Magnetic Detection of Microstructural Change in Power Plant Steels

Victoria Anne Yardley

Emmanuel College

This dissertation is submitted for the degree of Doctor of Philosophy at the University of Cambridge
PREFACE

This dissertation is submitted for the degree of Doctor of Philosophy at the University of Cambridge. The research described herein was conducted under the supervision of Professor H. K. D. H. Bhadeshia and Dr M. G. Blamire in the Department of Materials Science and Metallurgy, University of Cambridge, between October 1999 and April 2003.

Except where acknowledgement and reference are made to previous work, this work is, to the best of my knowledge, original. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. Neither this, nor any substantially similar dissertation has been, or is being, submitted for any other degree, diploma, or other qualification at any other university. This dissertation does not exceed 60,000 words in length.

Victoria Anne Yardley
May 2003
ACKNOWLEDGEMENTS

I am grateful to Professor Alan Windle and Professor Derek Fray for the provision of laboratory facilities in the Department of Materials Science and Metallurgy at the University of Cambridge. I would like to thank my supervisors, Professor Harry Bhadeshia and Dr Mark Blamire, for their help, enthusiasm and support.

I would like to express my gratitude to EPSRC, CORUS and the Isaac Newton Trust for their financial support, and to my industrial supervisor, Dr Peter Morris, and his colleagues for useful discussions and for the provision of samples and data.

Much of the work in this thesis would have been impossible without the generosity of Dr V. Moorthy, Dr Brian Shaw and Mr Mohamed Blaow of Newcastle University in allowing me to use their Barkhausen noise measurement apparatus and to benefit from their expertise. I am also grateful to Dr Matthias Gester, Professor Brian Tanner, the late Dr Patrick Squire, Dr Philippe Baudouin and his colleagues at the University of Ghent, and Dr Shin-ichi Yamamura for useful discussions, and to Dr Carlos Capdevila Montes for information on ODS alloys.

I am indebted to the Ironmongers’ Company for their generous bursary enabling me to study for a month at Tohoku University, to Professor Tadao Watanabe and his colleagues for the warm welcome they extended to me, and to all the people who, by their friendship, hospitality and kindness, made my stay in Japan so enjoyable. In particular, I would like to thank Mr Takashi Matsuzaki for supervising my use of the ‘denshikenbikyo’, Dr Toshihiro Tsuchiyama and his colleagues and family for the invitation to visit Fukuoka and give a talk at Kyushu University, and Professor Yoshiyuki Saito for his invitation to visit Waseda University.

I am very grateful to Professor and Mrs Watanabe for their ongoing encouragement of, and interest in, me and my work. I would also like to thank Dr Koichi Kawahara for his help, friendship and encouragement over the past year, and for many fascinating discussions during which I learned a lot about domain walls, grain boundaries and Japanese life and culture.
It is my pleasure to acknowledge all the PT-members, past and present, for their kindness, help and friendship and for many enjoyable times, in particular Daniel Gaude-Fugarolas, Ananth Marimuthu, Dominique Carrouge, Philippe Opdenacker, Yann de Carlan, Chang Hoon Lee, Professor Yanhong Wei, Carlos García Mateo, Thomas Sourmail, Mathew Peet, Gareth Hopkin, Miguel Yescas-Gonzalez, Pedro Rivera, Franck Tancret and Hiroshi Matsuda. My especial thanks go to Shingo, Michiko and Hiroki Yamasaki, for their warm friendship and hospitality, Japanese lessons and okonomiyaki.

Finally, I would like to thank my parents and friends for their love and support during the past three years.
In loving memory of
Edward and Mary Yardley
Contents

Nomenclature vi
Abbreviations vi
Abstract xii

1 Introduction 1

2 Microstructural Evolution in Power Plant Steels 3
 2.1 Power plant operation 3
 2.2 Creep mechanism . 5
 2.3 Creep-resistant steels 6
 2.3.1 Characteristics of martensitic steels 7
 2.3.2 Martensite morphology 8
 2.3.3 Tempering of plain-carbon martensitic steels 9
 2.3.4 Precipitation Sequences 11
 2.4 Differences in bainitic microstructures 16
 2.5 Changes during service 17
 2.5.1 Lath coarsening, recovery and recrystallisation . . . 18
 2.5.2 Cavitation and final failure 19
 2.6 Design life and remanent life estimation 19
 2.7 Scope for magnetic methods 20

