Competitive Formation of Inter- and Intragranularly Nucleated

Ferrite

S.J. JONES and H.K.D.H. BHADESHIA

A recent trend in the development of tough steels has been to stimulate the heterogeneous nucleation
of ferrite on nonmetallic particles, at the expense of that nucleated at the austenite grain surfaces.
This leads to a refinement of the microstructure, which also becomes less organized, thus giving
better mechanical properties. This article deals with a model for the competitive growth of ferrite
nucleated both at austenite grain surfaces and intragranularly on inclusions. The classical Johnson—
Mehl-Avrami theory for overall transformation kinetics has been adapted to deal with such simul-
taneous transformations. The theory is demonstrated to reproduce known trends in experimental
observations and is shown to be of use in the design of steels.

I. INTRODUCTION

IT is well established that a refinement of the steel mi-
crostructure leads to an improvement in both the strength
and toughness. Since ferrite generally nucleates at the aus-
tenite grain surfaces, the steel microstructure can be made
finer by reducing the size of the austenite grains, thus pro-
viding a greater number density of nucleation sites. An al-
ternative (or complementary) approach is to introduce
additional heterogeneous nucleation sites in the form of
finely dispersed and carefully chosen nonmetallic parti-
cles.[') These act as sites for the intragranular nucleation
of ferrite. This method has been used successfully for many
decades in the welding industry,['>!"! but has recently be-
come prominent even in wrought steels, which are inocu-
lated with appropriate particles during the steelmaking
process.t15=]

A microstructure in which the ferrite is nucleated at both
the austenite grain surfaces and intragranular sites also
tends to be less random. It presents many more crystallo-
graphic orientations of ferrite per unit volume of sample,
so that propagating cleavage cracks are frequently de-
flected. This leads to an improvement of toughness beyond
that expected from grain refinement alone.

Much of the work in the development of steels that rely
on intragranularly nucleated ferrite has been done empiri-
cally. In other contexts, attempts at modeling continuous
cooling transformations involving simultaneous reactions
have assumed that the different reactions occur succes-
sively.l!213.141 The aim here was to develop an overall trans-
formation kinetics model capable of treating the
simultaneous formation of ferrite from a variety of different
nucleation sites, by adapting the classic Johnson—Mehl-
Avrami theory.!!!

S.J. JONES, Metallurgist, is with the Ford Motor Company, Dagenham
United Kingdom, HK.D.H. BHADESHIA, Reader in Physical
Metallurgy, is with the Department of Materials Science and Metallurgy,
Cambridge CB2 3QZ, United Kingdom.

Manuscript submitted July 25, 1996.

METALLURGICAL AND MATERIALS TRANSACTIONS A

II. OVERALL TRANSFORMATION KINETICS:
ISOLATED REACTIONS

A brief description of the Johnson—-Mehl-Avrami theory
for overall transformation kinetics is presented first, in or-
der to highlight the enhancements suggested later; a de-
tailed review can be found in Christian.!'*

Consider the precipitation of 8 from the parent phase 7.
A precipitate particle can be considered to form after an
incubation period 7. Assuming isotropic growth at a con-
stant rate G, the volume v, of such a spherical particle is
given by

v = (4@3)GNt — 7 (> 1) [1]

v,=0 (t<1 2]

where ¢ is the time defined to be zero at the instant the
sample reaches the isothermal transformation temperature.

Particles nucleated at different locations may eventually
touch. This problem of hard impingement is neglected at
first, by allowing particles to grow through each other and
by permitting nucleation to happen even in regions that
have already transformed. The calculated volume of S
phase is therefore an extended volume; the change in ex-
tended volume due to particles nucleated in a time interval
Tto T + dr is, therefore, given by

dveg = vlIVdr

ie.

Ve = (4mV/3) f ;0 G(t — 7ydr [3]

where [ is the nucleation rate per unit volume and V' =V,
+ Vj is the total sample volume. The term V is the volume
of untransformed 7 at any instant.

