Chapter 10

Summary and future work

Following an extensive review of the work done on the topic, it can be said with cer-
tainty that precipitation phenomena in austenitic stainless steels are complex, and that
controversies persists in many cases.

A part of this work was concerned with the microstructural evolution of a newly de-
signed austenitic stainless steel named NF709, with a particular attention to phases which
may be detrimental to long-term creep properties. In this regard, results obtained during
this work indicate that the detrimental role of o-phase is not systematic, as evidence is
given that it has little effect on the ductility. It is also shown that significant differences
in the precipitation sequences can appear from apparently similar compositions. Further-
more, by combining observations from the literature and the detection of CrzNipsSiN the
role of nitrogen as a stabiliser for the n-structure can be clarified.

Of great interest is also the ability to predict the microstructural evolution of these
steels. Based on previous work by Robson and Bhadeshia, and Fujita and Bhadeshia, a
model has been created which makes full use of modern thermodynamic calculation tools.
This model corrects approximations made necessary when using stand-alone programs, in
particular, it is shown that using either the equilibrium tie-line, or the one corresponding
to a zero gradient of carbon, is incorrect and does not lead to satisfactory predictions
of the growth rate. The problem is only correctly solved when addressing it in terms of
activities of the components rather than concentration. Also, the issue of capillarity in
multicomponent systems has been examined, and earlier approaches have been corrected.
A method has been designed which allows to tackle the problem through modification of
the SGTE databases so that capillarity corrections can be calculated directly with MT-
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DATA. With the program written so as to avoid too specific solutions, it is hoped that
its scope of use will extend beyond austenitic stainless steels in future works.

However, for various reasons, this still has to be considered as a semi-quantitative ap-
proach. First, there is a serious lack in available thermodynamic data on phases that are
commonly encountered in modern grades of heat-resistant austenitic stainless steels, which
strongly limits the number of systems in which meaningful predictions can be made. Fur-
thermore, the model still relies on the mean-field approximation. It is certainly a worthy
challenge to overcome this so as to account for localised interactions, or grain-boundary
and intragranular precipitation separately. Finally, fundamental reasons have been given
which justify a re-examination of the way nucleation theory is used in multicomponent
systems, so as to improve the prediction ability of the classical theory.

Given the difficulties in predicting quantitatively the precipitation reactions, it is yet
too early to use these calculations as inputs in the further step which is to estimate the
mechanical properties. It is clear that a meaningful model based on the precipitation state
must include feature such as location, as, for example, grain boundary and intragranular
precipitates are known to have different influences, and distribution, as a same phase
finely dispersed or present as coarse particles also has different effects.

However, when using powerful empirical methods such as neural network modelling,
these difficulties can be avoided; variables such as composition and test conditions can be
used directly. With the use of creep data collected from a number of sources, such models
have been built to estimate the creep strength and creep life of austenitic stainless steels.
Predictions made with these models have been compared to known trends, and shown
to grasp properly interactions between different input variables and to be superior to
conventional extrapolation methods. It is also interesting to note that the use of physically
relevant variables significantly improved the models; for example, the logarithm of time
was used rather than time and a variable relevant for the estimation of the quantity of fine
MX precipitates was added. This justifies the hope that future models, which may use
predicted volume fractions and locations of precipitates as inputs, could help confirming
or understanding the role held by the different precipitate phases in determining the creep

strength of austenitic stainless steels.



APPENDIX ONE

MAP STEEL_CREEP _LIFE_AUSTENITIC

This appendix presents the model described in chapter 9 and associated documentation

following the MAP format, http://www.msm.cam.ac.uk/map/mapmain.html.

1 Provenance of Source Code

Thomas Sourmail

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, CB2 3QZ U.K.

The neural network program was produced by:
David MacKay,

Cavendish Laboratory,

University of Cambridge,

Madingley Road,

Cambridge, CB3 OHE, U.K.

Added to MAP: June 2001.

2 Purpose

A program for the estimation of the creep life of austenitic stainless steels as a function

of elemental composition, test conditions and solution treatment.

