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Thermodynamics and Phase Diagrams

Lecture 1: The Thermodynamic Functions

List of Symbols

Symbol Meaning

Ce Electronic specific heat coefficient

CP Specific heat capacity at constant pressure

CµP Magnetic component of the specific heat capacity

CV Specific heat capacity at constant volume

CLV Debye specific heat function

G Gibbs free energy

H Enthalpy

P Pressure

q Quantity of heat

S Entropy

T Absolute temperature

TD Debye temperature

U Internal energy

V Volume

w Work done by a closed system

ωD Debye frequency



      

Internal Energy & Enthalpy

Classical thermodynamics has a formal structure which serves to

organise knowledge and to establish relationships between well–

defined quantities. It is in this context that extensive observations

are taken to imply that energy is conserved. Therefore, the change

in the internal energy ∆U of a closed system is given by

∆U = q − w (1)

where q is the heat transferred into the system and w is the work

done by the system. The historical sign convention is that heat

added and work done by the system are positive, whereas heat

given off and work done on the system are negative. Equation 1

may be written in differential form as

dU = dq − dw. (2)

For the special case where the system does work against a constant

atmospheric pressure, this becomes

dU = dq − PdV (3)

where P is the pressure and V the volume.

The specific heat capacity of a material is an indication of its

ability to absorb or emit heat during a unit change in temperature.

It is defined formally as dq/dT ; since dq = dU + PdV , the specific

heat capacity measured at constant volume is given by:

CV =

(
∂U

∂T

)

V

. (4)



       

It is convenient to define a new function H, the enthalpy of the

system:

H = U + PV. (5)

A change in enthalpy takes account of the heat absorbed at constant

pressure, and the work done by the P∆V term. The specific heat

capacity measured at constant pressure is therefore given by:

CP =

(
∂H

∂T

)

P

. (6)

A knowledge of the specific heat capacity of a phase, as a function

of temperature and pressure, permits the calculation of changes in

the enthalpy of that phase as the temperature is altered:

∆H =

T2∫

T1

CP dT (7)

Entropy & Free Energy

Enthalpy is not the only thermodynamic parameter to change

when the temperature is altered. The reduction in the enthalpy is

therefore not, on its own, a sufficient indicator of whether a reaction

can occur spontaneously.

This can be illustrated by considering what happens when a vol-

ume of ideal gas† is allowed opened up to another volume of evacu-

ated space (Fig. 1). The gas expands into the evacuated space but

† In an ideal gas, the enthalpy is not a function of the interatomic

spacing.



        

there is no change in its enthalpy because its temperature remains

constant in the process. The phenomenon responsible for causing

the gas to spontaneously fill the evacuated chamber is not there-

fore an enthalpy change, but is a change in the degree of order,

expressed as the entropy S. Having all the gas in just one cham-

ber implies a degree of order, whereas gas distributed in both the

chambers reduces that order. Therefore, in the absence of any en-

thalpy change, a reaction may spontaneously occur if it leads to an

increase in entropy (i.e. ∆S > 0). At constant enthalpy, the en-

tropy always tends to increase. In the above example, we virtually

never expect the now uniform distribution of gas to change back

into the evacuated and pressurised chambers. The entropy change

in a reversible process is defined as:

dS =
dq

T
so that ∆S =

T2∫

T1

CP
T
dT (8)

It is evident that neither the enthalpy nor the entropy change

can be used in isolation as reliable indicators of the sense in which

a reaction should occur spontaneously. The Gibbs free energy G is

therefore defined as a combination of these two terms,

G = H− TS. (9)

The Helmholtz free energy F is the corresponding term at constant

volume, when H is replaced by U in equation 9. A process can

occur spontaneously if it leads to a reduction in the free energy.

Quantities such as H, G and S are path independent and therefore

are called functions of state.



    

Fig. 1: Two isothermal chambers at identical

temperature, one containing an ideal gas at a

certain pressure P , and the other evacuated. It

is expected that if the chambers are connected,

then gas must flow into the evacuated chamber

in order to equalise pressure. The reverse case,

where all the atoms on the right hand side by

chance move into the left chamber, is almost

never expected to occur.

