
An introduction to genetic algorithms for

neural networks

Richard Kemp

1 Introduction

Once a neural network model has been created, it is frequently desirable to
use the model backwards and identify sets of input variables which result in
a desired output value. The large numbers of variables and non-linear nature
of many materials models can make finding an optimal set of input variables
difficult.

Here, we can use a genetic algorithm to try and solve the problem.
What are genetic algorithms? Genetic algorithms (GAs) are search algo-

rithms based on the mechanics of natural selection and genetics as observed
in the biological world. They use both direction (“survival of the fittest”)
and randomisation to robustly explore a function. Importantly, to implement
a genetic algorithm it is not even necessary to know the form of the function;
just its output for a given set of inputs (Figure 1).

What do we mean by robustness? Robustness is the balance between
efficiency and efficacy necessary for a technique to be of use in many differ-
ent environments. To help explain this, we can compare other search and
optimisation techniques, such as calculus-based, enumerative, and random
searchs.

Calculus-based approaches assume a smooth, unconstrained function and
either find the points where the derivative is zero (easier said than done) or
follow a direction related to the local gradient to find the local high point
(hill climbing). These techniques have been heavily studied, extended and
rehashed, but it is simple to demonstrate their lack of robustness.

Consider the function shown in Figure 2. It is easy for a calculus-based
method to find the maximum here (assuming the derivative of the function
can be found...!). However, a more complex function (Figure 3) shows that

1



outpute

a
b

c
d

Figure 1: It is not necessary to know the details of a function to use genetic
algorithms.

the method is local – if the search algorithm starts in the region of a lower
peak, it will miss the target, the highest peak.

Once a local maximum is reached, further improvement requires a random
restart or something similar. Also, the assumption that a function is smooth,
differentiable, and explicitly known is seldom respected in reality. Many real-
world models are fraught with discontinuities and set in noisy multimodal
search spaces (Figure 4).

While calculus-based methods can be very efficient in certain environ-
ments, the inherent assumptions and local nature means they are insuffi-
ciently robust across a wide spectrum of problems.

In such cases, it may be tempting to try and calculate the whole surface
and find maxima that way. This brute force method is, unsurprisingly, highly
inefficient. Alternatively, a random-walk approach may be used to explore
the surface. This is also inefficient - although both of these methods retain
their applicability across a wide range of problem types, unlike the calculus-
based approach.

How, then, do genetic algorithms (GAs) differ from these methods? Draw-
ing from biological genetics and natural selection, there are three fundamental
differences:

1. GAs search from a population of points, rather than a single point.

2. GAs use an objective function only, rather than derivatives or other
additional information about the search space.

2



-4
-2

0
2

4x -4

-2

0

2

4

y

0

0.5

1

1.5

2

2.5

3

f(x,y)

Figure 2: A single-peak function is easy for calculus-based methods.

-4
-2

0
2

4x -4

-2

0

2

4

y

0

0.5

1

1.5

2

2.5

3

f(x,y)

Figure 3: Which hill should we climb? A complex multi-peak function poses
a serious problem for calculus-based methods.

3



-4
-2

0
2

4x -4

-2

0

2

4

y

0

0.5

1

1.5

2

2.5

3

f(x,y)

Figure 4: Many real-world functions are noisy and discontinuous and thus
unsuitable for calculus-based search methods.

3. GAs use probabilistic rules rather than deterministic rules.

This combination of properties allows a large, multi-parameter space to
be explored efficiently and efficaciously, provided they are applied judiciously.

2 Evolution – using genetic algorithms

To start with, it is necessary to encode the parameter set for a model into
a chromosome, Xi. This is a way of expressing the information that allows
for various forms of mutation to occur in the parameter set, and consists
of a set of genes, [xi1, xi2, xi3, xi4, . . . ]. This set of genes, when given to the
model as inputs, will give the output fi. The chromosomes are then ranked
according to a fitness factor, Fi, describing how well they perform relative to
expectation and each other.

