
Materials Science & Metallurgy Master of Philosophy, Materials Modelling,

Course MP9, Information Theory, H. K. D. H. Bhadeshia and T. Sourmail

Lecture 1: Neural Networks

Linear Regression

Most scientists are familiar with regression analysis where data are

best–fitted to a specified relationship which is usually linear. The result

is an equation in which each of the inputs xj is multiplied by a weight wj ;

the sum of all such products and a constant θ then gives an estimate of

the output y =
∑

j wjxj + θ. As an example, the temperature at which

a particular reaction starts (TS) in steel may be written:

TS( ◦C) = 830
︸︷︷︸

θ

−270
︸ ︷︷ ︸

wC

×cC −37
︸︷︷︸

wNi

×cNi −70
︸︷︷︸

wCr

×cCr (1)

where ci is the wt% of element i which is in solid solution in austen-

ite. The term wi is then the best–fit value of the weight by which the

concentration is multiplied; θ is a constant. Because the variables are

assumed to be independent, this equation can be stated to apply for the

concentration (wt%) range:

Carbon 0.1-0.55 Nickel 0.0-5.0 Chromium 0.0-3.5

and for this range the start temperature can be estimated with 90%

confidence to ±25 ◦C.

There are difficulties with ordinary linear regression analysis as fol-

lows:



(a) A relationship has to be chosen before analysis.

(b) The relationship chosen tends to be linear, or with non–linear

terms added together to form a pseudo-linear equation.

(c) The regression equation applies across the entire span of the

input space.

NEURAL NETWORKS

A general method of regression which avoids these difficulties is

neural network analysis, illustrated at first using the familiar linear re-

gression method. A network representation of linear regression is illus-

trated in Fig. 1a. The inputs xi (concentrations) define the input nodes,

the bainite–start temperature the output node. Each input is multiplied

by a random weight wi and the products are summed together with a

constant θ to give the output y =
∑

i wixi + θ. The summation is an

operation which is hidden at the hidden node. Since the weights and

the constant θ were chosen at random, the value of the output will not

match with experimental data. The weights are systematically changed

until a best–fit description of the output is obtained as a function of the

inputs; this operation is known as training the network.

The network can be made non–linear as shown in Fig. 1b. As before,

the input data xj are multiplied by weights (w
(1)
j ), but the sum of all

these products forms the argument of a hyperbolic tangent:

h = tanh

(
∑

j

w
(1)
j xj + θ

)

with y = w(2)h + θ(2) (2)

where w(2) is a weight and θ(2) another constant. The strength of the hy-

perbolic tangent transfer function is determined by the weight wj . The



Fig. 1: (a) A neural network representation of linear

regression. (b) A non–linear network representation.

output y is therefore a non–linear function of xj , the function usually

chosen being the hyperbolic tangent because of its flexibility. The exact

shape of the hyperbolic tangent can be varied by altering the weights

(Fig. 2a). Difficulty (c) is avoided because the hyperbolic function varies

with position in the input space.

A one hidden-unit model may not however be sufficiently flexible.

Further degrees of non–linearity can be introduced by combining sev-

eral of the hyperbolic tangents (Fig. 2b), permitting the neural net-

work method to capture almost arbitrarily non–linear relationships. The

number of tanh functions per input is the number of hidden units; the

structure of a two hidden unit network is shown in Fig. 3.

The function for a network with i hidden units is given by

y =
∑

i

w
(2)
i hi + θ(2) (3)



Fig. 2: (a) Three different hyperbolic tangent func-

tions; the “strength” of each depends on the weights.

(b) A combination of two hyperbolic tangents to pro-

duce a more complex model.

Fig. 3: The structure of a two hidden–unit neural

network.

where

hi = tanh

(
∑

j

w
(1)
ij xj + θ

(1)
i

)

(4)

Notice that the complexity of the function is related to the number of

hidden units. The availability of a sufficiently complex and flexible func-

tion means that the analysis is not as restricted as in linear regression



where the form of the equation has to be specified before the analysis.

The neural network can capture interactions between the inputs

because the hidden units are nonlinear. The nature of these interactions

is implicit in the values of the weights, but the weights may not always be

easy to interpret. For example, there may exist more than just pairwise

interactions, in which case the problem becomes difficult to visualise

from an examination of the weights. A better method is to actually use

the network to make predictions and to see how these depend on various

combinations of inputs.

Overfitting

A potential difficulty with the use of powerful non–linear regression

methods is the possibility of overfitting data. To avoid this difficulty,

the experimental data can be divided into two sets, a training dataset

and a test dataset. The model is produced using only the training data.

The test data are then used to check that the model behaves itself when

presented with previously unseen data. This is illustrated in Fig. 4

which shows three attempts at modelling noisy data for a case where y

should vary with x3. A linear model (Fig. 4a) is too simple and does

not capture the real complexity in the data. An overcomplex function

such as that illustrated in Fig. 4c accurately models the training data

but generalises badly. The optimum model is illustrated in Fig. 4b.

The training and test errors are shown schematically in Fig. 4d; not

surprisingly, the training error tends to decrease continuously as the

model complexity increases. It is the minimum in the test error which

enables that model to be chosen which generalises best to unseen data.



Fig. 4: Test and training errors as a function of model

complexity, for noisy data in a case where y should

vary with x3. The filled points represent training

data, and the circles the test data. (a) A linear func-

tion which is too simple. (b) A cubic polynomial with

optimum representation of both the training and test

data. (c) A fifth order polynomial which generalises

poorly. (d) Schematic illustration of the variation in

the test and training errors as a function of the model

complexity.

Error Estimates

The input parameters are generally assumed in the analysis to be

precise and it is normal to calculate an overall error, ED, by comparing



the predicted values (yj) of the output against those measured (tj), for

example,

ED ∝

∑

j

(tj − yj)
2. (5)

ED is expected to increase if important input variables have been ex-

cluded from the analysis. Whereas ED gives an overall perceived level of

noise in the output parameter, it is, on its own, an unsatisfying descrip-

tion of the uncertainties of prediction. Fig. 5 illustrates the problem;

the practice of using the best–fit function (i.e. the most probable values

of the weights) does not adequately describe the uncertainties in regions

of the input space where data are sparse (B), or where the data are

particularly noisy (A).

MacKay has developed a particularly useful treatment of neural

networks in a Bayesian framework, which allows the calculation of er-

ror bars representing the uncertainty in the fitting parameters. The

method recognises that there are many functions which can be fitted or

extrapolated into uncertain regions of the input space, without unduly

compromising the fit in adjacent regions which are rich in accurate data.

Instead of calculating a unique set of weights, a probability distribution

of sets of weights is used to define the fitting uncertainty. The error

bars therefore become large when data are sparse or locally noisy, as

illustrated in Fig. 5.



y

x

A

B

Fig. 5: Schematic illustration of the uncertainty in

defining a fitting function in regions where data are

sparse (B) or where they are noisy (A). The thinner

lines represent error bounds due to uncertainties in

determining the weights.


