Chapter 4

The growth rate of precipitates

4.1 Introduction

Calculating the diffusion-controlled growth rate is a problem which has received con-
siderable attention, but for which solutions can still be classed in two categories. On
the one hand, relatively complex mathematical approaches are used to solve the growth
equation with as few assumptions as possible, or to account rigorously for the geometry
of the growing particles, etc. (e.g. [89, 90, 91]). However, such approaches are difficult
to use for practical purposes, as they often introduce quantities which are not known
(for example, the cross-diffusion coefficients). On the other hand, solutions which are of
practical interest rely on approximations which can be judged more or less important,
but allow the calculations to be performed relatively easily and use parameters known for
most materials (e.g. [92, 88, 93]).

In this work, an attempt is made to build as general a model as possible, while avoiding
unnecessary approximations. For this reason, when possible, the diffusion coefficients of
the components involved in the growth of the different precipitates found in austenitic
stainless steels are calculated internally, and the use of MT-DATA removes the need for
inputs such as the maximum volume fraction of a given phase, its composition, driving

force, etc.
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4.2 Calculation of the diffusion coefficients

4.2.a Calculation of the carbon diffusivity

As can be seen from the published literature [94], the diffusivity of carbon in austenite
in the Fe-Cr-Ni-C system is strongly dependent on the composition. There are two main
advantages in calculating the carbon diffusivity within the framework of any model cre-
ated, rather than having it as an input. One is to considerably ease the task of the user
who does not have to find a value in the literature for the particular composition being
used. The other is that it may allow extrapolation to values which might not be found in
the literature. The calculation of the carbon chemical diffusivity was done as suggested
by Jonsson [94]. In his assessment of the carbon mobility in C-Cr-Fe-Ni alloys, Jénsson
uses the multicomponent diffusion theory [95] and writes the chemical diffusivity of car-
bon, under the assumption that the concentration gradients of substitutional elements

are negligible throughout the specimen, as:
D¢ = RTyy MoV (4.1)

where D¢ is the chemical diffusivity of carbon, yy, the fraction of vacant sites on the
interstitial sublattice, M the mobility of carbon, and ¥ the thermodynamic factor defined
by:
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where C¢ is the molar concentration of carbon. Jonsson then expresses the mobility Mq
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where M, is a frequency factor, Q¢ an activation enthalpy and AG} = RT®c — Q¢, with
& defined by M, = exp (®¢). Using the CALPHAD approach to model the composition
dependency of the mobility, it is easier to fit the quantity AGF, than the frequency factor
and activation enthalpy separately [94]. The quantity AGY, is therefore fitted using a
sublattice model 4.4:

AGH = D) Ty AGLY
P
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where the indices indicate which species occupies the different sublattices, separated by a
colon, for example AG* "V is for Cr on the first sublattice with nothing on the second
(vacancy), AG* F&¢"Va i5 an interaction parameter for Fe and Cr on the first sublattice

with nothing on the second. y; is the fraction of the sites occupied by species i on its

7 are expressed as polynomials

sublattice. If necessary, the individual parameters AG*Ci:
of the temperature.

Jonsson [94] provides the parameters for the mobility of carbon in austenite for Fe-Cr-
Ni-C alloys, so that the influence of the Cr, Ni and C content on the diffusion coefficient
of carbon in this phase can be calculated. These data have been used to calculate the
diffusion coefficient of carbon within a FORTRAN (formula translation) program written
to model the nucleation and growth of precipitates in austenitic stainless steels. The
influence of other elements commonly found in such steels (e.g. Mo, Mn, Si, N, etc.)
is only present as a modification of the site occupancy fractions for Fe, Cr, Ni and C,
but there are no specific parameters. As is explained later, this FORTRAN program
is interfaced with a library of subroutines which enable the use of MT-DATA internally.
Therefore it is not a problem to calculate terms such as ¥ defined by equation 4.2. Typical

calculated values are shown in table 4.1.

Material NE709 AISI 304
D¢c /m? s | 4.87 x 10713 | 5.86 x 10713

Table 4.1: Typical calculated values for the chemical diffusivity of C in austenite at
1023 K, composition of these two steels can be found in table 1.1.