The chromosomes are then allowed to breed (with a likelihood propor-
tional to fitness) and mutate. In practice, evolution occurs in two ways –
crossover (see tables 1 and 2) and random variation. In this example, mu-
tation would be represented by flipping a randomly chosen bit. In a neural

4



String no. String Fi
Fi

ΣFi

No. surviving Mating pool

1 01101 169 0.14 1 01101
2 11000 576 0.49 2 11000
3 01000 64 0.06 0 11000
4 10011 361 0.31 1 10011

Table 1: An initial population of strings, their fitness factors, their chances
of breeding, and the subsequent breeding pool (selected randomly based on
the probabilities in column 4 – often called the “roulette wheel” procedure).
The fitness factor in this case is obtained by assuming the string represents
a binary number, and squaring it.

Mating pool Mate Crossover site New population New Fi

0110|1 2 4 01100 144
1100|0 1 4 11001 625
11|000 4 2 11011 729
10|011 3 2 10000 256

Table 2: The mating pool (from Table 1, with | indicating the crossover site),
randomly selected mating, randomly selected crossover sites, the resultant
new population and their fitness factors (example from Goldberg (1989)).

network optimisation GA, mutation would involve a small variation – plus
or minus – in a randomly chosen gene.

This simple example demonstrates a simple optimisation problem. For
complex multi-parameter models, larger populations will be necessary for
efficient exploration of the parameter space and, to further increase efficiency,
multiple populations may be used. This allows a range of forms of variation
to occur with every generation. Typically, say, from a population of 20
chromosomes, for the next generation the best (fittest) may be preserved
unchanged (elitism); a further 18 places, for crossover and mutation, may be
randomly filled based on their relative fitnesses (as in Table 1); and the final
place filled by a completely new, randomly generated chromosome.

To summarise, the process is:

1. Select an initial population.

2. Rank population according to fitness.

3. Randomly select mating pairs from population according to fitness.

5



4. Breed from mates with crossover1 and mutation.

5. If desired, fill remaining gaps in new generation with the best performer
of the previous generation and/or newly generated members.

6. Goto (2).

The algorithm is repeated until:

• a solution is found that satisfies a target

• a fixed number of generations has been produced

• the highest ranking solutions reach a plateau and there is no further
improvement with repeated iteration, or

• you run out of time and/or money.

3 Speciation – genetic algorithms for Bayesian

neural networks

For Bayesian artificial neural networks (ANNs), we have a set of input pa-
rameters and two output values – the prediction from the network and its
associated uncertainty. Assuming that we want to avoid wild predictions, we
can use a fitness function Fi which incorporates both of these outputs, for
example

Fi =
1

σi

(1)

where

σ2
i =

1

L

∑

l

σ
(l)2

y,i + (t − fi)
2 (2)

where L is the number of models in the predicting committee, σ
(l)
y is the

uncertainty associated with the prediction of each committee member l, t is
the target output for the optimisation, and fi is the committee prediction.

1The mutation and crossover operators mentioned here are a very condensed list of the
all the techniques that have been explored since GAs were first developed in the 1970s.

6



Crossover point

Figure 5: When genes are far apart on a chromosome, they will tend to be
split apart by a single crossover (left). If they are close together, they will
tend to stay together (right).

The basic chromosome, as mentioned above, can consist of the set of
inputs to the network.

There are some ways to help optimise the procedure when applied to
ANNs. The first is that it is desirable to avoid finding an “optimal” input
set with non-physical values. As all inputs are normalised before the neural
network is applied, it is perfectly possible to make predictions for a steel
containing -1 wt% carbon, for example. This can be avoided in two ways –
by restricting the range of the genes during “mutation” and the generation of
new chromosomes, or by adding terms to the fitness function to additionally
penalise such unphysical genes and hence use evolution against them.

In addition, because single-point crossover efficiently selects for combina-
tions of genes that are close together in the chromosome but tends to split up
combinations that are far apart (Figure 5), inputs that are likely to have a
combined effect should be grouped close to one another in the chromosome.
This effect can be avoided by using uniform crossover – selecting genes at
random from either parent (Figure 6) – although this will make the algorithm
less efficient at finding very “fit” combinations.

It is also common to have, as inputs to an ANN model, variables which

Parents Crossover mask Offspring
1 2 3 4 5 1 1 2 2 1 1 2 8 9 5
6 7 8 9 0

Figure 6: Uniform crossover – the genes of the offspring are chosen randomly
from those of the parents (i.e. the crossover mask is generated randomly).

