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Advances in the Kinetic Theory of Carbide Precipitation
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Abstract. The precipitation, coarsening and reversion of carbides can determine the quality of steels.
This paper is a review of efforts towards better, practical theory for all of these solid–state reactions.

Introduction

Carbides are the essence of thermomechanically–processed microalloyed steels which are used in the
hundreds of millions of tonnes in creating the infrastructure which leads to a better quality of life.
Carbides also feature in special steels, such as the creep–resistant alloys which allow a greater efficiency
in the generation of electricity. There is therefore a requirement to understand and model all aspects
of carbides in the microstructure of iron and its alloys.

Thermodynamics

Thermodynamics forms the basis of any explanation of the properties of matter. In the present
context it provides the framework for the calculation of multicomponent phase diagrams containing
information about the equilibrium compositions and fractions of each of the co–existing phases. The
traditional way of dealing with this in the context of microalloyed steels uses solubility products:
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where T is the absolute temperature and the concentrations (w) of titanium and carbon dissolved in
austenite (γ) are expressed in weight percent [1]. The origin of the solubility product is in the free
energy change ∆G accompanying this reaction, with ∆G = 0 at equilibrium:
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where ∆G0 is the standard free energy change; ∆H0 and ∆S0 the corresponding enthalpy and entropy
changes respectively; R is the gas constant; a the activity and x the mole fraction. Since the carbide
is assumed here to be a pure, stoichiometric compound, a

TiC
= 1; it is further assumed that a ' x.

These approximations limit the applicability of solubility products. Kirkaldy and co–workers have
generalised the products using Wagner interaction parameters to allow for the presence of many
solutes and avoiding stoichiometry [2–4].

However, carbide equilibria are best dealt with using the CALPHAD method in which assessed
thermodynamic data are used in combination with a free–energy minimisation algorithm to give the
optimum estimates of multicomponent and multiphase diagrams [5]. Fig. 1 illustrates calculations
using the CALPHAD method, for complex alloy steels containing many phases and components [6].

Kinetic factors often prevent transformations from occurring under equilibrium conditions; there
are many different kinds of kinetically constrained equilibria that may arise naturally [7–11]. In
the context of carbides, the transformation may occur by a mechanism which does not require the



Fig. 1: The calculated chromium concentration (mole fraction) in M
23

C
6

which is in

equilibrium with ferrite, other carbides and intermetallic compounds, at 873 K. The

compositions of the steels listed on the horizontal axis are in [6].

Fig. 2: Calculated isothermal (700 K) phase diagrams of the Fe–Cr–C system for the

equilibrium and paraequilibrium scenarios.

diffusion of substitutional atoms. Hultgren [12–14] introduced the term ‘paraequilibrium’ to describe
the constrained equilibrium between two phases which are forced to have the same substitutional to
iron atom ratio, but which (subject to this constraint) achieve equilibrium with respect to carbon.

Fig. 2 shows the remarkable effect that such a constraint can have on the thermodynamics of
carbide precipitation [15]. The tie–lines in the paraequilibrium diagram all radiate from the carbon
corner of the plot because in this case the Fe/Cr ratio must be constant for the carbide to be in
paraequilibrium with the ferrite. The case illustrated is extreme in the sense that alloy carbides
such as M

23
C

6
and M

7
C

3
can deviate from their equilibrium composition but in practice not to the

extent illustrated [16]. Nevertheless, as discussed later in this paper, it is common for the iron–
based carbides such as cementite to grow by paraequilibrium transformation. The equilibrium and
paraequilibrium calculations illustrated in Fig. 2 were conducted using MTDATA [5], software which
is available commercially from the National Physical Laboratory in the U.K.; it is exciting that phase



diagram calculations can now be done routinely for constrained equilibria and hence can be more
representative of reality.

One consequence of the fact that carbides may grow with a chemical composition which is incon-
sistent with equilibrium is that their composition may change towards equilibrium during service at
elevated temperatures [17–19]. This phenomenon is exploited in the assessment of remaining life in
power plant components [20].

Nucleation

The theoretical framework for the process of nucleation [21] is probably well–founded but it contains
terms which are exceedingly difficult to predict or even to measure properly. We shall focus here on
the difficulties rather than reproduce standard nucleation theory. The most important of the problem
parameters are the interfacial energy per unit area σ, the strain energy per unit volume E and the
number density of nucleation sites NV .

It has been know for some time that the interfacial energy between a droplet and its vapour must
depend on the droplet size [21,22]. When dealing with solid–state transformations σ can be expected
to be both orientation and size dependent. Solid–state transformations also led to strains and the
accompanying strain energy E must be accounted for. A combination of the orientation dependence
of σ and the need to minimise E then determines the shape of the nucleus, which itself must be size
dependent. In the case of heterogeneous nucleation the shape must also depend on the interaction
with the nucleating defect.