3 Specification

Language: C
Product Form: Source Code
Operating System: tested on Solaris, SGI and Linux. Can be compiled on most UNIX

systems.
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4 Description

MAP_STEEL_CREEP_LIFE_AUSTENITIC contains the programs which enable the user
to estimate the creep life of austenitic stainless steels as a function of chemical composition,
solution-treatment temperature, and stress and temperature of the creep test. It makes
use of a neural network program called generate/4, which was developed by David MacKay
and is part of the bigbackb program. The network was trained using a large database of
experimental results [1]. 4 different models are provided, which differ from each other by
the number of hidden units and by the value of the seed used when training the network.
It was found that a more accurate result could be obtained by averaging the results from
all models [1]. The programs calculate the results of each model and then combines them,
by averaging, to produce a committee result and error estimate, as described by MacKay
[2].

The source code is accompanied by a program to install the program, which should run
on most versions of UNIX. Once uncompressed, and once the ‘install’ program run, the
directory contains:

README

A text file containing step-by-step instructions for running the program, including a list
of input variables.

MINMAX

A text file containing the minimum and maximum limits of each input and output vari-
able. This file is used to normalise and unnormalise the input and ouput data.

test.dat

An input file containing the input variables used for predictions.

model.gen

This is a UNIX shell file containing the commands required to run the model. It can be
executed by typing ‘sh model.gen’ at the command prompt. This shell file normalises the
input data, executes the neural network program, unnormalises the results and combine
them to produce the final committee result.

.normalise

Hidden executable file, to normalise the input data.

.generate44

Hidden executable file, for the neural network program. It reads the normalised input file
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and also uses a configuration file spec.t generated by .generate_spec and the weight files,
located in the subdirectory c.

.generate_spec

Hidden executable file, generates the configuration file read by .generate44.

.gencom

Hidden executable file, combines the output of the different models in a committee result.
.treatout

Unnormalise the results.

SUBDIRECTORY c

_w*f

The weight files of the different models.

*.1lu

Files containing information for calculating the size of the error bars for the different
models.

_c*

Files containing information about the perceived significance value [1] for each model.
R*

Files containing information about the noise, test error and log predictive error [1] for
each model.

SUBDIRECTORY d
outran.x A normalised output file which was created during the building of the model.

It is accessed by .generates4.

SUBDIRECTORY outprdt

outl, out2, efc.

The normalised output files for each model.
com.dat

The normalised output file containing the committee results. It is generated by .gencom.
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5 References

1. Thomas Sourmail, H. K. D. H. Bhadeshia and D. J. C. MacKay, A neural network model
for the creep strength of austenitic stainless steels., Materials Science and Technology, in
press.

2. D. J. C. MacKay, Mathematical modelling of weld phenomena 3, eds. H. Cerjak and
H. K. D. H. Bhadeshia, Institute of Materials, London (1997) 359, 3. D. J. C. MacKay’s
website at http://wol.ra.phy.cam.ac.uk/mackay/README.html

6 Input parameters

The input variables are listed in the README file in the corresponding directory. The
maximum and minimum values for each variable are given in the file MINMAX.

7 Output parameters

These give the creep life in log h. The output is written in the file result.txt.
Accuracy

A full calculation of the error bar is presented in reference 1.

Program data

See sample file test.dat

Program results

See sample file result.txt

Keywords

Neural networks, creep life, austenitic stainless steels.
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MAP _STEEL_CREEP STRENGTH_AUSTENITIC

This appendix presents the model described in chapter 9 and associated documentation

following the MAP format, http://www.msm.cam.ac.uk/map/mapmain.html.

1 Provenance of Source Code

Thomas Sourmail

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, CB2 3QZ U.K.

The neural network program was produced by:
David MacKay,

Cavendish Laboratory,

University of Cambridge,

Madingley Road,

Cambridge, CB3 OHE, U.K.

Added to MAP: June 2001.

2 Purpose

A program for the estimation of the creep strength of austenitic stainless steels as a

function of elemental composition, temperature of creep test and required life.

3 Specification

Language: C
Product Form: Source Code
Operating System: tested on Solaris, SGI and Linux. Can be compiled on most UNIX

systems.