4.2.b The diffusivity of Fe, Cr and Ni

The same approach was used for Fe, Cr and Ni which allows diffusivity coefficient to
be calculated within the program mentioned above, parameters were found in [36] and
[96]. Table 4.2 shows examples of calculated diffusion coefficients for Cr, compared with

values found in literature:



4.3 Calculation of the growth rate 70

Material Calculated Literature
AIST 316 [97] | 89 x 107 m? s™' | 6.2 x 1079 m? s™!
16Cr-14Ni [98] | 5.54 x 107" m? s | 5.50 x 107" m? s !

Table 4.2: The diffusion coefficient of Cr in AISI 316 at 750 °C as calculated and
found in different studies.

4.3 Calculation of the growth rate

The problem of calculating the growth rate is two-fold: firstly, it is necessary to be
able to calculate the growth rate as a function of the supersaturation, that is as a function
of the concentration profile at the interface. Secondly, it is necessary to determine the

interface compositions which in turn fixes the supersaturation.
4.3.a Calculating the growth rate in a binary system

This section deals with the diffusion-controlled growth of a precipitate # in a matrix

v, for a binary system. Under these conditions, the flux of solute in the matrix is given
by:

J=-DVc (4.5)

where J is the flux of solute, D its diffusion coefficient in the matrix and ¢ the molar or
mass concentration, depending on the flux of interest. The growth rate v of # is usually
calculated by solving the diffusion equation, and equating the flux of solute to the amount

incorporated into @ (figure 4.1 and equation 4.6):
Y (=) =T (4.6)

where ¢?” is the concentration of solute in the precipitate in equilibrium with the matrix
and ¢"? the composition of the matrix in equilibrium with the precipitate. As is shown in
figure 4.1, it is essential that the interface compositions are known in order to solve the
problem. Under the assumption of local equilibrium, these are given by the equilibrium
phase diagram. There are various effects which might cause a departure from local equi-
librium, such as the effect of interface energy, the existence of stresses and the solute-drag
effect (a review of these effects can be found in [99]). Much work has been dedicated
to the treatment of multicomponent capillarity, which is presented in chapter 5. Other

effects are assumed to be negligible.
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Figure 4.1: The concentration profile of the solute as a function of the distance from
the interface matrix / precipitate. r is the coordinate of the interface between the
matrix and the precipitate, ¢ is the bulk alloy composition. The shaded area represents
the amount of solute incorporated in the precipitate during a small amount of time.
It must be equal to the amount of solute brought at the interface by the diffusion in
the matrix.

For planar, cylindrical or spherical geometries, the growth rate can be generally ex-

pressed by [84]:
VD

— 4.7
v=20 (.7
where 1) is the velocity of the interface, ¢ is the time, and S is the solution of:

_s
Si =920 M (4.8)

®;(5)
where Q, the supersaturation, is defined by Q = (¢ — ¢%)/(c? — ¢"?), and j is 1,2 or 3
depending on the geometry of the problem: planar, cylindrical and spherical respectively.
®;(S) is given by:

B,(S) = /S "t exp (-%) du (4.9)

In cases where (2 is very close to 0 or very close to 1, asymptotic expansions can easily
be found for the planar and spherical cases, by rewriting ® using the erfc function and
expanding the latter to the first terms of its equivalent series. The following results are
obtained:

For small supersaturations (2 — 0):

2
golenar = Q) (4.10)

/T
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For large supersaturations (2 — 1):

Splanar = <%> (4‘12)

; 6
spherical — 4.1
s (_1 L Q) (4.13)

t  Calculation of the exact solution
Although equation 4.8 can be solved using a FORTRAN program, this is not straight-
forward, particularly at large supersaturations, where the different terms have to be calcu-

lated in a carefully chosen order to avoid exceeding the limits of most computers. Instead,
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Figure 4.2: (I) The exact solution for the growth of a planar interface (a), and the
approximations for small (b) and large (c) supersaturations. (II) The relative error
(error due to method / exact solution) due to the use of equation 4.12 (a) and to the
linear interpolation between calculated points (b).

a freely available mathematic package called Scilab (http://www-rocq.inria.fr/scilab/)
was used to create a file containing the solutions for 500 points between 0 and 1. Inter-
mediate values are found by linear interpolation. However, at large supersaturations, the
error caused by this method becomes important. By comparing the relative error obtained
by the linear interpolation and the use of the asymptotic expansions (figure 4.2), it was

possible to optimise the use of one or another method as a function of the supersaturation.
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As can be seen in figure 4.2, the relative error is always kept below 1% if the solution
is calculated using equation 4.12 when €2 > 0.994 while the linear interpolation between
pre-calculated points gives a very reasonable error down to 2 = 0. A similar method was
used to calculate the growth rate of a spherical interface, and gave 2 = 0.990 as the value
above which it was preferable to use equation 4.13. A considerable calculation time is

gained by this procedure, which almost reduces the calculation of S to a memory access.
4.3.b Calculation of the growth rate in a multicomponent alloy

The extension of the method described above is far from straightforward, as different
effects appear in multicomponent systems, which, it is shown in this section, can not be

reasonably neglected.

