Chapter 3

Modelling precipitation reactions in
steels

The formation of an individual particle involves its nucleation and growth. A good ther-
modynamic description of the phases involved is essential in order to model the kinetics
of this reaction. For this reason, this chapter includes a presentation of the CALPHAD
method on which are built the SGTE databases used in thermodynamic calculation soft-
ware such as MT-DATA or ThermoCalc; it then introduces physical models for nucleation
and growth. The overall precipitation process must also account for impingement effects.
This can be dealt with using the theory for overall transformation kinetics as first ex-
pressed by Kolmogorov [78], Johnson and Mehl [79], and Avrami [80].

3.1 Thermodynamic models for solution and com-
pound phases

The use of phase-diagrams has, for long, been seen as being rather academic, because
most real materials are multicomponent in nature, while phase diagrams are generally
used to represent binary or ternary systems.

The CALPHAD (CALculation of PHAse Diagram) method has altered this viewpoint
because it is now possible to predict the phase behaviour of complex, multicomponent
systems, based on the extrapolation of thermodynamic properties. At the heart of this
method is the calculation of the Gibbs energy of a phase as a function of its composition,

temperature and pressure. Once this is possible, the problem of predicting an equilib-
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rium is essentially mathematical, although far from simple given the number of variables
involved in the minimisation process.

The models in use for the Gibbs energy vary with the nature of the phase considered.
The following introduces the problem for pure substances, solutions and sublattice phases,
which are the most commonly used in the field of metallurgy. The phases of interest in the
present work fall into three categories: MX precipitates (TiN, NbN, etc.) are modelled as
pure substances, complex carbides (e.g. My3Cs, MgC) and austenite are sublattice phases,
while the liquid phase is a random substitutional solution.

The following is essentially based on references [81, 82, 83].

3.1.a Pure substances

For a stoichiometric compound, it is sufficient to know the heat capacity together
with reference values to obtain the Gibbs energy at any temperature. The SGTE (Scien-
tific Group Thermodata Europe) databases store the coefficients for the heat capacity at

constant pressure, Cp, written as a polynomial of temperature:
Cp(T)=A+ BT +CT*+ DT ? (3.1)

together with values for AyH, the enthalpy of formation of the substance, and Sagg the
entropy at 298 K. The coefficients are valid only within a given range of temperature, and
the database provides parameters as a function of temperature interval.

3.1.b Random substitutional solutions

In random substitutional solutions, such as gas, or simple metallic liquid and solid
solutions, the components can mix on any spatial position available to the phase. The
Gibbs energy of a solution is traditionally decomposed according to:

G =G+ G 4+ G, (3.2)

ideal

where G° is the contribution of the pure components, G552 the ideal mixing contribution

and G%’.  the deviation from ideality also known as excess Gibbs energy of mixing.
t Ideal solutions
This is the simplest possible case. The interactions between the different elements

are identical and there is no enthalpy change when the solution is formed. The only
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contribution to the Gibbs energy change is due to the increase of configurational entropy.

This term can be simply calculated using Stirling’s approximation for large factorials.
ASrandom =—R Z (371 In .’L‘Z) (33)

where x; is the atomic fraction of component ¢ and R the gas constant. The Gibbs energy

per mole of solution is therefore:
G=> x:G;+RTY z;Inz; (3.4)

1t Regular and non-regular solutions
In most cases however, there are interactions between the components of a phase. In
the case of a binary system AB, the regular model assumes the total energy of solution
can be written :

E = Njacaa+ Nppeaa + NaaNapean (3.5)

where N4 is the number of AA pairs, and €44 their bond energy, it can be shown that

the enthalpy of mixing is:

Nz
AHpiz = 755(1 — ) (2648 — €44 — €BB) (3.6)
where N is the number of atoms in solution, and z the coordination number of the

structure, that is the number of nearest neighbours of any atom.

