Appendix: Elements of Matrix Algebra

Definition, addition, scalar multiplication

A matrix is a rectangular array of numbers, having m rows and n columns, and is said to have an order m by n. A square matrix \mathbf{J} of order 3 by 3 may be written as

$$
\mathbf{J}=\left(\begin{array}{lll}
J_{11} & J_{12} & J_{13} \\
J_{21} & J_{22} & J_{23} \\
J_{31} & J_{32} & J_{33}
\end{array}\right)
$$

where each number $J_{i j}(i=1,2,3$ and $j=1,2,3)$ is an element of \mathbf{J}. The matrix \mathbf{J} ' is called the transpose of the matrix \mathbf{J} :

$$
\mathbf{J}^{\prime}=\left(\begin{array}{lll}
J_{11} & J_{21} & J_{31} \\
J_{12} & J_{22} & J_{32} \\
J_{13} & J_{23} & J_{33}
\end{array}\right)
$$

An identity matrix (I) has the diagonal elements $J_{11}, J_{22} \& J_{33}$ equal to unity, all the other elements being zero:

$$
\mathbf{I}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The trace of a matrix is the sum of all its diagonal elements $J_{11}+$ $J_{22}+J_{33}$. If matrices \mathbf{J} and \mathbf{k} are of the same order, they are said to be equal when $J_{i j}=K_{i j}$ for all i, j. Multiplying a matrix by a constant involves the multiplication of every element of that matrix by
that constant. Matrices of the same order may be added or subtracted, so that if $\mathbf{l}=\mathbf{J}+\mathbf{k}$, it follows that $L_{i j}=J_{i j}+K_{i j}$.

Multiplication and Inversion

The matrices \mathbf{J} and \mathbf{K} can be multiplied in that order to give a third matrix \mathbf{L} if the number of columns (m) of \mathbf{J} equals the number of rows of \mathbf{K} (\mathbf{J} is said to be conformable to \mathbf{K}). \mathbf{L} is given by

$$
L_{s t}=J_{s r} K_{r t}
$$

where s ranges from 1 to the total number of rows in \mathbf{J} and t ranges from 1 to the total number of columns in \mathbf{K}. If \mathbf{J} and \mathbf{K} are both of order 3×3 then, for example,

$$
L_{11}=J_{11} K_{11}+J_{12} K_{21}+J_{13}+K_{31}
$$

Note that the product JK does not in general equal KJ.
Considering a $n \times n$ square matrix \mathbf{J}, it is possible to define a number Δ which is the determinant (of order n) of \mathbf{J}. A minor of any element $J_{i j}$ is obtained by forming a new determinant of order $(n-1)$, of the matrix obtained by removing all the elements in the i th row and the j th column of \mathbf{J}. For example, if \mathbf{J} is a 2×2 matrix, the minor of J_{11} is simply J_{22}. If \mathbf{J} is a 3×3 matrix, the minor of J_{11} is:

$$
\left|\begin{array}{ll}
J_{22} & J_{23} \\
J_{32} & J_{33}
\end{array}\right|=J_{22} J_{33}-J_{23} J_{32}
$$

where the vertical lines imply a determinant. The cofactor $j_{i j}$ of the element $J_{i j}$ is then given by multiplying the minor of $J_{i j}$ by $(-1)^{i+j}$. The determinant (Δ) of \mathbf{J} is thus

$$
\operatorname{det} \mathbf{J}=\sum_{j=1}^{n} J_{1 j} j_{1 j} \quad \text { with } J=1,2,3
$$

Hence, when \mathbf{J} is a 3×3 matrix, its determinant Δ is given by:

$$
\begin{aligned}
\Delta= & J_{11} j_{11}+J_{12} j_{12}+J_{13} j_{13} \\
= & J_{11}\left(J_{22} J_{33}-J_{23} J_{32}\right) \\
& +J_{12}\left(J_{23} J_{31}-J_{21} J_{33}\right) \\
& +J_{13}\left(J_{21} J_{32}-J_{22} J_{31}\right)
\end{aligned}
$$

The inverse of \mathbf{J} is written \mathbf{J}^{-1} and is defined such that

$$
\mathbf{J} . \mathbf{J}^{-1}=\mathbf{I}
$$

The elements of \mathbf{J}^{-1} are $J_{i j}^{-1}$ such that:

$$
J_{i j}^{-1}=j_{j i} / \operatorname{det} \mathbf{J}
$$

Hence, if \mathbf{L} is the inverse of \mathbf{J}, and if $\operatorname{det} \mathbf{J}=\Delta$, then:

$$
\begin{aligned}
& L_{11}=\left(J_{22} J_{33}-J_{23} J_{32}\right) / \Delta \\
& L_{12}=\left(J_{32} J_{13}-J_{33} J_{12}\right) / \Delta \\
& L_{13}=\left(J_{12} J_{23}-J_{13} J_{22}\right) / \Delta \\
& L_{21}=\left(J_{23} J_{31}-J_{21} J_{33}\right) / \Delta \\
& L_{22}=\left(J_{33} J_{11}-J_{31} J_{13}\right) / \Delta \\
& L_{23}=\left(J_{13} J_{21}-J_{11} J_{23}\right) / \Delta \\
& L_{31}=\left(J_{21} J_{32}-J_{22} J_{31}\right) / \Delta \\
& L_{32}=\left(J_{31} J_{12}-J_{32} J_{11}\right) / \Delta \\
& L_{33}=\left(J_{11} J_{22}-J_{12} J_{21}\right) / \Delta
\end{aligned}
$$

Example 1

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 0 & 2 \\
3 & 4 & 5 \\
5 & 6 & 7
\end{array}\right) \quad \mathbf{A}^{\prime}=\left(\begin{array}{ccc}
2 & 3 & 5 \\
0 & 4 & 6 \\
2 & 5 & 7
\end{array}\right)
$$

$\operatorname{det} \mathbf{A}=-8 \quad \mathbf{A}^{-1}=\left(\begin{array}{ccc}0.25 & -1.5 & 1 \\ -0.5 & -0.5 & 0.5 \\ 0.25 & 1.5 & -1\end{array}\right)$

Example 2

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right) \quad \mathbf{A}^{\prime}=\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right) \\
& \operatorname{det} \mathbf{A}=5 \mathbf{A}^{-1}=\left(\begin{array}{cc}
0.8 & -0.6 \\
-0.2 & 0.4
\end{array}\right)
\end{aligned}
$$