Only those parts of the change in extended volume that
lie in untransformed regions of the parent phase can con-
tribute to the change in the real volume of $. If nucleation
occurs randomly in the parent material, then the probability
that any change in the extended volume lies in untransfor-
med parent phase is proportional to the fraction of untrans-
formed material at that instant. It follows that the real
change in volume in the time interval ¢ to ¢ + df is
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B n ( V)
so that
VB , ft
—In(1 - —V) = (47/3)G 5 I(t — 7)%dr

In making this conversion from extended to real volume,
all information about individual particles is lost, so that the
application of the Avrami model yields only the volume
fraction transformed. Equation [3] can be integrated with
specific assumptions about the nucleation rate, when the
nucleation rate is constant:

B

L= V7 =1 — exp (—7G3It¥/3) [4]
where [, is the volume fraction of 8. This is the form of
the classic Johnson-Mehl-Avrami equation that can be
adapted for a variety of nucleation and growth phenomena.
The theory is, however, restricted to the precipitation of a
single phase from the parent. We now proceed to illustrate
how it can be modified to treat the occurrence of two or
more simultaneous reactions.

III. SIMULTANEOUS REACTIONS WITH
RANDOM NUCLEATION

A. Analytical Illustration

Consider first a case in which « and B precipitate at the
same time from the parent phase, which is designated 7. It
is assumed that the nucleation and growth rates do not
change with time and that the particles grow isotropically.
The increase in the extended volume due to particles nu-
cleated in a time interval £ = 7to t = 7 + dr is, therefore,
given by

4
dve = 3 wG3 (t — 7L,V dr and
4
vy = -
£33

(5]
7G} (t — 7LV dr

where G,, Gy, 1,, and I, are the growth and nucleation rates
of a and B, respectively, all of which are assumed here to
be independent of time. V' = V, + V, + V, is the total
volume of the system. For each phase, the increase in ex-
tended volume will consist of three separate parts. Thus,
for «, the parts are

(1) « that forms in untransformed -y,

(2) «a that forms in existing «, and

(3) « that forms in existing f3.

Only « formed in untransformed <y will contribute to the
real volume of a. On average, a fraction [1 — (V,, + Vp)/V)]
of the extended volume will be in previously untransformed
material. It follows that the increase in real volume of « in
the time interval ¢ to ¢ + dt is given by
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Ve + Vg .
av, = ( 1 - T) dVe and similarly for 3,

V,+ 7,
v, = (1 - —V—) v

In general, V_, will be some complex function of Vs, and it
is not possible to integrate these expressions to find the
relationship between the real and extended volumes. How-
ever, in certain simple cases, it is possible to relate V7, to
Vs by multiplication with a suitable constant, X, in which
case V; = KV,. The equations relating the increment in the
real volume to that of the extended volume can therefore
be written as

V,+ K
v, = (1 - QTVQ) dve and

Ve + KVB)
KV

[6]

e

av, = (1 :
They may then be integrated to find an analytical solution
relating the extended and real volumes analogous to that
for single-phase precipitation.

. _1[{ [ : ]
- = 1 — @ +
e In v 1+ K) and

Ve  —K ln[l _E(l +K)]
vV 1+K Vv K

The total extended volume fraction is found for each
phase by integrating Eq. [5] with respect to 7. This gives

l, = (1 i K) (1 — exp [— % 1+ K) 7TG3nIal‘4:|) [8]

b = (1 fK) (1 Lo [_% (1 ;K) ”G?’[f*“]) []

These equations resemble the well-known Avrami equation
for single-phase precipitation, with additional factors to ac-
count for the second precipitate phase. When the fractions
of both precipitating phases are small, the equations ap-
proximate to the expressions for each phase precipitating
alone. This is because nearly all of the extended volume
then lies in previously untransformed material and contrib-
utes to the real volume. It is possible for constant nucleation
and growth rates to calculate explicitly the value of K,
which is given by

K = VIV, = (LGYII,G?)

