Evolution of Solutions Thermodynamics of Mechanical Alloying

A. Badmos and H. K. D. H. Bhadeshia, Metall. & Mater. Trans. A, 18A (1997) 2189.

H. K. D. H. Bhadeshia,

Proceedings of the Royal Microscopical Society, 35 (2000) 95.

Materials Science and Technology, 16 (2000) 1404.

H. K. D. H. Bhadeshia & H. Harada, Applied Surface Science, 67 (1993) 328.

Grain junctions powerful pinning points for small grains, which are no longer topologically independent

Fe-20Cr-5Al-0.5Ti-0.3 yttria wt%

90% reduction

Capdevila & Bhadeshia, 2000

Helical grains

Capdevila & Bhadeshia, 2000

Capdevila & Bhadeshia, 2000

Atom probe image of MA957

MA956

Chou & Bhadeshia, 1994

MA956

Chou & Bhadeshia, 1994

Concentration x of B

Solution

Entropy

$\mathbf{x} \mathbf{x}$	223	XX	$\times \times 2$	× × 2	6262	6262	c 20 3	6303	6262	c 20 3	6303	6265	1203	c 20 3	c 20 3	c 20 3	6262	$c \propto \infty$	$\infty \times \infty$	$\times \times$	$\times \times$	$\times \times$	$\times \times :$	$\times \times :$	$\times \times :$	8263	$x \times x$	$\times \times$	$\times \times$	$\times \times 2$	$c \propto \infty$	$\times \times$	$\times \times$	$\times \times \times$
												200																						
C 🔾	20	00	00	000	201	201	201	200	201	201	200	200	101	201	201	201	201	200	:00	00	00	00	00	00	001	00	000	00	00	00	200	00	88	000
CO	::	88		:::	::::	::::	:0:	::::	::::	:0:	::::	205	:0:	:0:	:0:	:0:	::::	:00	:00		00	:00						88	88		200	88	88	<u></u>
CO	20	88	00	000	200	200	500	201	200	500	201	200	101	500	500	500	200	200	:00	00	00	:00	001	001	001	001	000	00	00	00	200	00	88	000
co:	20	88	00	20:	201	201	:0:	:0:	201	:0:	:0:	200	:0:	:0:	:0:	:0:	201	200	:00	:00	:00	:00	22:	<u>::::</u>	<u>.</u>	::::	200	20	22	00	200	88	88	222
C ()	20	22	221	221	201	201			201			202					201	200	100	00	20	:00	221	221	221	201	22.2	22	22	22	200	22	66	<u></u>
20	50	<u> </u>	~~	~~	572	572	5 × 2	5 × 3	572	5 × 2	5 × 3	502		5 × 2	5 × 2	5 × 2	572	522		~~	~~	~~	~~	<u>~~</u>	~~	×~ :		~~	~~	~~	588	~~	<u>~~</u>	~~~
$\sim \sim$	5.X	××	× × :	× × :	<pre>C 2C2</pre>	<pre>C 2C2</pre>	::::		<pre>C 2C2</pre>	::::		< 22 P		::::	::::	::::	<pre>C 2C2</pre>	<u> </u>	. × ×	××	XX	××	~~	××:	XX	× × :	×× ×	× ×	××	× × :	< × ×	~~	<u>~~</u>	XXX
88	575	<u> ~ ~</u>	~~	~~.	\$ 7.7	\$ 7.7	\$2.2	57.	\$ 7.7	\$2.2	57.	572		\$2.2	\$2.2	\$2.2	\$ 7.7	\$22		~~	~~	~~	~~	~~	~~.	~~.		~~	~~	~~	522	~~	~~	~~~
\sim	exe	××	XX	XX	c ><>	c ><>	coo	coc	c ><>	coo	coc	<	: >:>	coo	coo	coo	c ><>	cxxx	(X X	××	××	××	XX	XX:	XX	××:	×× ×	××	××	XX	< × ×	××	××	×××
KX:	ĸх	хx	××	××	c 202	c 202	c >< 2	cx:	c 202	c >< 2	cx:	c 22.2	:x2	c >< 2	c >< 2	c >< 2	c 202	cxx	:××	: ***	xx	xx	$\times \times$	XX:	××:	××:	×××	××	××	××	exx.	xx	×х	$\times \times \times$
××:	ĸх	××	XX	XX	ex:	ex:	c>c5	c>c:	ex:	c>c5	c>c:	ex2	:>:>	c>c5	c>c5	c>c5	ex:	< × ×	: XX	$\sim \sim$	XX	××	$\times \times$	XX:	XX	xx:	×××	××	××	XX	exxx	$\times \times$	××	×××
$\mathbf{x} \mathbf{x}$	ĸх	хx	$\times \times$	××:	cxo	cxo	c><>	cx:	cxo	c><>	cx:	exe	:22	c><>	c><>	c><>	cxo	cxx	c x x	$:$ \times \times	XX	:xx	$\times \times$:	$\times \times$:	××:	××:	×××	$\times \times$	$\times \times$	$\times \times$	кжж	××	××	$\times \times \times$
$\times \times$	cχ	хx	$\times \times $	× × 3	6203	6203	000	000	6203	000	000	6223	: 203	000	000	000	6203	$c \propto x$	∞x	$\times \times$	XX	XX	$\times \times$	$\mathbf{x}\mathbf{x}$	XXX	XX 3	$\times \times \times$	$\times \times$	$\times \times$	$\times \times $	$c \propto \infty$	$\times \times$	хx	$\times \times \times$
$\times \times$	ĸΧ	хx	XX	XXX	cxe	cxe	∞	cx:	cxe	∞	cx:	600 X	:20	∞	∞	∞	cxe	CXX	:xx	XX	XX	:xx	$\times \times$:	$\times \times :$	XX:	XX:	×××	XX	××	XX	кжж	××	хx	$\times \times \times$