7



Computing parameters GA parameters
Number of populations Crossover rate
Number of generations Mutation rate

Rate of population mixing
Population size

Table 3: The basic parameter set for a genetic algorithm optimisation.

are functions of other input variables, such as, say, Arrhenius forms like
exp

(

−1
kT

)

as well as the temperature itself. In this case care must be taken
that one is always a function of the other, and that they are not allowed to
vary independently. We may additionally have a number of input variables
which we wish to keep constant – if we are trying to optimise a steel for
performance at a particular temperature, say.

4 Colonisation – optimising the algorithm

In a simple genetic algorithm run, there are a number of basic parameters,
as shown in Table 3.

The computing parameters are simple – using additional populations al-
lows multiple areas of the network to be explored at once but increases the
computing power required – and how long do you need to run the procedure
for? The GA-specific parameters require a little more explanation, although
population size is self-explanatory.

The crossover rate is the proportion of each new generation which un-
dergoes crossover. The mutation rate is the rate at which mutations occur.
In optimising a neural network model, we need a relatively high mutation
rate, where a mutation is a small nudge δσ of a gene value. The rate of
population mixing is the frequency that different populations are allowed to
undergo crossover.

The effects of these parameters are explored in Delorme (2003)2. To sum-
marise, 3 populations of 20 chromosomes running for 3000 generations is a
good start for many Bayesian neural network optimisations, with a crossover
rate of 90% (i.e. for a population of 20, 18 chromosomes are chosen using the
roulette wheel method and crossed with another 18 using the same method,

2Available via http://www.msm.cam.ac.uk/phase-trans/

8



producing 18 offspring). The remaining slots are filled with the best per-
former from the previous population, and a wholly new randomly-generated
chromosome. Every generation, one gene in the population is mutated.

The preservation of the elite performer simulates some of the features of
local-maximum search techniques, allowing the optimal chromosome found
so far to be preserved in the population unchanged. This can occasionally
lead to the algorithm getting “stuck” at a sub-optimal solution if the model
is very multi-modal, but the use of multiple populations and a high mutation
rate minimise this probability, as does the inclusion of a new set of genes in
every generation.

5 The Tarpits – potential pitfalls

The chief problems associated with GA optimisation are

1. Application to constrained problems.

2. GA deceptive functions.

3. Premature convergence.

4. Lack of convergence towards the end of an optimisation.

5. An overly high mutation rate.

6. The meaning of fitness.

A constrained problem is one in which there are limits to the values that
can be used as inputs to the network (such as a chemical composition which
cannot be negative), although the nature of ANNs and GAs are naturally
unconstrained. Two ways to fix this problem are mentioned above – restric-
tion of the mutation process or modification of the fitness function to reflect
the constraints and penalise those chromosomes that transgress them.

GA deceptive functions are functions which confound the GA by selecting
for an individual gene at the expense of another gene, when a combination
of the two would lead to optimal fitness. This leads, in some cases, to the
elimination from the genepool of optimal values of those genes. This can
be avoided by elitism (as mentioned above), the use of multiple populations,
and a high mutation rate to reintroduce any genes lost.

9



Premature convergence is a similar problem – if a chromosome is far fitter
than its rivals early on, it can come to dominate a population, leading to loss
of genes which may, later, lead to better solutions. This can be avoided by
employing a high mutation rate, and also through fitness scaling. This is
a process that re-scales the absolute Fi with respect to the average of the
population, so that the fittest chromosome is only, say, twice as likely to be
chosen for cross-breeding as the average chromosome.

This procedure also aids the problem of lack of convergence towards the
end of an optimisation procedure. In this case, a population of similarly
high-performing chromosomes will not compete strongly with one another.
Fitness scaling here retains the competition between chromosomes and keeps
the algorithm efficient. A potential danger is that any poor performers left
in the population may end up with negative Fi after re-scaling. In this case,
these chromosomes can be assigned a fitness of zero.

An overly high mutation rate makes the process inefficient, as the GA
then starts to resemble a random walk rather than a directed process.