[7]

Some example calculations for the case of constant
growth rate are presented in Figure 1. When the nucleation
and growth rates of « and 3 are set to be identical, their
transformation curves superimpose and each phase even-
tually achieves a maximum fraction of 0.5 (Figure 1(a)).
When the nucleation rate of B is set to be twice that of a,
then for identical growth rates, the terminal fraction of 3
is twice that of « (Figure 1(b)). The case where the growth
rate of B is set to be twice that of a (with identical nucle-
ation rates) is illustrated in Figure 1(c). The final volume
fraction of the B phase is then 8 times that of the « phase,
because volume fraction is a function of the growth rate
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Fig. 1—An illustration of the kinetics of two reactions occurring
simultaneously, both of which nucleate randomly and grow in a linear
manner: (a) when the two phases have identical nucleation and growth
rates. (b) identical growth rates but with the 8 having twice the nucleation
rate of a; and (c) identical nucleation rates but with 3 particles growing
at twice the rate of the « particles.
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Fig. 2—An illustration of the kinetics of two reactions occurring
simultaneously, both of which nucleate randomly and grow in a parabolic
manner. Phase B has twice the nucleation rate of a (both phases have
similar growth characteristics).

cubed. Note that the analytical method shown previously
can be extended to allow for any number of simultaneously
precipitating phases.

The growth rate need not be constant. In diffusion-con-
trolled growth, the particle dimension will vary with the
square root of time, the constant of proportionality being
the three-dimensional parabolic thickening rate constant ().
The value of ¢ remains constant as long as the far-field
concentration in the matrix does not change. Therefore,
Egs. [1] and [2] are rewritten as

v, = @4n/3)& — 7% (> 1) [10]

v, =0 (<1 [11]

T

so that Eq. [5] becomes
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4
ave = -mwé (t — 72 IVdr  and
3 [12]

4
a?Vf3 = -3— 175% (t — 72 LV dr

where &, and &; are the three-dimensional parabolic thick-
ening rate constants of a and B, respectively. Therefore,
the volume fractions of « and B at time ¢ are given by

.= (1. i K) (1 — exp [—% 1+ K) 7T§f,lat5/2]) [13]

b= () (1-ew[- 3 (8 mge])

where the value of X is obtained from

K =VelV, = (I£p/1.E2)

Figure 2 illustrates the case when B nucleates at twice the
rate of a and £, = &,. It is emphasized that these analytical
relations are valid only if the values of ¢ do not change
during transformation, i.e., at very small degrees of trans-
formation.

B. Numerical Solution

While the analytical method is more transparent, a nu-
merical procedure is more versatile when the boundary con-
ditions for nucleation and growth change during
transformation. Consider a system with n precipitating
phases, which nucleate randomly and grow via their indi-
vidual mechanisms. The change in the real volume of phase
J in the current time interval ¢ to t + At is

AV, = (1 — L—I‘/V) AVe [15]
where AV is the corresponding change in the extended vol-
ume of phase j in the same time interval, V, is the real
volume of the ith phase at time ¢, and V is the total volume
of the assembly, AV¢ may have a contribution from particles
nucleated during the period # = 0 to 1 = mA¢, where m is
an integer such that mA¢ is the current time ¢, so that

AV = X (VL A7) (A0

where v, is the rate of change of extended volume of a
particle of phase j, which nucleated between kA7 and (k +
1)A7, during the current time interval mAt to (m + 1)At.
I, is the nucleation rate per unit volume of phase j during
the time interval kA7 to (k + 1)A7. VI,,A7 is the number
of extended particles of j nucleated in this time interval.
The terms Af and AT are taken to be numerically identical.
The instantaneous value of AV, together with the cor-
responding changes in the real volumes of the other n — 1
phases, is used to update the total real volume of each phase
at time ¢ + At in a computer implemented numerical pro-
cedure by writing
Viean =V, + AV, for j=1..n

7

so that a plot of the real volume of each phase can be
obtained as a function of time. The growth and nucleation
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rates can also be updated during this step, should they have
changed because of solute enrichment in the untransformed
parent material or because there is a change in temperature
during continuous cooling transformation.

