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1 The univariate gaussian distribution

1.1 The density function

A continuous random variable is said to have the gaussian distribution if
its density function is given by:

202

fx(x) = K exp <_M>

The constant K is obtained by verifying that:

/%Kexp (-%) do =1 (1)

Recalling that P(X € [a,b]) = [? fx(z)dz, equation 1 translates ‘it is sure
that X takes a value between —oo and +00’.

The method to evaluate K is given in appendix, it is suggested to attempt
to solve it as an exercise. The final form of the univariate gaussian is:

1.2 Features

The expectation (ie the mean) of a gaussian as given by equation 2 is pu:

1 T — p)?
ora? e (‘%) do=p

It is straightforward to obtain this result with an appropriate change of
variable.
The variance of a gaussian is o

ﬁ [ (@ =2 exp (—%ﬁ) dz = o’

This result can be obtained with an integration per parts (let v = (z — )
and v’ the rest).
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Figure 1: The standard (u = 0,0 = 1) gaussian, the probability to find X between
pu— o and p + o is about 0.67. It is of 0.95 between p — 20 and u + 20, and 0.99
between y — 30 and p + 30.

2 Multivariate standard gaussian

2.1 Bivariate standard gaussian

f is the standard bivariate gaussian (or normal) density function of two
random variables X and Y if it is given by:

1 1 22 4+ y? — 2pzy
= —— 3
fXY(xay) 2ﬂ_m exp ( 9 1 — ,02 ( )

where p verifies |p| < 1. This can also be written:

1

fxy(z,y) = [M] exp (——XMXT)
XY \4, ot 92

where x refers to the vector (z,y) and M is the matrix:

e ]
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You can easily verify that the determinant of M, denoted |M| is 1/(1 — p?).
The calculation of the normalisation constant is done later.

p as defined in equation 3 is the covariance of the variables X and Y.
Recall cov(X,Y) = E(XY) — E(X)E(Y) is a measure of how strongly the
variables depend on each other. For example, weight and height of individuals
in a population have a strong covariance.
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Figure 3: Contour plot for the standard bivariate with p = 0.6 and p = 0.95. As
the covariance increases toward 1, the contour elongates along = = y, illustrating the
fact that chosing a value for X or Y reduces the interval of ‘possible’ values for the
other variable.
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2.2 General case
2.2.1 The normalisation factor

In the general case, for n random variables, x denotes the vector (1, xo, . .., Zy).
The notation is identical to the one seen previously, that is:

f(x) =, (|2A;[)|n exp (—% XMXT)

The proof for the value of the normalisation factor is now given: because
Q(x) = xMxT must be positive for all values of x, @ is said to be definite
positive. Under this condition, a theorem in matrix theory states that M
can be diagonalised. What this means is that there exists a base in which
M can be written:

A 00
M=1]90 . 0
0 0 A

Let us write y the vector x in the base in which M is diagonal (where it is
denoted M'), and rewrite Q(x):

Q(x) =yM'y"

the normalisation is now straightforward since the random variables are in-
dependent:

1
1 = K exp (——XMXT> dx
R 2

1
= K/ exp (——yM'yT> dy
Rn 2

_ I e

- K /ER ] exp( 21§::1Azyi>dy (4)
T IVAPN

= K ilzll /ﬂ{E eXp( 2>\zyi>dyz (5)

This imposes on K:

o VA A yIMI . YIM]
(2m)n Jemr L /@nn

where |M| denotes the determinant of M, which is independent of the basis
in which M is written. As an exercise, diagonalise the standard bivariate
gaussian given by 3 (see appendix for correction).
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2.2.2 Usual form of the general multivariate gaussian
Most often, you will find the multivariate gaussian written:
1 1

609 = e (5 (=Y x=)) ®

where X is the vector made up of the average (expectation) of each component
of x. In this form, V' is the covariance matriz, made up of the v;;:

vij = cov(;, x;) = cov(z;, ;) = v

Appendix

Evaluating the normalising constant for the univariate
gaussian

HINT: The solution involves, first, a change of variable, and second, the
evaluation of the square of the integral rather than the integral itself, this
last step requires changing to polar coordinate.

SOLUTION: A first step consists in changing the variable to u = (z —

w)/o so that:
u?
Ka/ exp <——> du =1
R 2

To calculate I = [exp (—“2—2) du, a trick consists in writing:
2

I’ = /exp (_ué) du/exp (—%) dv = // exp <—U2 ; UQ) dudv

Changing to polar coordinates (r = zcosf, y = rsinf), the element dudv
becomes rdrdf and u? + v? = r?, giving:

2

I’ = /027r /O+OO T exp (—%) drdf = 27 [— exp(—r2/2)];Loo =27

K must therefore be 1/,/(270?) in order to verify (1)
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Diagonalising the standard bivariate gaussian

The standard bivariate gaussian can be written:

122492 -2 M 1
12’4y pxy)z | |exp<—§xMxT)

1
frvla 1) = s h_erxp( T -~

with
1 —_
M= Lo=»
1—p2| —p 1

It is out of the scope of this lecture to explain diagonalisation. You may
have a look at http://www.numbertheory.org/book/ (in general, this is basic
matrix theory so any textbook should do). If you are not familiar with matrix
theory, you might still convince yourself that, with:

1
= %(Wry) 9)
1
"= —(z - 10
y ﬁ(x Y) (10)
and
1 1—p O
M =
1—p2l 0 1+p]
we have