XS
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Figure 3.1: Modification introduced by the regular term: this diagram shows the
Gibbs energy of mixing with its two contributions as a function of z. If T < w/2R,
the curve has two points of inflection between which there is a miscibility gap; this is
the case illustrated here.
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For a regular solution, it is also assumed that the entropy of mixing is as given by
equation 3.3 so that it does not contribute to the excess Gibbs energy of mixing , therefore
G5 is:

v =wr(l —x) (3.7)
where w = Nz/2(2¢4p — €44 — €44) is a temperature dependent parameter on which
depends the behaviour of the solution (figure 3.1). Generalised to a multicomponent

random solution, the Gibbs energy per mole is written:

G= Z LEZG; + RT Z €T; In T; + Z Z Ty jWij (38)

i g>i
However, this assumes interactions to be composition independent, which is not realis-
tic in most cases. The sub-regular model, proposed by Kaufman and Berstein, introduces
a linear composition dependency and expresses the excess Gibbs energy of mixing as:
e = > wity(whmi + wlz;) (3.9)
i g>i

This is generalised to any composition dependency in the Redlich-Kister power series,

s

which expresses G772~ as:

e = Z Z TiTj Z wii (@ — ;)" (3.10)
i j>i v
In the SGTE databases, the individual parameters w are written:
w=A+BT+CTInT + DT? (3.11)
and these coefficients are stored for each Wy

3.1.c Sublattice models

The different expressions for G7;, presented above are all for solutions where the
components can mix freely on the sites available for the phase. In many cases, however,
different components mix on different sublattices, as with austenite, where C, N, B mix
on the interstitial sublattice, while Fe, Cr, Ni, etc. mix on the substitutional one. For
a two-sublattice phase, with A and B on the first sublattice, C and D on the second,

considering a regular solution, the excess Gibbs energy of mixing is written:

TS

miz = YaYpL% g + YoYU Licp (3.12)
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where LY 5., and L; ., are regular solution parameters for mixing on the sublattices
irrespective of site occupation of the other sublattice. The mole fractions (e.g. x4) are
now replaced by the occupied site fractions (y}, where 1 denotes the first sublattice).
A sub-regular model is introduced by making the interactions dependent on the site

occupation of the other sublattice, as:

TS

ve = YaysYe L p.o + Yaysyh L s (3.13)

+yeypya Loaop + vevpys Ly.cop

The temperature dependency is obtained by writing the parameters LY .- as poly-
nomials of 7" and In7', and it is the coefficients of these polynomials which are stored in
the SGTE databases.

3.1.d The SGTE databases

The purpose of this section is to describe the limitations of the SGTE databases when
dealing with systems such as NF709 (composition in table 1.1). These limitations can be

classified in three categories:

e Absence of a phase: this is the case of Z-phase and G-phase for which no information

is present in the database.

e Absence of an element within a phase, for example, Nb is not included in MgC in
the databases.

e Absence of parameters: an element can be allowed to enter a phase, but there is
no information about its interactions with the other elements. For example, there
is no parameter for Nb and N interactions in austenite. When this arises for two

elements on a same sublattice, they are modelled as an ideal solution.

1 Missing Phases
Two phases reported to form in austenitic stainless steels are not present in the SGTE
databases. Z-phase, which forms in the early stages of precipitation in nitrogen-bearing
stabilised austenitic stainless steels, and G-phase, which is sometimes reported in 20/25

niobium stabilised steels, after long-term ageing.
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1 Maissing Solubilities
For many phases, not all the elements which are known to dissolve in the phase are
found in the database. In the following table, the substitutions reported in literature are

reported, and the substitutions allowed by the SGTE are compared.

Phase Elements reported in literature | Elements allowed by SGTE
My3Cs CrFe Mo CMn Ni P BN Cr Fe Mn Ni Mo C

M¢C Fe Cr Mo SiNb Ti Ni C N Fe Cr Mo C

Sigma Fe Cr Ni Mo Mn Fe Cr Ni Mo Mn

Laves phase | Fe Ti Nb Mo Fe Ti Nb Mo

1t Missing Parameters
There are more than 800 parameters missing for the description of all the phases
able to form in a system corresponding to NF709. Although some have no importance
because they describe phases which are not expected to form, it is difficult to judge of
the consequences of most of them. In austenite, for example, most of the interaction
parameters for boron with other elements are missing. However, boron may be present
in very small quantities. A number of parameters are also missing for niobium and it is

more difficult to estimate the consequences.