IV. SIMULTANEOUS REACTIONS—BOUNDARY
NUCLEATED

The analysis presented subsequently is a numerical ad-
aptation for simultaneous reactions of the general method
of Cahn and Avrami,!'* in which there are two applications
of extended space, the first applying to the gradual elimi-
nation of free grain boundary area and the second to the
gradual elimination of volume of untransformed material.['s!
If we consider a planar boundary of area O, (which is equal
to the total grain boundary area per unit volume in the
assembly) in a system with n precipitating phases, where
0,, is the total real area intersected by the ith phase on a
plane parallel to the boundary but at a distance y normal to
that boundary at time ¢, we have for the jth phase,

80, = (1 - 22%) a0y, [16]

05

where AO,, is the change in the real area intersected with
the plane at y by phase j, during the small time interval ¢
to t + Az. AO:, is similarly the change in the extended area
of intersection with the same plane at y. This may have a
contribution from particles nucleated throughout the period
t = 0 to t = mAt, where m is an integer such that mA¢ is
the current time ¢, so that

m

AO;, = X (Op1,A7) (4, A0

k=0

where 4, is the rate of change of the extended area of
intersection on plane y of a particle of phase j, which nu-
cleated between kA7 and (k + 1)Ar, during the current time
interval mAt to (m + 1)At. The term [, is the nucleation
rate per unit area of phase j during the time interval kA7 to
(k + 1)AT7. Ol AT is the number of extended particles
nucleated in this time interval. Note that At and At are
taken to be numerically identical. Then, AQ,, is used to
update the total real area of intersection of phase j with the
same plane at y at time ¢t + Az by writing

Oj,y.H—At =0, t AOj,y for J= 1...n

Iyt

To obtain a change in the extended volume of phase j
on one side of the boundary, it is necessary to integrate as
follows:

g

dve = J::o do, dy
where dO,, is equivalent to AO,, and g™ is the maximum
extended size of a particle of phase j in a direction normal
to the grain boundary plane. Thus, the change in the ex-
tended volume of phase j on one side of the boundary in
the time interval ¢ to ¢ + At may be numerically evaluated
as

max
q;

AV; = &y X A0, [17]
£
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where Ay is a small interval in y. Therefore, the correspond-
ing change in the real volume after allowing for impinge-
ment with particles originating from other boundaries is

SN Lo
av, = (1-=2) ary [18]

where ¥ is the real volume of the ith phase at time 7. The
instantaneous value of AV, together with the corresponding
changes in the volumes of the other n — 1 phases, can be
used to calculate the total real volume of each phase at time
¢ + At in a computer implemented numerical procedure by
writing

Vieas =V, + AV, for j=1..n

so that a plot of the fraction of each phase can be obtained
as a function of time. The growth and nucleation rates can
also be updated during this step, should they have changed
because of solute enrichment in the untransformed parent
material or because there is a change in temperature during
continuous cooling transformation.

V. SIMULTANEOUS FORMATION OF
IDIOMORPHIC AND ALLOTRIOMORPHIC
FERRITE

Modeling the simultaneous formation of both intra- and
intergranularly nucleated allotriomorphic ferrite is then
straightforward using equations very similar to those dis-
cussed earlier. In this case, only one phase is forming, how-
ever, it is nucleating at two very different types of site. So
that henceforth the subscript j = 1 is used to distinguish
allotriomorphic ferrite nucleated at the austenite grain
boundaries from intragranularly nucleated allotriomorphic
ferrite (henceforth termed idiomorphic ferrite), which is
given the subscript j = 2.