3 Magnetic Domains 21
 3.1 Ferromagnetism and domain theory 21
 3.1.1 Atomic origin of ferromagnetism 21
4.3 Applications of magnetic NDT .. 59
 4.3.1 Microstructural type determination 59
 4.3.2 Empirical correlations ... 60
4.4 Grain boundaries .. 60
 4.4.1 Grain size effects ... 60
 4.4.2 Grain boundary misorientation 63
 4.4.3 Grain size influence on BN frequency 64
 4.4.4 Summary .. 65
4.5 Dislocations and plastic strain 66
 4.5.1 Deformation .. 66
 4.5.2 Annealing of deformed materials 67
 4.5.3 Deformation and saturation effects 69
 4.5.4 Summary .. 71
4.6 Second-phase particles ... 71
 4.6.1 Ideal systems .. 71
 4.6.2 Effect of carbon on hysteresis properties 73
 4.6.3 Effect of carbon on BN and MAE 76
 4.6.4 Summary .. 77
4.7 Magnetic properties of tempered steels 78
 4.7.1 Changes in hysteresis properties on tempering 78
 4.7.2 Effect of tempering on magnetic noise 81
 4.7.3 Changes in BN with tempering time 83
 4.7.4 Summary .. 87
4.8 Are the results inconsistent? 88
4.9 Effects of magnetising parameters 89
 4.9.1 Surface condition .. 89
 4.9.2 Magnetising field waveform 90
 4.9.3 Magnetising frequency 90
 4.9.4 Magnetising field amplitude 91
 4.9.5 Demagnetising and stray fields 91
 4.9.6 Stress .. 92
 4.9.7 Temperature ... 93
 4.9.8 Magnetic history .. 93
4.9.9 Solute segregation ... 93
4.10 Summary and conclusions 94

5 Barkhausen Noise Modelling 95
5.1 Existing models of hysteresis and Barkhausen noise 95
 5.1.1 Jiles-Atherton model .. 95
 5.1.2 Preisach model ... 97
 5.1.3 Equivalence of models and relationship to microstructure 98
 5.1.4 Alessandro, Beatrice, Bertotti and Montorsi
 (ABBM) model ... 98
 5.1.5 Extensions to ABBM ... 100
 5.1.6 Relationships between ABBM parameters and real data 102
 5.1.7 Microstructure-based modelling 103
 5.1.8 Models for power plant steels 105
 5.1.9 Summary .. 106
 5.2 A new model for BN in power plant steels 108
 5.3 Assumptions .. 108
 5.4 Origin of the noise ... 110
 5.5 Construction of the statistical model 111
 5.5.1 Distribution of pinning sites 111
 5.5.2 Impediments to domain wall motion 111
 5.5.3 Mean free path of domain walls 112
 5.5.4 Number of Barkhausen events occurring 112
 5.5.5 Barkhausen amplitude 112
 5.5.6 Multiple distributions of pinning points 113
 5.6 Log-normal model ... 114
 5.7 Summary of model equations 115
 5.8 Comparison with experimental data 115
 5.9 Relationship between fitting parameters and metallographic
 data ... 121
 5.9.1 Pinning strength relationships to grain and carbide sizes 121
 5.9.2 Fitting of model to microstructural data 122
 5.9.3 Tests of the model on other data sets 122
6 Sample Preparation and Characterisation

6.1 Sample preparation ... 130
6.2 Optical microscopy ... 132
 6.2.1 As-quenched sample 132
 6.2.2 Tempering at 500°C 133
 6.2.3 Tempering at 600°C 133
 6.2.4 Tempering at 700°C 133
 6.2.5 Long-term specimens 146
6.3 Scanning electron microscopy 146
6.4 Feature size measurements 147
 6.4.1 Coarsening in 700°C tempered steel 148
 6.4.2 Carbide phases 149
6.5 Hardness ... 149
6.6 Magnetic hysteresis measurements 151
6.7 Conclusion .. 153

7 Orientation Imaging Microscopy and Grain Boundary Analysis in Tempered Power Plant Steel

7.1 Grain orientation ... 155
 7.1.1 Pole figures and inverse pole figures 155
 7.1.2 Euler angles ... 156
 7.1.3 Angle-axis pairs 156
7.2 Grain boundary geometry 157
 7.2.1 The coincidence site lattice model 158
 7.2.2 Estimation of grain boundary energy 159
7.3 Electron Backscatter Diffraction 160
 7.3.1 Formation of Kikuchi patterns 160
 7.3.2 Indexing Kikuchi patterns 161
 7.3.3 Diffraction geometry in the SEM 163
7.4 Automated Orientation Imaging

 7.4.1 Representation of data 164
 7.4.2 Image Quality .. 165

7.5 OIM observations of martensitic steels 166
 7.5.1 Crystallographic relationships 166
 7.5.2 Creep-deformed martensitic steels 167

