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Lecture 3: Straight Line in Bayesian Framework

Linear Regression

The equation of a straight line is:

y = mx + c (1)

where m is the slope and c the intercept on the y–axis at x = 0. y

is a predicted value derived by best–fitting the equation to a set of n

experimental values of (ti, xi) for i = 1, . . . n.

The same equation can be rewritten as

y =
2∑

j=1

wjφj where φ1 = x and φ2 = 1

w1 ≡ m and w2 ≡ c

Using the best–fit values of the weights w1 and w2 can, however, be

misleading when dealing with finite sets of data. If a different finite–

dataset is assembled from the population of data, then it is possible

that a different set of weights will be obtained. This uncertainty in the

line that best represents the entire population of data can be expressed

by determining a distribution of the weights, rather than a single set

of best–fit weights (Fig. 1a). A particular set of weights in the weight–

space can be identified as a vector wT = (w1, w2).

In the absence of data, we may have some prior beliefs about the

variety of straight lines as illustrated in Fig. 1b. The distribution of



Fig. 1: (a) Weight space showing a distribution of

weights about the most probable set. (b) Prior beliefs

about straight line models.

lines is represented by a two–dimensional Gaussian with variables w1

and w2:

P(w) =
1

Zw

exp

{

−
α
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2∑
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w2
j

}

(2)

where Zw is the usual normalising factor and α = 1/σ2
w, where σ2

w is

the variance. (Notice that it appears that the prior favours smaller

weights, but the value of α can be made sufficiently small to make the

distribution approximately flat, so that the set of lines which fall within

the distribution is roughly random.)

Now suppose that we have some experimental data (consisting of

(ti,xi) with i = 1 . . . n; t represents the measured values of y and is often

referred to as the target) then it becomes possible to assign likelihoods to

each of the lines using another two–dimensional Gaussian with variables

wi and w2:

P(T|w,X) =
1

ZD

exp
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−
β
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(ti − yi)
2

}

(3)



where ZD is the normalising factor and β = 1/σ2
ν , where σ2

ν is the

variance.

The actual probability distribution of weights is then obtained by

scaling the prior with the the likelihood,

P (w|T,X) ∝ P (T|w,X) × P (w)

=
exp{−M{w}}

ZM

(4)

where

M{w} =
α

2
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i

w2
i +

β
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Using a Taylor expansion about the most probable w = wMP gives

M{w} ' M{wMP } +
1

2
(w − wMP )T

[

αI + β
∑

n

xxT

]

︸ ︷︷ ︸

V−1

(w − wMP )

where I is a 2 × 2 identity matrix and V is the variance–covariance

matrix. This can be used to find the uncertainty in the prediction of

y{x} at a particular location in the input space†:

σ2
y = xT Vx (5)

The variation in σy as a function of x is illustrated schematically in

Fig. 2.

† equation 4 describes the Guassian distribution of weights whereas

what we want is the variance in y. Using a Taylor expansion,

y = y{wMP } +
∂y

∂w
∆w

σ2
y =

∂y

∂w
σ2

w

∂y

∂w
= xT Vx



Fig. 2: Error bounds calculated using equation 5