These complications are far too difficult to deal with when considering practical materials; σ
inevitably is deduced empirically by fitting rate data to elementary models of nucleation. There is a
saving grace when dealing with sequences of precipitation reactions in which a number of metastable
phases precede the equilibrium precipitate. The metastable phases occur only because they are easier
to nucleate and hence their interfacial energies during nucleation must be smaller than that of the
ultimate precipitate. The observed sequence can therefore be used to rank interfacial energies [23].

Nucleation is frequently heterogeneous; it occurs at defects such a vacancies, stacking faults,
dislocations, dislocation–clusters (e.g. shear bands), twin boundaries, grain boundaries and inclusions.
The number density of the defects is a function of the processing history and can be very difficult
to estimate from the processing parameters. Therefore, NV is usually a measured parameter; for

example, when nucleation occurs at grain boundaries, NV ∝ L
−1

where L is the mean lineal intercept
defining the grain size. Even this approach is vague because it fails to account for structure of the
boundary; the potency of a grain boundary as a nucleation site is in practice a strong function of its
crystallographic character [24–26].

Another common approximation in nucleation theory involves the neglect of transient effects, i.e.

it is assumed that the nucleation rate rapidly reaches a steady–state value. This may be reasonable
when the nucleus relaxation time is much less than that for transformation [27].

Growth

Many attempts at modelling carbide growth assume a binary approach in which only one of the so-
lutes is considered in the growth equations, thereby violating local equilibrium at the interface. This
procedure is often falsely justified by stating that the solute considered is the one that controls trans-
formation. In fact, the theory for diffusion in multicomponent systems is well established [28,29,11].
We shall attempt here to illustrate in a simple way why this should be applied when modelling carbides
in ternary or higher order systems.

For isothermal transformation in a binary alloy, the concentrations at the interface are given by
a tie–lie of the phase diagram as shown in Fig. 3. The diffusion flux of solute from the interface must
equal the rate at which solute is incorporated in the precipitate so that:

(cθγ − cγθ)
∂z∗

∂t
︸ ︷︷ ︸

rate solute partitioned

= −D
∂c

∂z

∣
∣
∣
∣
z=z∗

︸ ︷︷ ︸

diffusion flux to interface

(3)

where z is a coordinate normal to the interface with a value z∗ at the position of the interface. Note



Fig. 3: Phase diagram and its relationship to the concentration profile at the carbide

(θ) – matrix (γ) interface during diffusion–controlled growth.

that the concentration gradient is evaluated at the position of the interface (z = z∗). D is the solute
diffusivity.

Consider now a ternary steel, say Fe–X–C, where the X stands for a substitutional solute. It
would be necessary to satisfy two equations of the form of equation 3, simultaneously, for each of the
solutes [30–32]:
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where the subscripts refer to the solutes (1 for carbon and 2 for X). The interface velocity v = ∂z∗/∂t.
Because D

1
À D

2
, these equations cannot in general be simultaneously satisfied for the tie–line

passing through the alloy composition c
1
, c

2
. However, in a ternary alloy, there are many tie–lines to

choose from because of the extra degree of freedom granted by the phase rule. There is an entire phase
field in which the carbide and matrix can exist in equilibrium so it is possible to find another tie line
which satisfies these equations simultaneously. The important point is that the correct tie line will not
in general pass through the average composition c

1
, c

2
. This is where the application of binary theory

to a ternary or multicomponent problem goes wrong. Expressed in another way, the equations must
be solved in such a way that the variety of solute fluxes can all keep pace with the interface whilst
maintaining local equilibrium at the interface.

The discussion so far has assumed a flat interface; precipitates tend to be in the form of spheres,
needles or plates. The curvature of the interface then leads to a change in equilibrium, the famous
capillarity effect. There is only an approximate solution which accounts for capillarity during the
growth of spheres [33]. Diffusion–controlled growth follows a parabolic relationship in which the
particle radius ρ = α(Dt)0.5 where α is a one–dimensional parabolic rate constant. For a small
supersaturation Ω = (c − cγθ)/(cθγ − cγθ),
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and Ω ¿ 1

where ρC is the critical radius below which capillarity prevents growth.
The theory for needle and plate growth with capillarity and for a multicomponent system becomes

complicated but is tractable; it has been described elsewhere [33–35].

Overall Kinetics

The carbide precipitation processes considered here all thermodynamically of first order in the Ehren-
fest classification [36]; the formation of each particle therefore requires nucleation in the classical sense
and subsequent growth. We assume here that nucleation and growth phenomena are fully understood,
to enable the evolution of volume fraction of transformation to be calculated.