The boundary model is modified slightly, because only
allotriomorphic ferrite nucleates along the austenite grain
boundaries. Therefore, removing the summation term from
Eq. [16] gives

20, = (1 - 22) ao0;,
Os
The competition between allotriomorphic and idiomorphic fer-
rite particles for the untransformed austenite is modeled by
using Eq. [18] (where j has been redefined as shown previ-
ously) to calculate how the real volumes of allotriomorphic
and idiomorphic ferrite change during each time interval.

The nucleation and growth of allotriomorphic ferrite has
been described by modeling the allotriomorphs as discs
having their faces parallel to the nucleating grain boundary
plane.l'>131 The discs are assumed to grow on both sides of
the parent boundary under paraequilibrium conditions, so
that the half-thickness g, of each disc during isothermal
growth is given by

g, = {(— D" [19]

where ( is the one-dimensional parabolic thickening rate
constant. The growth rate slows down as the concentration
gradient ahead of the moving interface decreases to accom-
modate the carbon that is partitioned into the austenite. The
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growth rate parallel to the grain boundary plane is taken to
be 3 times that normal to it, giving a constant aspect ratio
1, of 3.0, so that the disc radius is 7,q,.'! For nonisoth-
ermal growth, the change in thickness during a time interval
dt is given by differentiating Eq. [19] to give

1
dg =5 Lt~ D7 dr

Therefore, for a particle nucleated between kA7 and (k +
1)A7, the half-thickness at the current time (m + 1)At is
evaluated numerically as

1
Qi mevar = Grmar T E {(mAt — kAT)™'2 At

The rate of change of area of intersection on a plane y of
a disc of allotriomorphic ferrite nucleated between kAt and
(k + 1)A7, during the current time interval mAt to (m +
1)A¢, is taken as

Al,k,y = 3> (ql,(m+1)At >y)
Al,k,y = Wﬂ???,(mﬂm,/At (ql,(m+1)At =y)
Al,k,y =0 (41,(m+1)m <y)

Since the ferrite allotriomorphs can grow into both of the
adjacent austenite grains, if follows from Eq. [17] that

qpax

AV: = 2Ay ZO AO,, [20]

The random nucleation and growth of idiomorphic ferrite
on nonmetallic particles has been described by modeling
the allotriomorphs as spheres, which grow parabolically un-
der paraequilibrium conditions. For nonisothermal growth,
the rate of change of extended volume of a particle of id-
iomorphic ferrite, which nucleated at 7 = kA7 during the
time current interval t = mAtto t = (m + 1)A¢t, is

U = 2w (mAt — kAT)? (mAt > kA7)
v = meA (mAt = kA7)

where £ is the three-dimensional parabolic thickening con-
stant.

Classical nucleation theory is used to model the nuclea-
tion rate of allotriomorphic ferrite on the austenite grain
boundaries, with the nucleation rate per unit area of bound-
ary given by an equation of the form

Gt+ 0 T

kT *
I, = C,— exp }exp {— —t—} [21]

{_ 1

“h RT
where h is the Planck constant, k is the Boltzmann constant,
T is the absolute temperature, and R is the universal gas
constant. The term Q is a constant activation energy rep-
resenting the barrier to the transfer of atoms across the in-
terface; it should have a value smaller than that for the
self-diffusion of iron in austenite (270 kJ mol~'l!")), since
it involves the diffusion of atoms across a defect (boundary)
as opposed to diffusion in the defect-free lattice. The acti-
vation energy for nucleation is given by G} = C,0°/AG?,
where o is an effective interfacial energy per unit area,
discussed subsequently. The term AG is the maximum
chemical free energy change per unit volume available for
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nucleation.!'8] The second exponential term relates to the
achievement of a steady-state nucleation rate: 7* = n2
h(4a kT)~"' exp {Q/RT}, where n, is the number of atoms
in the critical nucleus and a, is the number of atoms in the
critical nucleus, which are at the interface;!'s) these quan-
tities are a function of o and AG and were calculated as-
suming a spherical shape.