3.2 The classical theory for nucleation

In this section the main lines of the derivation of nucleation rate as calculated in
classical theory are given, together with modifications for nucleation on dislocations, on

grain boundaries and for non-spherical shapes.
3.2.a Nucleation rate in the classical theory

At any temperature above absolute zero, composition and structure fluctuations con-
stantly occur in alloys as a result of thermal agitation. These fluctuations can lead to the
formation of stable nuclei of a new phase.

In classical theory, the probability P of a fluctuation giving a nucleus leading to an
increase of Gibbs energy AG is calculated according to the Boltzmann statistics:

P30~ toxp (226
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Although the nucleus is extremely small, macroscopic thermodynamical variables are used
to give an expression for AG, because the rate is an average function. Considering the
formation of a nucleus of # in a matrix ~, r being the radius of the nucleus, the change in

Gibbs energy is:
473

AG = AG, + 411’0 (3.14)

where 0,4 is the interface energy per unit area between the two phases, and AG), is the
Gibbs energy change per unit volume of embryo.

The change in Gibbs energy shows two contributions which act in opposition. In this
case, the Gibbs energy change decreases with increasing size only above a critical radius

r.. The critical radius and the activation energy G* are, assuming a spherical nucleus and

AG

Figure 3.2: Schematic variation of the Gibbs energy change with the size of
a nucleus in a supersaturated solution. After [84].

neglecting possible strain effects:

(3.15)

Te = —

The nucleation rate is then derived by considering the frequency with which an atom adds
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to a critical radius and makes it stable:

I = Nexp <_I§T> v exp <—g}) (3.16)

where v is an attempt frequency, often taken as being k7'/h, N a number density of

nucleation sites and Gy the activation energy for transfer of atoms across the v interface.
3.2.b Heterogeneous nucleation

Homogeneous nucleation very seldom occurs in solid-state transformations. The pres-
ence of defects, with which is associated a given energy, provides sites for preferential
nucleation. In austenitic stainless steels, MX carbides nucleate intragranularly on dislo-

cations, and most of the other carbides occur on the austenite grain boundaries.

¢ Nucleation on dislocations
When a nucleus forms on a dislocation, the Gibbs energy change is not given by
(3.14), as the strain energy field associated with the dislocation is locally suppressed [84].
The Gibbs energy change per unit length for a cylinder of radius r forming around the

dislocation is: )
AG = 1°AG, + Cyy — §Bb In(r) + 2701 (3.17)

where b is the magnitude of the Burgers vector of the dislocation and B a term which

depends on its nature (edge, screw or mixed). The solution for 0AG/0r = 0, if it exists,

24 1/2
{M } ] (318)

TOve

is given by:

O',yg

~ 2AG,

r

The quantity o” = AG,Bb/(n0?2,) determines the behaviour of the nucleus: if a” > 1,
the energy decreases continuously as the radius increases. If a” < 1, there are two
solutions and the activation energy G, is the difference between the Gibbs free energy at
the two extrema.
The nucleation rate in this case is a function of the dislocation density:
kT Gy + Gy

=Nl exp [ ——4_"* 3.19

where N, is the number of atoms per unit volume and [/, is the length of dislocation per

unit volume.
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1 Grain boundary nucleation
Nucleation on grain boundaries is treated in a similar way: the formation of a nucleus

is helped because it suppresses a high energy defect in the crystal. In this case, the

Figure 3.3: Nucleation on a grain-boundary as described by
Clemm and Fisher. Adapted from [84].

activation energy is found to be:

3
* i {7770 Oy0 — Thyy U’y’y}
B o7 ne2AG,>

(3.20)

where o,,, 0,9 are the interfacial energies for the grain boundary and the interface
precipitate-matrix respectively. 7,,, 7,9 are shape factors which relate the area of the
interfaces vy and 0 to the radius of the particle, while 7, is a shape factor for the volume

of the precipitate. In the case described by figure 3.3, they are:

(2 — 3(:039-1-00820)
Ny = 271' 3

Ny, = msin®f

Ny = 4m(1—cosb) (3.21)

Johnson et al. [85] derived expressions for the activation energy for faceted homoge-
neous nucleation and for various shapes of grain boundary nucleation. They showed that
a change in shape left the critical radius unchanged, but modified the activation energy.