The estimation of volume fraction requires an acknowledgment of the possibility of impingement
between particles growing from different sites. This is done using the extended volume concept of



Johnson, Mehl, Avrami, and Kolmogorov [21] as illustrated in Fig. 4. Suppose that two particles exist
at time t; a small interval δt later, new regions marked a, b, c & d are formed assuming that they are
able to grow unrestricted in extended space whether or not the region into which they grow is already
transformed. However, only those components of a, b, c & d which lie in previously untransformed
matrix can contribute to a change in the real volume of the product phase (identified by the subscript
‘1’) so that :

dV
1

= (1 −
V

1

V
)dV e

1
(4)

where it is assumed that the microstructure develops randomly. The superscript e refers to extended
volume, V

1
is the volume of phase 1 and V is the total volume. Multiplying the change in extended

volume by the probability of finding untransformed regions has the effect of excluding regions such as
b, which clearly cannot contribute to the real change in volume of the product. The extended volume
term is easy to calculate from the nucleation and growth rates, because it neglects impingement but
it is the real volume that is needed. This requires the equation to be integrated to obtain the real
volume fraction,
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{

−
V e

1

V

}

(5)

Fig. 4: The concept of extended volume. Two precipitate particles have nucleated

and grown to a finite size in the time t. New regions c and d are formed as the original

particles grow, but a & b are new particles, of which b is unreal because it has formed

in a region which is already transformed.

Overall Kinetics: Simultaneous Transformations

Many of the precipitates found in power plant steels have crystal structures and compositions which
are quite different from those of the ferrite matrix. The precipitate/matrix interfacial energy can
therefore be expected to be large, making it difficult for the equilibrium precipitate to nucleate.
Consequently, decomposition often starts with the formation of one or more metastable phases which
are kinetically favoured. These must eventually dissolve as equilibrium is approached. It follows that
many precipitation and dissolution reactions may occur simultaneously.

When more than one reaction occurs at the same time, they interfere with each other in a way
which is seminal to the development of power plant microstructures. It is not possible to deal with
more than one reaction at time using ordinary Avrami theory, but a recent adaptation has generalised
the theory for simultaneous reactions [23,37–40]. When phases β and θ precipitate at the same time
from a parent phase θ equation 5 is replaced by a pair of coupled equations as follows:
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)
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and similarly for θ,

dVθ =
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V

)
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Since Vβ is in general expected to be some complicated function of Vθ, numerical integration is used
and exploited to change the boundary conditions for nucleation and growth during the course of
transformation, thus accounting for the change in the matrix composition using a mean field approx-
imation. The method can in principle be applied to any number of simultaneous reactions with a
corresponding set of coupled equations, and indeed has been used widely in the modelling of complex
carbide–precipitation reactions [41–44]. Fig. 5 shows the kind of calculations that can be done [45].

Fig. 5: Precipitation kinetics in a 2.25Cr1Mo steel. (a) Comparison of calculated and

measured data. (b) Calculated isothermal transformation curves for precipitation in a

novel 10CrMoW alloy at 600◦C.

Fig. 6: The precipitation and coarsening of niobium carbide precipitates in austenite.

Details can be found in [45].



Coarsening

Coarsening kinetics do not require an explicit treatment but follow naturally from the precipitation
theory which for each phase includes the capillarity effect. Indeed, it is well known that the separation
of precipitation and coarsening is artificial, because capillarity makes the smaller precipitates grow
at a slower rate than those which nucleated first and hence are larger, even before the equilibrium
fraction is reached. Fig. 6 shows the results of calculations of this kind, the mean particle radius at
first increasing approximately parabolically with time as all particles grow from solid solution [46].

The mean radius then changes as about t
1

3 at longer times as the number density of particles decreases,
consistent with expectations from coarsening theory. It is important to emphasise that there is no
separate treatment of precipitation and coarsening here, both are in an inclusive theory.

The difficulties associated with the modelling of coarsening in multiphase systems have been
described elsewhere [6].

Summary

It is in the treatment of carbide precipitation in complex systems that there has been greatest progress,
both theoretically and experimentally. By complex we mean multicomponent and multiphase alloys,
of the kind common in industry. Progress in the following areas has been particularly potent:

(i) The ability to deal routinely with the simultaneous diffusion of many solutes, even when
the solutes have enormously disparate diffusivities.

(ii) Mathematical solutions now exist for the diffusion–controlled growth of a variety of
shapes (spheres, needles, plates) in multicomponent systems.

(iii) It is now possible to generalise Avrami theory to handle many precipitation reactions
occurring at the same time.

The following areas require further work:

(i) Nucleation theory requires many empirical inputs and hence is difficult to use in a
predictive sense.

(ii) Coarsening theory for multiphase reactions.

Notwithstanding the difficulties outlined above, the methods have been successfully applied in
alloy design but their full potential has yet to be exploited. The subject is one of the most exciting in
the field of materials science.
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