Appendix Two 187

4 Description

MAP_STEEL_CREEP_STRENGTH_AUSTENITIC contains the programs which enable
the user to estimate the creep strength of austenitic stainless steels as a function of
chemical composition, temperature of the creep test and required life. It makes use of
a neural network program called generate/4, which was developed by David MacKay
and is part of the bigbackb program. The network was trained using a large database of
experimental results [1]. 14 different models are provided, which differ from each other by
the number of hidden units and by the value of the seed used when training the network.
It was found that a more accurate result could be obtained by averaging the results from
all models [1]. The programs calculate the results of each model and then combines them,
by averaging, to produce a committee result and error estimate, as described by MacKay
[2].

The source code is accompanied by a program to install the program, which should run
on most versions of UNIX. Once uncompressed, and once the ‘install’ program run, the
directory contains:

README

A text file containing step-by-step instructions for running the program, including a list
of input variables.

MINMAX

A text file containing the minimum and maximum limits of each input and output vari-
able. This file is used to normalise and unnormalise the input and ouput data.

test.dat

An input file containing the input variables used for predictions.

model.gen

This is a UNIX shell file containing the commands required to run the model. It can be
executed by typing ‘sh model.gen’ at the command prompt. This shell file normalises the
input data, executes the neural network program, unnormalises the results and combine
them to produce the final committee result.

.normalise

Hidden executable file, to normalise the input data.

.generate44

Hidden executable file, for the neural network program. It reads the normalised input file
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and also uses a configuration file spec.t generated by .generate_spec and the weight files,
located in the subdirectory c.

.generate_spec

Hidden executable file, generates the configuration file read by .generate44.

.gencom

Hidden executable file, combines the output of the different models in a committee result.
.treatout

Unnormalise the results.

SUBDIRECTORY c

_w*f

The weight files of the different models.

*.1lu

Files containing information for calculating the size of the error bars for the different
models.

_c*

Files containing information about the perceived significance value [1] for each model.
R*

Files containing information about the noise, test error and log predictive error [1] for
each model.

SUBDIRECTORY d
outran.x A normalised output file which was created during the building of the model.

It is accessed by .generates4.

SUBDIRECTORY outprdt

outl, out2, efc.

The normalised output files for each model.
com.dat

The normalised output file containing the committee results. It is generated by .gencom.
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5 References

1. Thomas Sourmail, H. K. D. H. Bhadeshia and D. J. C. MacKay, A neural network model
for the creep strength of austenitic stainless steels., Materials Science and Technology, in
press.

2. D. J. C. MacKay, Mathematical modelling of weld phenomena 3, eds. H. Cerjak and
H. K. D. H. Bhadeshia, Institute of Materials, London (1997) 359, 3. D. J. C. MacKay’s
website at http://wol.ra.phy.cam.ac.uk/mackay/README.html

6 Input parameters

The input variables are listed in the README file in the corresponding directory. The
maximum and minimum values for each variable are given in the file MINMAX.

7 Output parameters

These give the creep life in log h. The output is written in the file result.txt.
Accuracy

A full calculation of the error bar is presented in reference 1.

Program data

See sample file test.dat

Program results

See sample file result.txt

Keywords

Neural networks, creep strength, austenitic stainless steels.
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MAP_DATA MTDATA _CAPILLARITY

This appendix presents the databases created to include capillarity effects in MT-DATA
calculations, as decribed in chapter 5 and associated documentation following the MAP

format, http://www.msm.cam.ac.uk/map/mapmain.html.

1 Provenance of Source Code

Thomas Sourmail

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, CB2 3QZ U.K.

The original data were from the SGTE (Scientific Group Thermodata Europe) databases
included with MT-DATA,

National Physical Laboratory,

Teddington,

Middlesex,

TW11 OLW, U.K.

Added to MAP: December 2001.

2 Purpose

To allow calculation of capillarity corrected equilibrium with thermodynamic calculation
softwares such as MT-DATA.