7.6 Experimental technique 168
 7.6.1 Sample Preparation 168
 7.6.2 Orientation Imaging Microscopy 168

7.7 Results .. 169
 7.7.1 As-quenched data .. 191
 7.7.2 Indeterminate points 193
 7.7.3 600°C, 4 hours tempering 193
 7.7.4 600°C, 16 hours tempering 194
 7.7.5 600°C, 64 hours tempering 195
 7.7.6 600°C, 128 hours tempering 195
 7.7.7 600°C, 256 hours tempering 196
 7.7.8 Summary .. 197

7.8 Statistical analysis .. 197
 7.8.1 Grain boundary misorientations 197
 7.8.2 Coincidence boundaries 198
 7.8.3 Statistics of indeterminate points 198
 7.8.4 Image quality statistics 202

7.9 Orientation relationships 204
 7.9.1 256 hour sample 206
 7.9.2 AQ sample ... 207

7.10 Relationship to magnetic properties 208

7.11 Conclusions ... 209

8 Barkhausen Noise Experiments on Power Plant Steels 211

 8.1 Experimental Method 211
 8.1.1 Sample Preparation 211
8.1.2 Instrumentation ... 211
8.1.3 Operating Conditions 212
8.2 Results ... 217
 8.2.1 Peak height, width and position 218
 8.2.2 Comparison with results of Moorthy et al. 226
 8.2.3 Experiments on tempered plain-carbon steel 227
8.3 Frequency analysis ... 229
 8.3.1 Checks on validity of results 235
8.4 Discussion .. 237
 8.4.1 Tempered 21/4Cr1Mo steels 237
 8.4.2 11Cr1Mo steels .. 238
8.5 Conclusions ... 238

9 Model Fitting to Power-Plant Steel Data 240
 9.1 Data and fitting procedure 240
 9.2 Results ... 240
 9.3 Fitting parameters 244
 9.3.1 Comparison of Model 1 and Model 2 244
 9.3.2 Model 2 parameter variations with Larson-Miller parameter ... 248
 9.4 Discussion .. 252
 9.4.1 Relationship of fitting parameters to microstructure .. 252
 9.5 Conclusion .. 253

10 Barkhausen Noise in PM2000 Oxide Dispersion Strengthened Alloy 254
 10.1 Oxide dispersion strengthened alloys 254
 10.2 Relevance of PM2000 to magnetic property studies 255
 10.3 Experimental Method 256
 10.3.1 Sample preparation 256
 10.3.2 BN measurement 257
 10.4 Microstructures .. 258
 10.4.1 Naked-eye observations 258
ABBREVIATIONS

b.c.c. Body-centred cubic

ppm Parts per million

ABBM Alessandro, Beatrice, Bertotti and Montorsi model

AQ As-quenched

BN Barkhausen noise

CSL Coincidence site lattice

EBSD Electron backscatter diffraction

FEG Field emission gun

FWHM Full width half maximum

IQ Image quality

MAE Magnetoacoustic Emission

NDT Nondestructive testing

ODS Oxide-dispersion strengthened

OIM Orientation imaging microscopy

PHD Pulse height distribution

RMS Root-mean-square

SEM Scanning electron microscope

TEM Transmission electron microscope

VSM Vibrating sample magnetometer
NOMENCLATURE

Note: Two SI systems for magnetics nomenclature exist, but the Sommerfeld system has been used throughout; equations not conforming to this system have been converted. A comparison table including the two SI systems and the cgs system can be found in Jiles (1998).

General

\(d \) Grain diameter

\(E \) Efficiency

\(M \) Magnification

\(M_f \) Martensite-finish temperature

\(M_s \) Martensite-start temperature

\(P \) Larson-Miller parameter

\(t \) Time

\(T \) Absolute temperature

\(T_1 \) Absolute heat source temperature

\(T_2 \) Absolute heat sink temperature

\(T_M \) Absolute melting temperature

Magnetics

\(B \) Magnetic induction

\(B_S \) Saturation induction

\(B_R \) Remanent induction

\(E_a \) Anisotropy energy
E_{area} Area reduction energy (Kersten model)

E_d Demagnetising energy

E_{demag} Inclusion demagnetising energy (Néel model)

E_{ex} Exchange energy

E_m Magnetostatic energy

E_{pin} Energy dissipated against pinning

E_{supp} Energy supplied

\mathbf{H} Magnetic field

H_C Coercive field

H_d Demagnetising field

H_e Weiss mean field

H_{max} Maximum applied field

H_S Field at which $M = M_S$

K_1 Anisotropy constant

\mathbf{M} Magnetisation

m Magnetic moment

M_R Remanent magnetisation

M_S Saturation magnetisation

N_d Demagnetising constant

P Barkhausen noise power

T_C Curie temperature

V Voltage
\(W_H \) Hysteresis energy loss

\(\alpha \) Mean field constant

\(\beta \) Term characterising nearest-neighbour interactions

\(\gamma \) Domain wall energy

\(\delta \) Domain wall thickness

\(\lambda_{UVW} \) Magnetostrictive strain along \(<UVW> \)