More About the Heat Capacity

The heat capacity can be determined experimentally using

calorimetry. The data can then be related directly to the func-

tions of state H, G and S. The variation of heat capacity varies

with temperature and other factors is therefore important in deter-

mining the stabilities of phase. It is useful to factorise the specific

heat capacities of each phase into components with different origins;



        

this is illustrated for the case of a metal.

The major contribution comes from lattice vibrations; electrons

make a minor contribution because the Pauli exclusion principle

prevents all but a few from participating in the energy absorption

process. Further contributions may come from magnetic changes

or from ordering effects in general. As an example, the net specific

heat capacity at constant pressure has the components:

CP {T} = CLV

{
TD
T

}
C1 + CeT + CµP {T} (10)

where CLV {TDT } is the Debye specific heat function and TD is the

Debye temperature. The function C1 corrects CLV {TDT } to a specific

heat at constant pressure. Ce is the electronic specific heat coef-

ficient and CµP the component of the specific heat capacity due to

magnetic effects.

The Debye specific heat has its origins in the vibrations of atoms,

which become increasingly violent as the temperature rises. These

vibrations are elastic waves whose wavelengths can take discrete

values consistent with the size of the sample. It follows that their

energies are quantised, each quantum being called a phonon. The

atoms need not all vibrate with the same frequency, so that there is

a vibration spectrum to be considered in deriving the total internal

energy U due to lattice vibrations. The maximum frequency of

vibration in this spectrum is called the Debye frequency ωD, which

is proportional to the Debye temperature TD through the relation

TD =
hωD
2πk

(11)



      

where h and k are the Planck and Boltzmann constants respectively.

The internal energy due to the atom vibrations is:

U =
9NkT 4

T 3
D

x3

(ex − 1)
dx (12)

where x = hωD/(2πkT ) and N is the total number of lattice points

in the specimen. Since CLV = dU/dT , it follows that the lattice

specific heat capacity at constant volume can be specified in terms

of the Debye temperature and the Debye function (equation 12).

The theory does not provide a complete description of the lattice

specific heat since TD is found to vary slightly with temperature.

In spite of this, the Debye function frequently can be used quite

accurately for CLV {T} if an average TD is calculated for the range

TD/6− TD.

At low temperatures (T ¿ TD), U→ 3NkT 4π4/(5T 3
D) so that

CLV → 12π4NkT 3/(5T 3
D) and the lattice specific heat thus follows a

T 3 dependence. For T À TD, the lattice heat capacity can similarly

be shown to become temperature independent and approach a value

3Nk, as might be expected forN classical oscillators each with three

degrees of freedom (Fig. 2).

Fig. 3 shows the variation in the specific heat capacities of al-

lotropes of pure iron as a function of temperature. Ferrite undergoes

a paramagnetic to ferromagnetic change at a Curie temperature of

1042.15 K.

The Equilibrium State

Equilibrium is a state in which “no further change is percepti-

ble, no matter how long one waits”. For example, there will be no



    

Fig. 2: The Debye function.

Fig. 3: The specific heat capacities of ferrite

and austenite as a function of temperature (af-

ter Kaufman, 1967). The thin lines represent the

combined contributions of the phonons and elec-

trons whereas the thicker lines also include the

magnetic terms. The dashed vertical lines repre-

sent the Curie, α→ γ and γ → δ transitions.

tendency for diffusion to occur between two phases which are in



     

equilibrium even though they may have different chemical compo-

sitions.

An equilibrium phase diagram is vital in the design of materials.

It contains information about the phases that can exist in a mate-

rial of specified chemical composition at particular temperatures or

pressures. It carries information about the chemical compositions

of these phases and the phase fractions. The underlying thermo-

dynamics reveals the driving forces which are essential in kinetic

theory. We shall begin this lecture by revising some of the elemen-

tary thermodynamic models of equilibrium and phase diagrams,

and then see how these can be adapted for the computer modelling

of phase diagrams as a function of experimental thermodynamic

data.

Allotropic Transformations

Consider equilibrium for an allotropic transition (i.e. when the

structure changes but not the composition). Two phases α and γ

are said to be in equilibrium when they have equal free energies:

Gα = Gγ (13)

When temperature is a variable, the transition temperature is also

fixed by the above equation (Fig. 4).
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Fig. 4: The transition temperature for an al-

lotropic transformation.


