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Lecture 4: Worked Example
We saw in Lecture 1 that there are two kinds of uncertainties to consider

when fitting functions to data. The first, σν , comes from noise in the

experimental measurements, when repeated experiments give different

outcomes. This error is usually expressed by associating a constant error

bar with all predictions: y ± σν .

The second type of error which comes from the fitting uncertainty

is not constant. This is illustrated in Fig. 1; there are many functions

which can be fitted or extrapolated into uncertain regions of the input

space, without unduly compromising the fit in adjacent regions which

are rich in accurate data. Instead of calculating a unique set of weights,

a probability distribution of sets of weights is used to define the fitting

uncertainty. The error bars therefore become large when data are sparse

or locally noisy.

Fig. 1: Fitting uncertainties due to sparse or noisy

data.



   

Example

Determine the best–fit straight line for the following data, and the fitting

uncertainty associated with each datum and for values of inputs which

lie beyond the given data.

T =





−2.8
−0.9
0.3
−0.2
2.2
2.8
4.2





, X =





−3 1
−2 1
−1 1
0 1
1 1
2 1
3 1





≡





x1

x2

x3

x4

x5

x6

x7





The parameters α and β are in practice determined iteratively by min-

imising the function M (Lecture 3, equation 5). For the purposes of

this exercise you may assume that α = 0.25 and that there is a noise

σν = 0.026861 so that β = 1/σ2
ν = 1386.

Solution

The best–fit intercept on the y–axis is shown by linear regression to be

w2 = 1.0; the best–fit slope is similarly found to be w1 = 1.0821 (Fig. 2)

†

The mean vector is

xT = (x1, x2 ) = ( 0 1 )

† This assumes that the prior is flat, that is that the lines plotted in

Fig. 9b are completely randomly distributed. If the prior belief implies

a non–random distribution then most likely line will not correspond to

that given by best–fitting in this way.



Fig. 2: Plot of target versus x.

The number of data is n = 7 so that
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We need to determine the variance–covariance matrix V which is given

by (Lecture 3, equation 5):

V−1 =
[
αI + β

∑

n

xxT

]

=
[(

1
4 0
0 1

4

)
+

(
38808 0

0 9702

)]

=
(

38808.25 0
0 9702.25

)

It follows that

V =
(

2.57677 × 10−5 0
0 1.03069 × 10−4

)



    

Suppose now that we wish to determine the fitting error associated with

xT = (−7 1 ), then the corresponding variance for that input vector is

σ2
y = xTVx

= (−7 1 )
(

2.57677 × 10−5 0
0 1.03069 × 10−4

) (
−7
1

)

= 0.001365687

Therefore, for x = (−7 0.8 ), y = −6.7747, σ2
y = 0.001365687, σy =

0.037 so the prediction may be stated, with 67% confidence to be

y ± σy = −6.7747 ± 0.037.

Calculations like these done for a variety of input vectors are listed in

Table 1 and plotted in Fig. 3.

x1 x2 y σ2
y σy

-7 1 -6.7747 0.001365687 0.036955203

-3 1 -2.4463 0.000334978 0.018302413

-2 1 -1.3642 0.00020614 0.014357567

-1 1 -0.2821 0.000128837 0.011350621

0 1 0.8 0.000103069 0.010152284

1 1 1.8821 0.000128837 0.011350621

1 1 1.8821 0.000128837 0.011350621

2 1 2.9642 0.00020614 0.014357567

7 1 8.3747 0.001365687 0.036955203

Table 1: Some predictions



Fig. 3: Plot of the predicted values of y ± 10σy for

the data in Table 1. Notice that the uncertainty is

largest when making predictions out of the range of

the training data.

In this simple example, the values of α = 1/σ2
w and σν were given

at the outset. In general, these would have to be inferred using the

techniques described in MacKay, Information Theory, Inference, and

Learning Algorithms, Cambridge University Press, 2003.