\(\lambda_{si} \) Ideal magnetostrictive strain

\(\mu_0 \) Permeability of free space

\(\mu' \) Differential permeability

\(\mu_{max}' \) Maximum differential permeability

\(\sigma \) Electrical conductivity

\(\chi_{in}' \) Initial differential susceptibility

\(\chi_{max}' \) Maximum differential susceptibility

\(\Phi \) Magnetic flux

\(\omega* \) Surface pole density

\(J \) Term characterising nearest-neighbour interactions

Modelling: existing models

\(A, B \) Amplitude of fluctuations in ABBM

\(k \) pinning parameter

\(M_{an} \) Anhysteretic magnetisation

\(M_{JS} \) BN jump sum
M_{rev} Reversible magnetisation

$< M_{disc} >$ Average BN event size

v domain wall velocity

W noise term in ABBM

$< \epsilon_{\pi} >$ Pinning energy for 180° wall

$< \epsilon_{pin} >$ Pinning energy for wall at arbitrary angle

ξ Correlation length

Modelling: new model

A_i Total number pinning points of ith type per unit volume

A_w Wall surface area

C Constant

E Fitting error

E_0 Electric field amplitude

l_w Wall jump distance

$l\{H\}$ Distance between pinning sites at field H

$< l \{H\}$ Domain wall mean free path

$N\{H\}$ Number of pinning sites of strength $\geq H$

$n\{S\}$ Number pinning sites of strength S

S Pinning site field strength

S_b Field at which unpinning first occurs

$< S >_i$ Mean value of S for ith type of pinning site
$V\{H\}$ BN voltage at field H

$V_r\{H\}$ Real $V\{H\}$

$V_p\{H\}$ Predicted $V\{H\}$

$< x >$ Mean value of $ln\{S\}$ for log-normal distribution

β Parameter depending on angle between adjacent domains

ΔS_i Standard deviation of S for ith type of pinning site

Δx Standard deviation of $ln\{S\}$ for log-normal distribution

Orientation Imaging Microscopy

c_c Crystal coordinate system

c_s Sample coordinate system

d Planar spacing

G Rotation matrix

M Misorientation matrix

$< UVW >$ Misorientation axis

ν_0 Brandon ratio proportionality constant

ν_m Maximum allowable deviation from ideal coincidence

λ Radiation wavelength

θ Misorientation angle

θ_B Bragg angle
ABSTRACT

Power plant components are expected to withstand service at high temperature and pressure for thirty years or more. One of the main failure mechanisms under these conditions is creep. The steel compositions and heat treatments for this application are chosen to confer microstructural stability and creep resistance. Nevertheless, gradual microstructural changes, which eventually degrade the creep properties, occur during the long service life. Conservative design lives are used in power plant, and it is often found that components can be used safely beyond the original design life. However, to benefit from this requires reliable monitoring methods. One such technique involves relating the microstructural state to measurable magnetic properties.

Magnetic domain walls interact energetically with microstructural features such as grain boundaries, carbides and dislocations, and are ‘pinned’ in place at these sites until a sufficiently large field is applied to free them. When this occurs, the sudden change in magnetisation as the walls move can be detected as a voltage signal (Barkhausen noise). Previous work has suggested that grain boundaries and carbide particles in power plant steels act as pinning sites with characteristic strengths and strength distributions.

In this study, the concept of pinning site strength distributions was used to develop a model for the variation of the Barkhausen noise signal with applied field. This gave a good fit to published data. The modelling parameters characterising pinning site strengths showed good correlations with grain and carbide particle sizes.

New Barkhausen noise data were obtained from tempered power plant steel samples for further model testing. The Orientation Imaging Microscopy (OIM) technique was used to investigate the grain orientations and grain boundary properties in the steel and their possible role in Barkhausen noise behaviour. The model again fitted the data well, and a clear relationship could be seen between the pinning strength parameter and the severity of tempering (as expressed by the Larson-Miller tempering parameter) to which the steel was subjected.
The experimental results suggest that the Barkhausen noise characteristics of the steels investigated depend strongly on the strain at grain boundaries. As tempering progresses and the grain boundary dislocation density falls, the pinning strength of the grain boundaries also decreases. A clear difference in Barkhausen noise response could be seen between a $2\frac{1}{4}$Cr1Mo traditional power-plant steel and an 11Cr1Mo steel designed for superior heat resistance.

A study of an oxide dispersion strengthened ferrous alloy, in which the microstructure undergoes dramatic coarsening on recrystallisation, was used to investigate further the effects of grain boundaries and particles on Barkhausen noise. The findings from these experiments supported the conclusion that grain boundary strain reduction gave large changes in the observed Barkhausen noise.