$\infty \times 10^{-10}$	$c \propto c$	хx	$\times \times $	820	6000	6000	c>c5	000	6000	c>c5	000	6262	:203	c>c5	c>c5	c>c5	6000	0000	2000	2020	$\sim \sim$	$\infty \times$	2020	$\times \times :$	$\times \times $	8263	82626	>>	$\times \times$	$\times \times $	62626	2020	$\times \times$	$\times \times \times$
$\mathbf{k} \mathbf{x}$	∞	хx	$\times \times$	XXX	620	620	000	c>c3	620	000	c>c3	6203	:20	000	000	000	620	C222	∞x	$\times \times$	XX	:xx	$\times \times :$	$\times \times :$	XX:	XX:	xxx	$\times \times$	$\times \times$	$\times \times$	$c \approx \infty$	$\times \times$	xx	$\times \times \times$
$\times \times$	έx	××	XX	XXX	6303	6303	č XO	č se s	6303	č XO	č se s	6265	: >:>	č XO	č XO	č XO	6303	<	222	22	XX	XX	XX	XX	XX	XX:	×××	XX	XX	XX	< X X	XX	××	$\times \times \times$
$\mathbf{x} \mathbf{x}$	223	XX	$\times \times 2$	× × 2	6262	6262	c 20 3	6303	6262	c 20 3	6303	6265	1203	c 20 3	c 20 3	c 20 3	6262	$c \propto \infty$	$\infty \times \infty$	$\times \times$	$\times \times$	$\times \times$	$\times \times :$	$\times \times :$	$\times \times :$	8263	$x \times x$	$\times \times$	$\times \times$	$\times \times 2$	$c \propto \infty$	$\times \times$	$\times \times$	$\times \times \times$
2.2	22	× ×	2.2	2.23	223	223			223			2005					223		2.2		22	~~		22				× ×	<u>.</u>	2.2	222	22		<u> </u>
K X	é X	XX	XX	2 2 3	225	225	225	e 503	225	225	e 503	225	2.25	225	225	225	225	<pre>xx</pre>	222	2.2	XX	XX	XX	XX	XX	22	2X X	XX	XX	XX	< X X	XX	XX	XXX
												200																						
C 🔾	20	00	00	000	201	201	201	200	201	201	200	200	101	201	201	201	201	200	100	00	00	00	00	00	001	00	000	00	00	00	200	00	88	000
CO	::	88		:::	::::	::::	:0:	::::	::::	:0:	::::	205	:0:	:0:	:0:	:0:	::::	:00	:00		00	:00						88	88		200	88	88	<u></u>
CO	88	88	00	888	200	200	201	:0:	200	201	:0:	200	:01	201	201	201	200	:00	:00	:00	:00	:00	001	CC (00	88	00	200	88	88	000
co:	20	88	00	20:	201	201	:0:	:0:	201	:0:	:0:	200	:0:	:0:	:0:	:0:	201	200	:00	:00	:00	:00	22:	<u>::::</u>	<u>.</u>	::::	200	20	22	00	200	88	88	222
CO	20	88	00	000	200	200	500	201	200	500	201	200	101	500	500	500	200	200	:00	00	:00	:00	001	001	001	001	000	00	00	00	200	00	88	000
ce:	20	22	22	201	en:	en:	201	201	en:	201	201	en:	:0:	201	201	201	en:	200	:00	00	00	00	223	∞	<u></u>	<u></u>	$\sim \sim$	22	22	$\sim \sim$	200	22	nn	222
$\sim \sim$	525	××	× × :	× × :	<pre>C 2C2</pre>	<pre>C 2C2</pre>	::::		<pre>C 2C2</pre>	::::		< 22 P		::::	::::	::::	<pre>C 2C2</pre>	<u> </u>	. × ×	××	XX	××	~~	××:	XX	× × :	×× ×	× ×	××	× × :	< × ×	~~	<u>~~</u>	XXX
20	50	<u> </u>	~~	~~	572	572	572	5 × 3	572	572	5 × 3	502		572	572	572	572	522		~~	~~	~~	~~	<u>~~</u>	~~	×~ :		~~	~~	~~	588	~~	<u>~~</u>	~~~
$\sim \sim$	exe	××	XX	XX	c ><>	c ><>	coo	coc	c ><>	coo	coc	<	: >:>	coo	coo	coo	c ><>	cxxx	(X X	××	××	××	XX	XX:	XX	××:	×× ×	××	××	XX	< × ×	××	××	×××
$\times \times$	sχ	XX	XX	×x:	cx3	cx3	cxo	cx:	cx3	cxo	cx:	<	: × 2	cxo	cxo	cxo	cx3	cxxx	(XX	xx	XX	XX	XX.	XX.	XX:	××:	×××	XX	xx	XX	cxx	xx	xx	XXX
××:	ese	××	XX	× 23	6003	6003	000	c >C 2	6003	000	c >C 2	6365	000	000	000	000	6003	c >< ><	200	222	xx	××	××:	XX:	XX	×203	×××	$\times \times$	××	XX	< × ×	××	××	$\times \times \times$
XX	ĸх	хx	XX	xx:	cx3	cx3	cxp	cx:	cx3	cxp	cx:	exs	:22	cxp	cxp	cxp	cx3	cxx	:xx	XX	XX	:xx	$\times \times$:	XX:	XX:	XX:	×××	XX	××	XX	exx (XX	хx	$\times \times \times$
XX	ex:	xx	XXX	× × 3	600	600	00	000	600	00	000	000	:20	00	00	00	600	$c \propto x$	200	222	XX	XX	XX:	XX	XXX	XX 3	xxx	XX	XX	XXX	CXX.	XX	xx	$\times \times \times$
10 M	c Y	хx	Y Y	× **	$c\infty$	$c\infty$	<u> </u>	<u> </u>	$c\infty$	<u> </u>	<u> </u>	10101	100	<u> </u>	<u> </u>	<u> </u>	$c\infty$	101010	111	111	111			YY.	YY.	× * *	10.00	Y Y		Y Y	101010		YY.	1111

