulphur for the hypothetical input data listed in Tables
5 and 6 using the retrained model. The behaviour illustrated
is expected since there should be an increase in the solidifi-

Probability

8 Predicted effect of sulphur and carbon on solidification
cracking in steel welds
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Table 5 Chemical compositions used to predict the
combined effects of carbon and sulphur, wt-%

C Si Mn P S Ni Cr Mo

0-04-0-14 0-77 1-48 0-01 0004-0-020 1-5 008 001

Table 6 Process parameters used to predict the combined
effects of carbon and sulphur

Welding Welding  Groove Preheat
current, Voltage, speed, angle, temperature,
A \Y cmmin~! deg °C

422 34 325 45 20

cation cracking probability as a function of suphur content,
particularly at higher carbon concentrations.

The weights for the retrained models which constitute
the committee are listed in the appendix. This list, together
with the minimum and maximum values in the input data
and output values given in Tables 1 and 2, is sufficient
to reproduce the necessary equations and predictions
described in this study.

USE OF THE MODEL

A number of further tests were carried out using the
retrained model in order to ensure that the selected model
predicts in a way consistent with metallurgical experience.
It is widely accepted that sulphur and phosphorus are
harmful impurities with respect to the solidification cracking
of steel welds. Sekiguchi et al.® reported that the effect of
sulphur is exacerbated by the presence of nickel as an
alloying element. Calculations using the input data listed
in Tables 7 and 8 were done to confirm this trend. Any
reduction in the sulphur concentration should increase the
resistance to solidification cracking. An increase in the
nickel concentration promotes austenitic solidification and
therefore should promote solidification cracking, the effect
being exaggerated when both the nickel and sulphur concen-
trations are large. The model reproduces this behaviour
rather well, as illustrated in Fig. 9a and consistent with the
published experimental data presented in Fig. 9b.
Molybdenum is a ferrite former and empirical data
suggest that it reduces tendency for solidification crack-
ing.!"? Calculations were carried out for the hypothetical
input data listed in Tables 9 and 4 where the molybdenum
concentration is varied in the range 0 to 0-6 wt-% which is

Table 7 Chemical compositions used to predict the
combined effects of sulphur and nickel, wt-%

C Si Mn P S Ni Cr Mo

0-064 0-77 1-48 001 0-005-0-020 0-50-3-50 0-08 0-01

Table 8 Process parameters used to predict the combined
effects of sulphur and nickel

Welding Welding  Groove Preheat
current, Voltage, speed, angle, temperature,
A \Y cmmin~!  deg °C

500 36 40 45 20
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Table 9 Chemical compositions used to predict the effect of
molybdenum, wt-%

C Si Mn P S Ni Cr Mo

0-04-0-14 0215 1-54 0-015 0-006 0-00 0-00 0-0-0-6

Table 10 Chemical compositions used to study the effect of
voltage, wt-%

C Si Mn P S Ni Cr Mo

0-10 0215 154 002 001 000 000 022

typical for low alloy steel welds. Figure 10 shows that the
addition of molybdenum decreases the risk of solidification
cracking in general for the steel analysed here. This agrees
with published regression equations.’>°

As well as the chemical compositions of welds, welding
conditions, such as the current, voltage, and groove con-
figuration, also influence the solidification cracking suscepti-
bility. Figure 11a and b shows the predictions of effect of
voltage on the solidification cracking probability for the
data shown in Tables 10 and 11. At the lower voltages,
predictions by the two hidden unit model (model 4) do not
agree very well with those by the other three models and
predictions are much uncertain. In fact, marginalised predic-
tions are close to 0-5 in Fig. 11b. Figure 12a and b shows
the predicted effect of groove angle on the solidification
cracking probability for the data listed in Tables 12 and 13.
For the effects of groove angle, predictions by the different
constituents of the committee model do not agree very well
(Fig. 12a). Also, the committee model does not give many
decisive predictions by using the marginalised predictions
(Fig. 12b). This is due to the insufficient data on the effect
of these welding conditions.

CONCLUSIONS

A classification neural network model has been successfully
used to represent experimental data on the tendency for
solidification cracking during the solidification of low alloy

Table 11 Process parameters used to study the effect of
voltage

Welding Welding Groove Preheat

current, Voltage, speed, angle, temperature,

A \Y cmmin~ ! deg °C

650 25-40 40 60 20

Table 12 Chemical compositions used to study the effect of

groove angle, wt-%

C Si Mn P S Ni Cr Mo

008 077 148 001 002 15 008 001

Table 13 Process parameters used to study the effect of
groove angle

Welding Welding  Groove Preheat

current, Voltage, speed, angle, temperature,

A A% cmmin~!  deg °C

422 34 325 0-90 20
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steel welds. The model has been demonstrated to reproduce
known metallurgical experience and will be updated as
more data become available.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contributions of
the authors whose published data were used in this study.
We also acknowledge TWI and Mr K. Kojima of Welding
and Joining Research Center, Nippon Steel Corporation
for their help in the collection of literature. We are very
grateful to Nippon Steel Corporation for financial support
toward this research, and to Professor A. H. Windle for
the provision of laboratory facilities at the University of
Cambridge. We appreciate stimulating discussions with
Dr H. Fujii.

APPENDIX

The values for the weights obtained by the training
with all the data listed in Tables 1 and 2 are shown in
Table 14a—d. Best fit predictions of solidification cracking
in steel welds can be made using these data and the data
in Tables 1 and 2 together with equations (1)—(4) and (6).
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Table 14 Weights and biases describing the trained network with all the data in Tables 1 and 2: @ model 1, 5 model 2,
¢ model 3, d model 4.

The data are arranged in a continuous horizontal sequence in the following order in a, b, and ¢, and d.
a, b, and ¢ d
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