1 The flur balance

The discussion that follows considers a ternary system as an example, but can be
extended easily to a larger number of components.

Figure 4.3 illustrates the case of a ternary system in which a matrix + is in equilibrium
with a precipitate #. The bulk composition corresponds to point P, and the equilibrium
tie-line is that going through P. This tie-line defines diffusion profiles as illustrated, for
which the supersaturations are all equal.

However, the elements involved often have very different diffusivities. For example,
with Cr and C in austenite, the diffusion coefficients differ by a ratio of about about 10°
at 750 °C. Therefore the concentration profiles defined by the mass-balance tie-line do

not, in general, satisfy the following set of equations for a unique interface velocity :
Jo= (=)
Jo = (637 — cge> (4.14)

or, taking the problem in the other sense, the diffusion profiles of the different elements,
as fixed by the mass-balance tie-line, lead to different values of the interface velocity.
But there is no reason to select the equilibrium tie-line, that going through P, as the
one defining the interface compositions. The mass-balance equations are no longer the
determining constraints and must be replaced by equations 4.14. The tie-line fixed by

these conditions will be referred to as the flux-balance tie-line.
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Figure 4.3: The flux-balance fixed tie-line going through M, can be quite different
from the mass-balance fixed one, that passes through P, the bulk composition. In the
case where 1 diffuses much faster than 2, its gradient may be strongly reduced.

1 The problem of identifying the flur-balance tie-line

Although the problem of identifying the flux-balance tie-line has received attention in
a number of studies [89, 90|, it remains, in practice, difficult to solve. If one is to account
for this effect within a model describing the evolution of the precipitation, one needs to
have access to the entire phase diagram for the phases concerned, and not, as is the case
with binary system, just the interface compositions.

Earlier approaches by Fujita and Bhadeshia [93] have used simple analytical expres-
sions to fit the phase boundary in the ternary system of interest. However, there are
serious limitations to this method: first, the use of the model will be restricted to those
systems for which the phase boundary have been fitted by a function, and second, the

method is extremely difficult to extend to systems of more than three components.
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The application interface of the thermodynamic calculation software MT-DATA [3]
was used to provide an algorithm able to solve the problem in any system described in
the SGTE (or any other) databases. It consists of a library of subroutines which can be
called within a FORTRAN program to perform thermodynamic calculations with MT-
DATA.

Before presenting the algorithm which was written to solve this problem in a general
manner, it is necessary to look more carefully at the set of equations 4.14, and particularly
at the fluxes. In multicomponent system, the flux of component i is related to the various

concentration gradients according to:

Ji = —Dchi — Z DUVCJ’ (415)

J#i
where the cross-diffusion terms (D;;Vc;) arise because the gradient of components other
than ¢ can modify its chemical potential. In the following, cross-diffusion terms have been
neglected. Without this assumption, which is further discussed later, it is not possible to

use equation 4.7.

4.3.c An algorithm to determine the tie-line satisfying the flux-
balance

In this method, the velocity v; (the index indicating which component profile is used)
of the interface is calculated independently for each component composition profile, which
implies that cross-diffusion terms in equation 4.15 are neglected. The aim is to find the
tie-line for which all the 1; are identical. This is in fact reduced to equating the S;v/D;,
as shown by equation 4.7.

Figure 4.4 describes how the tie-line satisfying the flux-balance is identified in a pseudo-
ternary system. Pseudo-ternary refers to a ternary sub-system of a multicomponent sys-
tem. We consider here the example of the growth of Mo3Cg. For the mass-balance tie-line,
C and Cr have the same supersaturation (Q2c = Q¢ ), hence S¢ = Scr. However C diffuses
much faster than Cr, and therefore ¢, as calculated from the C concentration profile, will
be much larger than ¥¢,.. The tie-line eventually giving ¢, = 1¢ considerably reduces
Q¢ and increases Q¢;.