3.2.c The driving force for nucleation

The preceding sections show the need to know the chemical driving force for nucleation
AG,. The precipitation of # in a matrix v leads to a reduction of Gibbs energy, AG, as
illustrated in figure 3.4. The corresponding Gibbs energy change per unit of precipitate
is given by AG, = AG,/f where f = (T — 27%)/(2% — 27?) is the fraction of precip-

itate, T being the bulk composition (mole fraction), 7% the composition of the matrix
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Figure 3.4: An illustration of the construction for finding the driving force for nucle-
ation, 277 is mole fraction of solute in the matrix in equilibrium with the precipitate,
T the bulk mole fraction.

7 in equilibrium with the precipitate #, and 2?7 the composition of the precipitate  in
equilibrium with the matrix v. However, the composition of the matrix hardly changes as
a consequence of the nucleation, and AG,, does not represent correctly the Gibbs energy
change during this phenomenon. Furthermore, the composition of the nucleus need not
be that corresponding to equilibrium (z%7), since an alternative composition may lead to
a larger Gibbs energy change. The composition that maximises the Gibbs energy change
at the nucleation stage is given by the parallel tangent construction [86] as illustrated in

figure 3.4. AG,, is therefore a better estimate of the driving force for nucleation.

3.3 The growth of precipitates

3.3.a Rate control

The velocity of the interface between matrix and precipitate depends on the mobilities
of atoms in the matrix and is related to the atom transfer across the interface. The

processes are in series. When the majority of free energy is dissipated in the diffusion of
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solute ahead of the interface, the growth is said to be diffusion controlled. It is interface-
controlled otherwise. Figure 3.5 illustrates the solute concentration profile in both cases.

In the case of diffusion-controlled growth, the interface compositions are given by the
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Figure 3.5: Schematic illustration of the solute concentration profile at the interface be-
tween the precipitate § and the matrix v. ¢?? is the concentration of solute of the matrix
in equilibrium with 6, ¢?” that of the precipitate in equilibrium with +, and € is the bulk
concentration.

equilibrium phase diagram, as illustrated in figure 4.1.
The following describes, as an example, the Zener model for the growth of a planar
interface with a constant far-field concentration (¢), in a binary system. More rigorous

models and extension to multicomponent systems are discussed in chapter 4.
3.3.b Zener model for diffusion-control growth

The solute concentration profile at the interface is illustrated in figure 3.5. A simpli-

fication introduced by Zener assumes a linear gradient as illustrated in figure 3.6.
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Figure 3.6: The constant concentration gradient approximation [87], and the binary
phase diagram showing the composition at the interface 6.
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In this case, the flux of solute arriving at the interface is:

dc t— "
v - _D
0z|,_

2*

2d

where z* is the position of the interface, D the diffusion coefficient of the solute in the
matrix, and ¢ the concentration of solute. This flux must equal the rate at which the
solute is partitioned:

w(CM - Cw) = |Jy=pr

(3.23)

where 1 is the growth rate. z4 can easily be estimated using the mass conservation:

%%w—ﬁ%=f@“—@ (3.24)

Introducing the dimensionless supersaturation Q = (¢ — ¢"?)/(c?” — ¢"?), and combining

equations 3.22, 3.23 and 3.24, the velocity is given by:

dz* D _c—c? 1
_d _ D L 2
v dt 2 —¢ (3.25)
Most of the times, it can be assumed that (c?” —¢) ~ (¢’ — ¢?), then:
dz* D _,1
=— == 2
¥ dt 2z (3:26)

Integration leads to:

2t = QVDt (3.27)

The precipitate size therefore varies with the square root of time, giving the classical

parabolic law for one-dimensional growth in a binary system.
3.3.c Capillarity effects on the interface compositions

As explained above, in diffusion-controlled growth, the interface compositions are given
by the equilibrium phase diagram. However, these diagrams are calculated assuming
phases extending indefinitely, that is without surfaces. In the case of precipitation, this
is not always a realistic approximation, and the influence of surface energy has to be
accounted for.

When a small particle with a curved interface grows, the work done to increase the
interface area is not negligible and results in a modification of the expected composition.

This is known as the Gibbs-Thomson or capillarity effect [84].
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Figure 3.7: Schematic illustration of Gibbs energy and interface composition
changes due to the capillarity effect in a binary system. This is a simplified case
where the composition of the precipitate is assumed to be constant.