The equation contains three unknowns about the nuclea-
tion of allotriomorphic ferrite, all of which have to be de-
termined experimentally. Annelli e al.'“ have published
some careful experimental data on the evolution of the frac-
tion of allotriomorphic ferrite as a function of the austenite
grain size, chemical composition, and transformation tem-
perature. Equation [21] was fitted to these data to obtain the
unknown quantities. We now return to the term designated
the effective surface energy o. A real nucleus will be
bounded by a number of interfaces, each of different inter-
facial energy, and the shape will depend also on that of the
austenite grain boundary on which heterogeneous nucleation
occurs. None of these details are known, but it is relevant to
note that the form of Eq. [21] is preserved even for hetero-
geneous nucleation. Furthermore, the assumed value of o
(0.025 J m™2) is not overly significant since it is multiplied
by the empirical fitting constant C,. This constant C, may
be regarded as a correction to the real interfacial energy, but
it also represents the shape of the nucleus, which is not de-
fined. For the purposes of the present work, the values C,
=486 X 10"°m™2, C, = 4.19, and Q = 200 kJ mol~' were
found to give a good fit to the experimental data of Refer-
ence 14. We note that as expected, Q is smaller than the
activation energy for self-diffusion in austenite.

It is emphasized here that there is considerable complex-
ity in the detail of nucleation theory, which has been ne-
glected here because the parameters necessary cannot be
derived with confidence from existing experimental data.
For example, the interfacial energy is unlikely to be isotro-
pic, it may vary with size, and there will be a dependence
of the shape on the defect on which nucleation occurs.!'s!
The austenite grain surfaces themselves cannot be assumed
to have a constant interfacial energy. The parameters stated
here in order to model nucleation are therefore of limited
value. This issue arises in all kinetic theory and is not a
problem unique to the model presented here. The value of
Q is, however, reasonable. The purpose of this work is to
demonstrate that the simultaneous transformations can be
properly represented in overall transformation kinetics,
rather than to deduce nucleation functions.

The nucleation rate of idiomorphic ferrite on nonmetallic
particles per unit volume is similarly obtained, this time by
fitting the following equation to the data by Ueda et al.:!')

kT G% + T*
L=CcNSep - ap (-5 2]

where C, = 0.0955 is a fitted constant and N, is the number
of nonmetallic particles per unit volume. G¥ = C,0°/AG?,
where C, = 7.54, is a fitted constant (this value is consistent
with the generally accepted view that inert inclusions are
less potent sites for nucleation than the austenite grain
boundaries).

The one-dimensional parabolic thickening constant is ob-
tained by solving!'?!
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Table I.. The Chemical Compositions (Weight Percent) of
the Steels Studied by Ueda et al.!”

Alloy C Si Mn B N

b 0.12 025 147 — 0.0045
c 0.12 023 144 0.0029 0.0074

Comment

boron-free steel
high nitrogen,
boron steel
low nitrogen,
boron steel

d 0.13 023 1.45 0.0030 0.0014
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Fig. 3—Experimental data reported by Ueda et al. for the alloys listed in
Table I:1'1 (a) total normalized fraction of transformation as a function of
time at 720 °C, following austenitization at 1350 °C for 10 s; (b) number
density N,, of ferrite grains observed to grow from intragranular nucleation
sites; and (c) number density N, of ferrite grains observed to grow from
austenite grain surfaces.