In systems with more than three components, this is repeated in a nested manner. For

example, a first modification is done on Mo, which gives a new pseudo-ternary system in
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Figure 4.4: The algorithm written to find the tie-line satisfying the flux-balance in
any system described in the databases used by MT-DATA; for each component the
step is initially set to a tenth of its total amount.

which this algorithm is applied, to Cr and C. When the tie-line is found, the fluxes of Cr
and C are identical, and need to be compared to that of Mo. The amount of Mo can then
be corrected and the procedure repeated until the tie-line that gives identical fluxes for
all elements involved is found.

This method is computer intensive, essentially because it is not possible to interact
with MT-DATA on a low level and replace the mass balance constraint directly in the

Gibbs energy optimisation process.

4.4 Qverall kinetics

The overall kinetic is presented in chapter 6. For comparisons made later, it is however

necessary to introduce the concept of soft-impingement.
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When many precipitates form in the same matrix, whether they are of same or different
nature, they compete for solute. To represent this, the mean-field approximation is used,
in which the composition ¢; is updated to reflect the amount of component 7 which has

been incorporated during a time step by the various precipitates.

4.5 Consequences

4.5.a The growth rate

The growth rate calculated assuming that Cr and C control the process was found to

be more than an order of magnitude larger than the one calculated assuming Cr control

alone.
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Figure 4.5: (I) Comparison between the calculated growth rates for Ma3Cg at
650 °C, in AISI 316 [97], with and without soft-impingement, under control of both
Cr and C diffusion. (IT) Comparison, without soft impingement, of the growth rate
of a My3Cq particle nucleated at ¢ = 0, at 650 °C, under Cr control alone, and Cr
and C control.

Figure 4.5(I), shows the predicted radius of a My3Cs precipitate nucleated at ¢ = 0,
with and without accounting for soft impingement, which can have a strong effect on
the growth rate. Since the purpose is here to compare the growth rates under different
hypotheses and since the role of soft impingement is itself dependent on the growth

rates, this effect has been removed to facilitate further comparisons. This means that
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growth curves can only be representative of the real phenomenon at the early stages of
the precipitation.

Figure 4.5(IT) compares the growth rate under Cr and C diffusion control and under
Cr diffusion control alone. In this situation, because of the very large difference between
the diffusivity of carbon and chromium in austenite, the tie-line found to satisfy the flux-
balance is virtually bringing the carbon gradient to zero (tie-line going through M in figure
4.3). As a consequence, at the early stages of precipitation, the composition of Ms3Cs
and of the surrounding austenite, are expected to be fairly different from the equilibrium

values.
4.5.b The composition of Ms3Cq in the Fe-Cr-Ni-C system

Several observations can be found which report an increasing Cr/Fe ratio during the
growth of Mg3Cg (section 2.1.c). Table 4.3 shows the expected Ms3Cg composition at
equilibrium, and the composition at the beginning of precipitation. As observed, the

Cr/Fe ratio is much smaller at the onset of precipitation than for the equilibrium.

Element Fe Cr Mo Mn
Wt% (I) 4.7 | 64.61 | 9.95 | 0.001

650°°C |\ (1) | 49.12 | 20.05 | 10.12 | 0.006
200 °C | Wi% (I) | 7.9 [62.37 [ 9.03 | 0.005
Wt% (I1) | 31.46 | 38.50 | 9.31 | 0.016

Table 4.3: The substitutional composition of M,3Cg in two different cases:
I is for the mass balance and II for the flux balance as calculated in this
project. The steel composition was 17.5 Cr, 12.3 Ni, 2.5 Mo, 1.6 Mn,
0.07 C wt%, as in [97].

4.5.c Number of components accounted for

The number of components that can be accounted for in the calculation is firstly
limited by the thermodynamic databases. Phases such as NbN, TiN and similar phases
are modeled as pure substances in the SGTE databases, so that it is not possible to
predict a change of composition, although, as explained in chapter 2, many works have
reported variations in the composition and stoichiometry of these phases during growth.

In the case of My3Cg, the elements Fe, Cr, Mo, Mn, Ni, and C can be included.
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However, including minor elements such as Mo, Ni and Mn has little influence over the
growth rate calculated with Cr and C diffusion, but greatly increases the computation
time. For this reason, in the above calculations and following comparisons, only the

diffusion of Cr and C have been used to calculate the growth rates.

4.6 Comparisons and discussions

Figure 4.6 shows the experimental results obtained by Zahumensky et al. [97] for a
AISI 316 steel at 650 °C and 800 °C. As can be seen, the agreement is relatively poor since
the experimental points lie in between the two curves corresponding to the Cr diffusion-
controlled growth and the multicomponent growth (accounting for Cr and C diffusion).

