Appendix: Elements of Matrix Algebra

Definition, addition, scalar multiplication

A matrix is a rectangular array of numbers, having \(m \) rows and \(n \) columns, and is said to have an order \(m \) by \(n \). A square matrix \(J \) of order 3 by 3 may be written as

\[
J = \begin{pmatrix}
J_{11} & J_{12} & J_{13} \\
J_{21} & J_{22} & J_{23} \\
J_{31} & J_{32} & J_{33}
\end{pmatrix}
\]

where each number \(J_{ij} \) \((i = 1, 2, 3 \text{ and } j = 1, 2, 3)\) is an element of \(J \).

The matrix \(J' \) is called the transpose of the matrix \(J \):

\[
J' = \begin{pmatrix}
J_{11} & J_{12} & J_{13} \\
J_{21} & J_{22} & J_{23} \\
J_{31} & J_{32} & J_{33}
\end{pmatrix}
\]

An identity matrix (\(I \)) has the diagonal elements \(J_{11}, J_{22} \text{ & } J_{33} \) equal to unity, all the other elements being zero:

\[
I = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

The trace of a matrix is the sum of all its diagonal elements \(J_{11} + J_{22} + J_{33} \). If matrices \(J \) and \(k \) are of the same order, they are said to be equal when \(J_{ij} = K_{ij} \) for all \(i, j \). Multiplying a matrix by a constant involves the multiplication of every element of that matrix by
that constant. Matrices of the same order may be added or subtracted, so that if \(l = J + k \), it follows that \(L_{ij} = J_{ij} + K_{ij} \).

Multiplication and Inversion

The matrices \(J \) and \(K \) can be multiplied in that order to give a third matrix \(L \) if the number of columns (\(m \)) of \(J \) equals the number of rows of \(K \) (\(J \) is said to be conformable to \(K \)). \(L \) is given by

\[
L_{st} = J_{sr}K_{rt}
\]

where \(s \) ranges from 1 to the total number of rows in \(J \) and \(t \) ranges from 1 to the total number of columns in \(K \). If \(J \) and \(K \) are both of order \(3 \times 3 \) then, for example,

\[
L_{11} = J_{11}K_{11} + J_{12}K_{21} + J_{13} + K_{31}
\]

Note that the product \(JK \) does not in general equal \(KJ \).

Considering a \(n \times n \) square matrix \(J \), it is possible to define a number \(\Delta \) which is the determinant (of order \(n \)) of \(J \). A minor of any element \(J_{ij} \) is obtained by forming a new determinant of order \((n - 1) \), of the matrix obtained by removing all the elements in the \(i \)th row and the \(j \)th column of \(J \). For example, if \(J \) is a \(2 \times 2 \) matrix, the minor of \(J_{11} \) is simply \(J_{22} \). If \(J \) is a \(3 \times 3 \) matrix, the minor of \(J_{11} \) is:

\[
\begin{vmatrix}
J_{22} & J_{23} \\
J_{32} & J_{33}
\end{vmatrix} = J_{22}J_{33} - J_{23}J_{32}
\]

where the vertical lines imply a determinant. The cofactor \(j_{ij} \) of the element \(J_{ij} \) is then given by multiplying the minor of \(J_{ij} \) by \((-1)^{i+j}\). The determinant (\(\Delta \)) of \(J \) is thus

\[
\det J = \sum_{j=1}^{n} J_{1j} j_{1j} \quad \text{with } J = 1, 2, 3
\]
Hence, when \(J \) is a \(3 \times 3 \) matrix, its determinant \(\Delta \) is given by:

\[
\Delta = J_{11}j_{11} + J_{12}j_{12} + J_{13}j_{13} \\
= J_{11}(J_{22}J_{33} - J_{23}J_{32}) \\
+ J_{12}(J_{23}J_{31} - J_{21}J_{33}) \\
+ J_{13}(J_{21}J_{32} - J_{22}J_{31})
\]

The inverse of \(J \) is written \(J^{-1} \) and is defined such that

\[
J.J^{-1} = I
\]

The elements of \(J^{-1} \) are \(J^{-1}_{ij} \) such that:

\[
J^{-1}_{ij} = j_{ji}/\det J
\]

Hence, if \(L \) is the inverse of \(J \), and if \(\det J = \Delta \), then:

\[
L_{11} = (J_{22}J_{33} - J_{23}J_{32})/\Delta \\
L_{12} = (J_{32}J_{13} - J_{33}J_{12})/\Delta \\
L_{13} = (J_{12}J_{23} - J_{13}J_{22})/\Delta \\
L_{21} = (J_{23}J_{31} - J_{21}J_{33})/\Delta \\
L_{22} = (J_{33}J_{11} - J_{31}J_{13})/\Delta \\
L_{23} = (J_{13}J_{21} - J_{11}J_{23})/\Delta \\
L_{31} = (J_{21}J_{32} - J_{22}J_{31})/\Delta \\
L_{32} = (J_{31}J_{12} - J_{32}J_{11})/\Delta \\
L_{33} = (J_{11}J_{22} - J_{12}J_{21})/\Delta
\]
Example 1

\[A = \begin{pmatrix} 2 & 0 & 2 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix} \quad A' = \begin{pmatrix} 2 & 3 & 5 \\ 0 & 4 & 6 \\ 2 & 5 & 7 \end{pmatrix} \]

\[\det A = -8 \quad A^{-1} = \begin{pmatrix} 0.25 & -1.5 & 1 \\ -0.5 & -0.5 & 0.5 \\ 0.25 & 1.5 & -1 \end{pmatrix} \]

Example 2

\[A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \quad A' = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \]

\[\det A = 5 \quad A^{-1} = \begin{pmatrix} 0.8 & -0.6 \\ -0.2 & 0.4 \end{pmatrix} \]