For a random mixture, number of configurations given by:

$$\frac{\left(N_a([1-x]/m_A + x/m_B)\right)!}{(N_a[1-x]/m_A)! \ (N_a x/m_B)!}$$

 m_A = number of atoms per particle of A m_B = number of atoms per particle of B N_a = Avogadros number

Boltzmann

$S = k \ln\{w\}$

 $\frac{\Delta S_M}{\Delta M} = \frac{(1-x)m_B + xm_A}{X} \times \frac{M}{2} + \frac{M}$ kN_a $m_A m_B$ $\ln \left\{ N_a \frac{(1-x)m_B + xm_A}{m_A m_B} \right\}$ $\frac{1-x}{m_A} \ln \left\{ \frac{N_a(1-x)}{m_A} \right\}$ $\frac{x}{m_B} \ln \left\{ \frac{N_a x}{m_B} \right\}$

Classical theory for entropy of mixing

$$-\frac{\Delta S_M}{kN_a} = (1-x)\ln\{1-x\} + x\ln\{x\}$$

Solution-like behaviour when particles about **1000 atoms** in size

Free energy of mixing due to configurational entropy alone

Enthalpy

 $\Delta H_M \simeq N_a z (1-x) x \omega$

 $\omega = \epsilon_{AA} + \epsilon_{BB} - 2\epsilon_{AB}$

Surface per unit volume

Particle size

 $S_{V} = \frac{1}{2} \sum_{i} n_{i} 6(m_{i} \Phi_{i})^{\frac{2}{3}} / \sum_{i} \frac{N_{a} x_{i}}{m_{i}} V_{i}$ $\Delta H_I = V_m S_V \sigma$

Solution formation impossible!

Single barrier to solution formation when components attract

Badmos and Bhadeshia, 1997

Double barrier to solution formation when components immiscible

Atoms per particle

Badmos and Bhadeshia, 1997

Barrier to solution formation

Х

Badmos and Bhadeshia, 1997

Badmos and Bhadeshia, 1997

Gibbs free energy per mole

Paradox at concentration extremities vanishes in the discrete model of concentration

Atom probe image of *Scifer*,

5.5 GPa steel wire

Scifer, 5.5 GPa with ductility!

Kobe Steel

Mechanical tempering

Amorphous phase formation during mechanical alloying of Cu and Cd powders

....contribution from Cu/ δ interfaces, and accompanying increase in free energy, provide additional driving force for amorphisation....

Zhang & Massalski

Metall. & Mater. Trans. 29A (1998) 2425