Furthermore, while the above method predicts a reduction of Cr/Fe well below 1 (40 Fe,
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Figure 4.6: Comparison between predicted (lines) and measured (points) radii of
M33Cq for the AISI 316 steel in [97], at (I) 650 °C and (IT) 800 °C.

30 Cr wt%), the measurements made by Boeuf et al. [100] on an AISI 304 stainless steel
report a Cr/Fe ratio slightly greater than 2 in the same conditions.

The overprediction of the radius can be partially attributed to the fact that soft-
impingement is not accounted for. As shown in figure 4.5, soft-impingement flattens the
growth curve considerably and quite early. But it appears that the difference is larger
than could be attributed to this effect alone. Also, the absence of soft-impingement cannot

explain why the compositions are different from the observations made by Boeuf et al.
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As mentioned before, this method is based on the commonly used (e.g. [92, 88, 93])
assumption that the cross-diffusion terms in equation 4.15 are negligible, however, both
the exaggerated growth rate and composition change indicate that this is not the case.

Applying equation 4.15 to the example of M43Cg, two fluxes have to be considered:

Jc = —D¢Vee — DecrVeg,
JCr = _DCTVCCT_DCTCVCC (416)

When the tie-line reaches point M in figure 4.3, the carbon gradient is almost reduced to
zero, but there is a strong gradient of chromium concentration, so that even if D¢, < Dg,
it is not possible to conclude that D¢, Vee, < DcVee since Veg, > Vee.

Difficulties arising from the inclusion of cross-diffusion terms have been presented be-
fore. However, the following solution avoids this difficulty: in the most general formalism,
it is a gradient of activity that drives diffusion. By reducing the gradient of carbon ac-
tivity rather than its concentration gradient, it can be ensured that the carbon flux is
really reaching a minimum. Furthermore, it can be considered, at this point, that the
effect of the remaining carbon gradient on the activity of chromium is negligible, therefore
allowing to identify J¢, to —Dc,Vee,. This means that the growth rate can be calculated
by using the diffusion of chromium alone at the point where there is no carbon activity
gradient. The following section describes the implementation of this method and the

results obtained.

4.7 Improvement in the calculation of the flux-balance
tie-line

Instead of reducing the carbon gradient and finding the tie-line which gives identical
fluxes (under the assumption that cross-diffusion is negligible), the algorithm described in
figure 4.4 was modified to find the interface composition for which the activity of carbon
was equal to the far-field one. When this tie-line is found, the velocity of the interface is
assumed to be that given by the diffusion of chromium.

As shown in figure 4.7 the agreement between the calculated and measured radii of
My3Ce in AISI 316 is considerably improved. Without doubt, the overpredicted size of
M,3C¢ after 10 h at 800 °C is due to the absence of soft-impingement, this temperature
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Figure 4.7: The radius of Ms3Cs at (I) 650 °C and (II) 800 °C. The agreement is
best for the growth rate calculated with no gradient of carbon activity.

corresponding roughly to the nose of the TTT (time temperature transformation) curve

for this category of steels [4], where the transformation is finished in a matter of hours.

The composition of My3Cg at the beginning of precipitation was calculated for the
AISI 304 studied by Boeuf et al. [100]. Table 4.4 sumarises the observed initial Cr/Fe
ratio and the calculated ones, using a zero gradient of carbon concentration and a zero

gradient of carbon activity. The last method, which gives very satisfying predictions of

the radius, also predicts well the Cr/Fe ratio.

Equilibrium

Boeuf et al. at t =0
Flux balance
Carbon isoactivity

Cr/Fe ratio
12
2.1
0.72
2.2

Table 4.4: The Cr/Fe ratio in Ma3Cg in different cases, for the AISI 304 steel studied
by Boeuf et al.. The last method clearly gives satisfying agreement with experimental

results.
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4.8 Summary and conclusions

A FORTRAN program has been written, interfaced with the thermodynamic calcu-
lation software MT-DATA, to solve the problem of growth in multicomponent systems.
It is shown that, although this approximation has been often used, neglecting the cross-
diffusion terms is particularly inappropriate when trying to equate the fluxes, and lead
to unrealistic results. A method has been proposed to solve the problem more rigorously
without having to include such terms, by considering the activity of carbon. This last
method predicts correctly not only the growth rate, but also the change in the My3Cq

composition.