172

D L & {
2 (77_) Q= exp {42} erfc {22”2}
with () = —)iy - xv
x (& JE— xa

where x?* and x*” are the paraequilibrium carbon concen-
trations in austenite and ferrite, respectively, at the interface
(obtained using a calculated multicomponent phase dia-
gram), X is the average carbon concentration of the austen-
ite, and D is a weighted average diffusivity?*2!1 of carbon
in austenite, given by

where D is the diffusivity of carbon in austenite at a par-
ticular concentration of carbon. The three-dimensional par-
abolic thickening constant is given by
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Table II. Parameters Necessary to Compare Experimental
Datal*®! against Theory, Together with Those Used to Predict
the TTT Curves for Allotriomorphic Ferrite in Two Model

Steels*
Steel d,/um C, v, d,/pm C,
b 195 419 23 X 1073 0.02 7.54
c 195 486 23 X 10 0.02 7.54
d 177 553 78 X103 0.02 7.54
Model steel e 45 4.19 0 — -

Model steel f 45 419 2.0 X103 0.5 7.54

*The term d, is the austenite grain size (mean lineal intercept), ¥, the
volume fraction of nucleating particles, and d, the particle diameter.

o [22 & — xm)]l/z

X — X

VI. RESULTS AND DISCUSSION

The model described previously was validated in two
ways: first, by a comparison against published experimental
data; and second, by examining the predicted trends to en-
sure consistency with metallurgical expectations.

There is one quantitative study on the balance between
idiomorphic and allotriomorphic ferrite, due to Ueda et
al.m" and Funakoshi et al.,?2 who studied transformation
in the three steels listed in Table I. Using their designations,
steel b is a mild steel, which is free of boron; and steels ¢
and d both contain deliberate additions of boron, but the
latter has an exceptionally low nitrogen concentration.
Transformation in all of the alloys occurs to varying de-
grees, by heterogeneous nucleation at the austenite grain
surfaces or intragranularly at nonmetallic particles. Ueda et
al. thought that these particles were boron nitrides. Iron
borocarbides were also suspected of inducing a small num-
ber of nucleation events. The key features of this series of
steels are illustrated in Figure 3 and can be summarized as
follows.

(1) The boron-free steel b can be regarded as the reference
material with transformation originating mostly from
the austenite grain surfaces.

(2) Transformation in the boron-containing high-nitrogen
steel ¢ is dominated by intragranular nucleation at bo-
ron nitride particles. A relatively small amount of sol-
uble boron segregates to the austenite grain surfaces,
making them slightly less effective as heterogeneous
nucleation sites.

(3) The boron-containing low-nitrogen steel d contains a
high concentration of soluble boron, which segregates
to the austenite grain surfaces, making them signifi-
cantly less effective as heterogeneous nucleation sites.
A small increase in the number density of intragranular
nucleation sites occurs because some boron nitride pre-
cipitation is inevitable.

The model requires values for certain parameters, which
are steel dependent. These are listed in Table II. The aus-
tenite grain sizes are from Funakoshi et al.;?? they influ-
ence the number density of grain boundary nucleation sites.
The term C, occurs in the activation energy for nucleation,
with G¥ = C,0%/AG>. As stated earlier, the value of the
austenite-ferrite interfacial energy per unit area (o) was
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Fig. 4——Calculated data for the steels listed in Table I: (a) total
normalized fraction of transformation as a function of time at 720 °C; the
normalization is performed by dividing the calculated volume fraction
transformed by the calculated paraequilibrium volume fraction of ferrite
at 720 °C. (b) Absolute volume fraction of intragranularly nucleated
idiomorphic ferrite. (c) Absolute volume fraction of grain boundary
nucleated allotriomorphic ferrite.

taken to be 0.025 J m~2. However, boron modifies this en-
ergy; the modification is taken into account using the data
by Ueda et al.,"*! by adjusting empirically the value of C,
in a way consistent with the increasing quantities of soluble
boron in steels b, ¢, and d. Thus, complete saturation of the
boundary with boron corresponds to a value of C, = 5.53
(Table II). In the boron-containing steels ¢ and d, the vol-
ume fraction of nucleating particles ¥, was estimated as the
equilibrium volume fraction of boron nitride. This was cal-
culated using the solubility product of boron nitride in aus-
tenite due to Maitrepierre et al.,?® for the transformation
temperature 720 °C. The boron nitride particle size is un-
known but was taken as 0.02 um.?¥ In the boron-free steel
b, the volume fraction of nucleating particles was assumed
to be an order of magnitude less than the calculated volume
fraction of boron nitride in steel ¢. The particle size was
assumed to be the same as that in steels ¢ and d.