3 Description

Two types of binary files are provided: .dbs and .inz files for direct use with MT-DATA.
These data are replicated from the original databases, but a pressure dependency term
has been added so that the MT-DATA user can increase the Gibbs energy of any of the

precipitates by a given amounts.
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The user should be aware that this pressure dependency terms are in no way real vol-
umetric data. There only purpose is to allow the addition of 107% J mol~! per Pascal.
When using these database, a conventional calculation can be performed by setting the
pressure to 1 Pa. If the Gibbs energy of, say, M23C6 is to be raised by 1000 J mol~!, the
pressure should be set to 10° Pa.

Once the file map_data_mtdata_capillarity uncompressed, the directory databases contains
the following files:

README

Contains detailed instructions on how to install the databases and set up MT-DATA to
use them.

cementite.dbs and cementite.inx

Binary files (database and index) providing thermodynamic data for cementite.
m23c6.dbs and m23c6.inx

Binary files (database and index) providing thermodynamic data for M23C6.
hcpa3.dbs and hcpa3.inx

Binary files (database and index) providing thermodynamic data for HCP_A3
sub_p.dbs and sub_p.inx

Binary files (database and index) providing thermodynamic data for the following sub-
stances: N'Ti, CTi, NNb, CNb, C0.479Nb, C0.877Nb, C0.98Nb.

SUBDIRECTORY loa files

Contains the plain text load files corresponding to the above binary files.

Keywords

capillarity, coarsening, MT-DATA
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MAP_MT-DATA _KINETICS

This appendix presents the model described in chapter 6 and associated documentation

following the MAP format, http://www.msm.cam.ac.uk/map/mapmain.html.

1 Provenance of Source Code

Thomas Sourmail and H. K. D. H. Bhadeshia

Phase Transformations and Complex Properties Group,
Department of Materials Science and Metallurgy,
University of Cambridge,

Cambridge, CB2 3QZ U.K.

This program is interfaced with MT-DATA,
National Physical Laboratory,

Teddington,

Middlesex,

TW11 0OLW, U.K.

Added to MAP: December 2001.

2 Purpose

A program to estimate the kinetics of diffusion-controlled, multiple precipitation reactions
in austenitic stainless steels. This program can also be used for the same purpose in
different systems for which the SGTE databases provide thermodynamic data, but the

user will be required to input the diffusion coefficients.

3 Specification

Language: FORTRAN
Product Form: Source Code

Operating System: tested on Solaris.
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4 Description

MAP_MT-DATA _KINETICS contains the program which enable the user to obtain an
estimate of the volume fraction of various precipitates forming in austenitic stainless steels
during ageing at elevated temperature, as a function of time.

All thermodynamic calculations are handled internally by MT-DATA, therefore suppress-
ing the need for the user to input driving forces or equilibrium compositions.

The software uses MT-DATA .mp: files, from which the user selects required phases. This
file has to be created in first place, using the ACCESS module of MT-DATA.

Once uncompressed, MAP_MT-DATA_KINETICS contains:

kinetics.f

The source code for the program.

compile

A unix shell script to compile the program and link it to MT-DATA object files. It needs
to be edited to point to the directory where the latter are found.

precipitate_data

A file containing information about a number of precipitates, that is, lattice parameter,
number of atoms per unit cell, and parameters for nucleation (nucleation site density and
interfacial energy).

spheregrowth.out and planargrowth.out

Contains 500 precalculated points for the solution to the sphere growth and planar growth
equations as described in [1].

README

Complete instructions for installation and use.

5 References

1. Thomas Sourmail, PhD thesis, Chapter 6, available on http://www.msm.cam.ac.uk/phase-

trans/

6 Input parameters

The user is only required to select the phases allowed in the calculation and the elements
which are expected to control their growth, for example Cr and C in the case of My3Cs.
For most other input parameters, such as composition, ageing temperature and solution-

treatment temperature, the user has the possibility to create, with the software files which
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can be used for faster access in later calculations.

7 Output parameters

The default output is

Time /s — Vf of precipitate 1 — V{ of precipitate 2 — etc

where VT is the volume fraction.

This can be easily modified by editing the subroutine SNAPSHOT.

Keywords

Simultaneous precipitation reaction kinetics, austenitic stainless steels.
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