Lastly, some thought must be given to the meaning of “fitness”. When
designing a genetic algorithm, what do you actually want it to do? For
finding a set of optimal values that will give a specific output from a neural
network, the answer is easy. When applying GAs to other problems, defining
an appropriate fitness function can make all the difference between success
and an unexpectedly random result.

6 Example

A neural network model was created to predict the effect of irradiation on
the yield stress (YS) on a class of steels known as reduced-activation fer-
ritic/martensitic (RAFM) steels3. In order to find alloys which exhibited
moderate irradiation hardening, a genetic algorithm was used.

Inputs to the neural network included chemical composition, irradiation
temperature and damage level, tensile test temperature, radiation-induced
helium levels, and degree of cold working prior to irradiation. In this case, all
we were interested in was an optimised ideal chemical composition. There-
fore, all other parameters were fixed (including compositional impurity lev-
els). In addition, the Cr content was fixed – Cr strongly affects radiation

3This model is also available via the MAP website – see Recommended Reading.

10



embrittlement with a minimum around 9 wt% Cr, and this was a rough at-
tempt to optimise for both properties without having to extensively modify
existing GA code.

The chromosome therefore consisted of the major alloying elements in
RAFM steels: C, W, Mo, Ta, V, Si and Mn. 3 populations of 20 chromosomes
were randomly generated from within appropriate limits for each gene. The
program then went through following loop for each population:

1. Convert the chromosomes to a set of neural network inputs by combin-
ing them with the fixed inputs (irradiation temperature etc.).

2. Make predictions on each set of inputs, and convert the predictions and
uncertainties to fitnesses, using Equation 1.

3. Rank the chromosomes by fitness.

4. Preserve the best chromosome (elitism).

5. Create 18 new chromosomes by crossbreeding using the roulette wheel
algorithm. For this calculation, uniform crossover was used.

6. Create one new chromosome at random (within appropriate limits for
each gene).

7. Mutate one randomly chosen gene in the entire population by adding
or subtracting a small amount (1% of the training database range for
that input). If the mutation makes the gene non-physical (less than
zero in this case), set it to a default physical value (zero in this case).

8. Return to (1) with the new population.

Every 400 generations, the best performer in each population was allowed
to crossbreed with the best performers from each other population. This was
to prevent any populations getting stuck in a local (rather than a global)
maximum. The calculation was run for 3000 generations in total, which took
about 21

2
weeks. The results for a 20 dpa4 irradiation at 700 K are shown in

Table 4.
The fact that all three populations predict very similar results (there were

some differences in the third decimal places) strongly suggests that this is a

4”Displacements per atom” – a way of measuring irradiation damage.

11



Eurofer97 Best results from population
Input Reference alloy 1 2 3
C 0.1 0.144 0.144 0.144
Cr 9. 9.0 9.0 9.0
W 1.1 1.78 1.78 1.78
Mo 0. 0.50 0.50 0.50
Ta 0.15 0.27 0.27 0.27
V 0.2 0.15 0.15 0.15
Si 0. 0.185 0.185 0.185
Mn 0. 0.00 0.00 0.00
Target YS /MPa 450 600. 600. 600.
Prediction /MPa (unirradiated) 607. 607. 607.
Uncertainty /MPa -.- 198. 198. 198.

Table 4: Genetic algorithm best results for irradiation to 20 dpa at 700 K,
compared to Eurofer97 (chemical compositions in wt%).

global maximum fitness. Note, though, that this is not necessarily the lowest
possible yield stress in the ANN model, but the closest to the target YS, given
the additional constraints (i.e. the fixed inputs not in the chromosome).

It is of course possible to create a fitness function which takes into account
multiple properties from multiple network models and optimises for all of
them, although this has not yet been done in our group.

7 Recommended reading

Genetic Algorithms in Search, Optimization and Machine Learning by David
Goldberg (pub. Addison Wesley, 1989) is an excellent overview of the field
and the theory behind it.

A GA code for neural networks is also available through the MAP website:
http://www.msm.cam.ac.uk/map/mapmain.html

References

A Delorme. Genetic algorithm for optimization of mechanical properties.
Technical report, University of Cambridge, June 2003.

12



D E Goldberg. Genetic algorithms in search, optimisation, and machine

learning. Addison Wesley, 1989.

13