Figure 4 shows the transformation curves estimated for
steels b, ¢, and d; these can be compared against the ex-
perimental curves given in Figure 3. It should, however, be
borne in mind that Figures 3(b) and (c) are plots of the
number densities of intragranular or boundary particles,
rather than the volume fractions plotted in Figure 4.

Isothermal transformation at 720 °C can only continue
until the equilibrium volume fraction is reached, leaving
some austenite untransformed. To allow a comparison
against the experimental data, which are in effect normal-
ized with respect to the equilibrium fraction, Figure 4(a)
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Fig. 5—Transformations in steel c: (@) an austenite grain size of 150 um; (b)
an austenite grain size of 50 um; and (c) an austenite grain size of 25 um.

has been similarly normalized. It is clear that all the trends
evident in the experimental transformation curves are re-
produced faithfully. Examination of Figures 4(b) and (c)
shows that consistent with the experimental data (Figures
3(b) and (c)) grain boundary transformation dominates in
the boron-free steel b. The reverse is true for the boron-
rich high-nitrogen steel ¢, where the boron nitride particles
stimulate intragranular transformation and soluble boron re-
tards grain boundary allotriomorph nucleation. As ex-
pected, the suppression of allotriomorphic ferrite is largest
for the low-nitrogen boron steel d.

These results are encouraging given that the only param-
eter that has been adjusted to distinguish the steels is the
value of C,, which alters the potency of the austenite grain
boundaries to account for the differing levels of soluble
boron. The model was further tested to ensure that it was
consistent with metallurgical expectations.

A reduction in the austenite grain size should lead to a
change in the balance between allotriomorphic and idio-
morphic ferrite. This is illustrated in Figure 5 for steel c,
where data are presented for austenite grain sizes of 150,
50, and 25 wm. The reduction in the austenite grain size
leads to a change from an idiomorphic to allotriomorphic
ferrite dominated transformation. Such an effect is well es-
tablished from a qualitative point of view;!!”! large austenite
grain sizes favor intragranularly nucleated transformation
products for two reasons. First, the number density of grain
boundary nucleation sites decreases relative to intragranular
sites as d,, is increased. Second, grain boundary nucleation
sites are generally more potent than inclusions, so transfor-
mation commences first at the boundaries. Therefore, as-
suming a constant thickness of allotriomorphic ferrite along
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phic ferrite continues over the full course of the transformation
because the nonmetallic inclusions are randomly distributed
throughout the volume of the assembly. Therefore, all of the
extended particles of idiomorphic ferrite that are nucleated
during the course of the transformation can contribute to the
real volume. Furthermore, these intragranularly nucleated fer-
rite particles grow more rapidly due to the three-dimensional
diffusion of carbon in the austenite around them. Conse-
quently, while the overall transformation rate is increased in
a manner consistent with the greater density of nucleation
sites, the later stages of transformation are greatly accelerated
by contributions from intragranularly nucleated idiomorphic
ferrite.

VII. SUMMARY

An overall transformation kinetics model has been pro-
duced for dealing with the simultaneous formation of al-
lotriomorphic and idiomorphic ferrite. It has been possible
to reproduce experimentally observed trends in published
data, and the analysis gives insight into the competing ef-
fects of inter- and intragranular nucleation sites. These
methods can be used in the design of new steels. Further-
more, this approach can easily be extended to allow for the
simultaneous inter- and intragranular nucleation of a variety
of phases, such as allotriomorphic ferrite, Widmanstitten
ferrite, bainite, and pearlite.?® Therefore, it should be pos-
sible to model the transformation kinetics of quite complex
systems such as low-alloy steel weld metals.
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