For a curved interface, the increase in Gibbs energy due to the expanding area is given
by (figure 3.7), [84]:
Go(r) — Gy = 097@ (3.28)
dn
where o0y, is the energy per unit area of the interface between the matrix and the precipi-
tate, and dO/dn is the increase of interface area when a mole of component is transfered
to the precipitate.
For a spherical geometry, the term dO/dn becomes 2V? /r where V¢ is the molar
volume of # and r the radius of curvature. The calculation of the interface compositions

change is given further attention in chapter 5.

3.4 Overall transformation kinetics

As mentioned before, to model multiple precipitation reactions, it is necessary to
account for the impingement effects. There are two such effects: soft-impingement occurs
because of the diffusion fields overlap, while hard-impingement is due to contact between

the particles.
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3.4.a Soft-impingement

In an overall model for precipitation, soft-impingement can be dealt with by using the
mean field approximation, in which ¢ is not a function of spatial coordinates. It is reduced
in agreement with the amount of solute partitioned into the growing precipitates.

Although the validity of this approximation can be discussed when localised precipi-
tation phenomena are dealt with, it is nevertheless extremely useful to avoid recurring to

a model requiring spatial coordinates.
3.4.b Hard-impingement: the Avrami equation

We consider the precipitation of # in a matrix v, whose initial volume is V. The
nucleation and isotropic growth rates, respectively I and v are known. The volume of a

precipitate nucleated at time 7 is, at time ¢:
w, = CY3(t — 7)°

where C' is a shape factor, 47 /3 if the precipitate is spherical.

\Y

Step 3

Figure 3.8: The different contributions to the extended volume.

The basic assumption at this stage of the derivation of Avrami’s equation is that

nucleation and growth occur both in the transformed and untransformed regions, although
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it is clear that in reality, neither nucleation nor growth are possible in transformed regions.
With this assumption, the number of particles nucleated between 7 and 7 4 d7 is simply
1V dr, and therefore the contribution of these particles to the total volume of 6 at time ¢
is :

dVy = w, IVdr
The superscript e signifies that this is not a real volume, but an extended volume, because
of the assumption made above. The total extended volume is simply the sum of all

contributions from particles nucleated between 0 and ¢:
t
Vi = / wIVdr
7=0

The change in real volume can be derived by writing:

Va c
d%:<1—7> dv;

i.e. the change in real volume is the proportion of the change in extended volume which
occurred in the untransformed volume. Assuming I and v to be independent of time, an
analytical solution for the volume fraction of € is immediately derived:

V(@) =1—exp (—CIZ)?’#I)

3.4.c Modification for simultaneous reactions

Obviously, the Avrami equation as introduced above is only able to deal with a single
reaction, or a succession of independent reactions. This is not satisfying for the description
of multiple precipitation reactions which clearly interact with each other, by competing
for solute and nucleation sites. Robson and Bhadeshia [88] proposed a modification of
this equation as follows.

If two phases # and < can form from a volume V of v with different growth and
nucleation rates, we still can write the contribution of the ones nucleated between 7 and

T+ d7 as:

AV = CyiIV(t —7)°dr (3.29)
dve = CY3LV(t—r1)’dr
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but when correcting for the extended volume:

Va+ V4 4ore
dv, = <1—77>dv,,
Vo+ Vo \ 4ore
dV7:<1— - 7)dv7

The extension to multiple reactions is immediate:

Zi V; e
dv; = (1 - =) v (3.30)

However, such systems have no general analytical solution if no relationship is assumed

between the parameters of the two phases (nucleation and growth rates).

3.5 Summary

The CALPHAD method, which is at the heart of the prediction of the phase behaviour
of complex systems, has been presented briefly, together with the format of the SGTE
databases used with most thermodynamic calculation packages such as MT-DATA or
ThermoCalc.

Physical models for nucleation and growth of a single particle rely on the availability
of thermodynamic information such as the Gibbs energy change during precipitation, or
the equilibrium interface composition. Simple models have been presented for nucleation
and growth, the latter being given more attention in chapter 4.

The overall precipitation phenomenon cannot be modelled accurately without account-
ing for interactions between the different particles. Soft-impingement can be dealt with
using the mean-field approximation while the concept of extended volume, modified for

multiple precipitation reactions, provides a solution to the hard-impingement problem.



