
        

Materials Science & Metallurgy Part III Course M16, Materials Modelling

H. K. D. H. Bhadeshia

Worked Examples

1. Question

Explain, in the context of binary solutions, what is meant by the term ‘chemical potential’.
Hence justify the fact that the common tangent construction, on a free energy versus concen-
tration plot, gives the equilibrium compositions of the phases.

Distinguish between an ideal, a regular and a quasichemical solution thermodynamic model.
Explain qualitatively why none of these models are used in their exact forms in the computer
calculation of phase diagrams.

1. Answer

Consider an alloy consisting of two components A and B. For the phase α, the free energy will
in general be a function of the mole fractions (1−X) and X of A and B respectively:

Gα = (1−X)µA +XµB (1)

where µA represents the mean free energy of a mole of A atoms in α. The term µ is called the
chemical potential of A, and is illustrated in Fig. 1a. Thus the free energy of a phase is simply
the weighted mean of the free energies of its component atoms. Of course, the latter varies
with concentration according to the slope of the tangent to the free energy curve, as shown in
Fig. 1.

Consider now the coexistence of two phases α and γ in our binary alloy. They will only be in
equilibrium with each other if the A atoms in γ have the same free energy as the A atoms in
α, and if the same is true for the B atoms:

µαA = µγA

µαB = µγB

If the atoms of a particular species have the same free energy in both the phases, then there is
no tendency for them to migrate, and the system will be in stable equilibrium if this condition
applies to all species of atoms. Since the way in which the free energy of a phase varies with
concentration is unique to that phase, the concentration of a particular species of atom need
not be identical in phases which are at equilibrium. Thus, in general we may write:

Xαγ
A 6= Xγα

A

Xαγ
B 6= Xγα

B

where Xαγ
i describes the mole fraction of element i in phase α which is in equilibrium with

phase γ etc.
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Fig. 1: (a) Diagram illustrating the meaning of a chemical potential µ. (b)

The common tangent construction giving the equilibrium compositions of the

two phases at a fixed temperature.

The condition the chemical potential of each species of atom must be the same in all phases at
equilibrium is quite general and obviously justifies the common tangent construction illustrated
in Fig. 1b.

An ideal solution is one where the atoms mix at random because there is no enthalpy change
on mixing (∆HM ) the components (Table 1). The configurational entropy of mixing is (∆SM )
is easily derived because the probabilities can be estimated assuming a random distribution of
atoms. The enthalpy of mixing is finite for a regular solution, so that the atoms at low temper-
atures may not be randomly mixed. Nevertheless, as a convenient approximation, the entropy
of mixing is assumed to be ideal. A quasichemical model avoids this latter approximation.
Note that the regular solution may be considered as a zeroth approximation quasichemical
model.

The models describe above help in the understanding of phase equilibria and in the behaviour
of solutions. The theories are, nevertheless, too complicated for general application in phase
diagram calculations. Computer methods are designed to enable the calculations to be imple-
mented over the entire periodic table, for any concentration, and in a seamless manner. The
thermodynamic functions have to be constructed in such a way that the modification of one
set of data does not entail the recreation of the entire dataset.
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Type ∆SM ∆HM

Ideal Random 0

Regular Random 6= 0

Quasichemical Not random 6= 0

Table 1: Elementary thermodynamic properties of solutions

2. Question

Give three examples of cases where the rate of energy dissipation is given by the product of
the “flux” (J) and a corresponding “force”, (X), i.e.

Tσ = JX

where T is the absolute temperature and σ is the rate of entropy production. How could this
relationship be generalised for multiple dissipation processes?

Using the concept of forces and fluxes in the theory of irreversible thermodynamics, deduce
the relationship between the velocity V of a grain boundary and the free energy change ∆G
accompanying it motion. State any assumptions involved in this derivation.

Prove that the general relation between V and ∆G should in fact be as follows:

V ∝ exp{−Q/kT}[1− exp{−∆G/kT}]

where Q is the activation energy for the transfer of atoms across the grain boundary, k is the
Boltzmann constant and T is the absolute temperature.

Is it possible to reconcile this equation with the relationship deduced from irreversible ther-
modynamics?

2. Answer

Force Flux

Electromotive force (e.m.f.) = ∂φ
∂z Electrical Current

− 1
T
∂T
∂z Heat flux

−∂µi∂z Diffusion flux

Table 2: Examples of forces and their conjugate fluxes. z is distance, φ is the

electrical potential in Volts, and µ is a chemical potential.

We have seen that in an irreversible process, the product of the force Z and the flux J gives
the rate of energy dissipation:

Tσ = JZ

where T is the temperature, σ is the rate of entropy production. Tσ is therefore the rate of
energy dissipation. In many cases, it is found experimentally that J ∝ Z.
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When there is more then one dissipative process, the total energy dissipation rate can still be
written

Tσ =
∑

i

JiXi. (2)

In the case of grain boundary motion, the rate of energy dissipation is simply V∆G so that
we immediately get

V ∝ ∆G

An alternative is to consider the transfer of atoms across a grain boundary (a barrier of height
Q). The probability of forward jumps (i.e. jumps which lead to a reduction in free energy) is
given by

exp{−Q/kT}
whereas that of reverse jumps is given by

exp{−(Q+ ∆G)/kT} = exp{−Q/kT} exp{−∆G/kT}

.

The rate at which an interface moves is therefore given by

V ∝ exp{−Q/kT}[1− exp{−∆G/kT}]

Note that this relation is hardly that predicted from irreversible thermodynamics. However,
they become identical when ∆G is small, i.e. there is not a great deviation form equilibrium.
Note that for small x, exp{x} ' 1 + x. Thus, at small driving forces,

Vi ∝ exp{−Q/kT}[∆G/kT ]

The three parts of the question carry equal marks.
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