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ABSTRACT

Power plant components are expected to withstand service at high tem-
perature and pressure for thirty years or more. One of the main failure
mechanisms under these conditions is creep. The steel compositions and
heat treatments for this application are chosen to confer microstructural sta-
bility and creep resistance. Nevertheless, gradual microstructural changes,
which eventually degrade the creep properties, occur during the long service
life. Conservative design lives are used in power plant, and it is often found
that components can be used safely beyond the original design life. How-
ever, to benefit from this requires reliable monitoring methods. One such
technique involves relating the microstructural state to measurable magnetic
properties.

Magnetic domain walls interact energetically with microstructural fea-
tures such as grain boundaries, carbides and dislocations, and are ‘pinned’
in place at these sites until a sufficiently large field is applied to free them.
When this occurs, the sudden change in magnetisation as the walls move
can be detected as a voltage signal (Barkhausen noise). Previous work has
suggested that grain boundaries and carbide particles in power plant steels
act as pinning sites with characteristic strengths and strength distributions.

In this study, the concept of pinning site strength distributions was used
to develop a model for the variation of the Barkhausen noise signal with ap-
plied field. This gave a good fit to published data. The modelling parameters
characterising pinning site strengths showed good correlations with grain and
carbide particle sizes.

New Barkhausen noise data were obtained from tempered power plant
steel samples for further model testing. The Orientation Imaging Microscopy
(OIM) technique was used to investigate the grain orientations and grain
boundary properties in the steel and their possible role in Barkhausen noise
behaviour. The model again fitted the data well, and a clear relationship
could be seen between the pinning strength parameter and the severity of
tempering (as expressed by the Larson-Miller tempering parameter) to which

the steel was subjected.
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The experimental results suggest that the Barkhausen noise characteris-
tics of the steels investigated depend strongly on the strain at grain bound-
aries. As tempering progresses and the grain boundary dislocation density
falls, the pinning strength of the grain boundaries also decreases. A clear
difference in Barkhausen noise response could be seen between a QiCrlMo
traditional power-plant steel and an 11Cr1Mo steel designed for superior heat
resistance.

A study of an oxide dispersion strengthened ferrous alloy, in which the mi-
crostructure undergoes dramatic coarsening on recrystallisation, was used to
investigate further the effects of grain boundaries and particles on Barkhausen
noise. The findings from these experiments supported the conclusion that
grain boundary strain reduction gave large changes in the observed Barkhausen

noise.
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