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Kinetics and Microstructure Modelling

Lecture 10: Creep–Resistant Steel, Case Study

Introduction

Typical operating parameters for steels used in the manufacture of power plant are

compared against corresponding values for nickel alloys in aeroengines, in Table 1.

In both cases, the service conditions are severe. But this is especially so for steels

where the service life is many decades. The degree of reliability demanded of

heat resistant steels is therefore extraordinary, and must represent one of the

highest achievements of technology. By contrast, computers, which are frequently

identified with advanced technology, seldom last for more than two years and are

generally obsolete at the point of installation!

Property Aeroengine Power Plant

Temperature > 1000 ◦C 540-750 ◦C

Pressure ' 3 bar 160–370 bar

Design life 104 h 2.5× 105 h

σ100,000 h 10 MPa 100 MPa

Coating Yes No

Forced cooling Yes No

Single crystal Yes No

Table 1: Service conditions for a component in the hot part of

an aeroengine and one in the hottest part of a power plant.

It should not be surprising that the number of variables involved in the design

of creep–resistant steels is very large – in fact, we shall show later that there

are at least thirty parameters which need to be controlled in any experiment or

calculation of creep properties.

The variables can ideally be taken into account using what scientists like to call

“physical models”, i.e. theories which explain a large class of observations, which



  

contain few arbitrary elements and which make verifiable predictions. The first

part of this paper deals with such physical models in the prediction of microstruc-

ture.

There is no adequate theory to deal with the second task, which is the estimation

of creep rupture strength as a function of the steel composition, microstructure

and heat treatment. Difficult problems like this, where the general concepts might

be understood but which are not as yet amenable to fundamental treatment, are

common in metallurgy. To form a complete design–technology, it is consequently

necessary to resort to careful empiricism. The second part of this paper deals with

a semi–empirical method implemented to achieve useful results. The combination

of physical and empirical models can then be used to attempt the design of alloys.

The final part of the paper deals with the estimation of the self–diffusion coef-

ficient of iron containing solute additions. This is perceived to be an important

parameter in creep deformation; it has become prominent in recent work because

of the availability of commercial software capable of estimating the diffusivity.

It is useful therefore to summarise the basis of such calculations, even though it

is too early to comment on their significance in the context of changes in creep

properties.

Microstructure

There is a large variety of heat–resistant steels (Table 2). The ones with the

lowest solute concentrations might contain substantial quantities of allotriomor-

phic ferrite and some pearlite, but the vast majority have bainitic or martensitic

microstructures in the normalised condition. After normalising the steels are

severely tempered to produce a “stable” microstructure consisting of a variety of

alloy carbides in a ferritic matrix. The known precipitates are listed in Fig. 1;

they determine the microstructure and are crucial in the development of creep

strain. The task is therefore to model the evolution of precipitation and dissolu-

tion reactions.

The results of equilibrium calculations which give the phase fractions of the

carbides as a function of the overall alloy composition and temperature, are given



    

Fig. 1: The variety of precipitates to be found in power plant

steels. The iron–rich carbides such as cementite form extremely

rapidly, whereas graphite forms incredibly slowly because it is

difficult to nucleate. M5C2 and Z–phase are recent discoveries

[2,3].

in Fig. 2 for the common power plant steels. The calculations have been done

using the MTDATA [1] computer program and SGTE database, taking into ac-

count the carbide phases and Laves phase listed, together with cementite. The

chemical elements considered are carbon, silicon, manganese, chromium, nickel,

molybdenum, vanadium, niobium and nitrogen. M5C2 has recently been identi-

fied in 1Cr–0.5Mo steels [2] but along with graphite, has not been included in the

analysis.

Equilibrium calculations such as those presented in Fig. 2 are useful in specifying

the ultimate microstructure but the results are far from the actual microstructures

that exist during service. It is necessary in practice to be able to calculate time–

temperature–transformation diagrams for tempering reactions, as a function of

steel chemical composition and tempering temperature. In order to do this, a

theory capable of handling several simultaneous precipitation reactions has been

developed [4], where the different phases influence each other, for example by

drawing the same solute from the matrix ferrite.



     

Designation C Si Mn Ni Mo Cr V

1Cr 1
2Mo 0.15 0.25 0.50 – 0.6 0.95

1
4CrMoV 0.15 0.25 0.50 0.05 0.50 0.30 0.25

1
2Cr 1

2Mo 1
4V 0.12 0.25 0.50 – 0.6 0.45 0.25

1CrMoV 0.25 0.25 0.75 0.70 1.00 1.10 0.35

2 1
4Cr1Mo 0.15 0.25 0.50 0.10 1.00 2.30 0.00

Mod. 2 1
4Cr1Mo 0.1 0.05 0.5 0.16 1.00 2.30 0.25

Ti=0.03 B=0.0024

3.0Cr1.5Mo 0.1 0.2 1.0 0.1 1.5 3.0 0.1

3.5NiCrMoV 0.24 0.01 0.20 3.50 0.45 1.70 0.10

9Cr1Mo 0.10 0.60 0.40 – 1.00 9.00 –

Mod. 9Cr1Mo 0.1 0.35 0.40 0.05 0.95 8.75 0.22

Nb=0.08 N=0.05 Al <0.04

9Cr 1
2MoWV 0.11 0.04 0.45 0.05 0.50 9.00 0.20

W=1.84 Nb=0.07 N=0.05

12CrMoV 0.20 0.25 0.50 0.50 1.00 11.25 0.30

12CrMoVW 0.20 0.25 0.50 0.50 1.00 11.25 0.30

W=0.35

12CrMoVNb 0.15 0.20 0.80 0.75 0.55 11.50 0.28

Nb 0.30 N 0.06

Table 2: Compositions (wt.% ) of creep–resistant steels.

Overall Transformation Kinetics

A model for a single transformation begins with the calculation of the nucle-

ation and growth rates using classical theory, but an estimation of the volume

fraction requires impingement between particles to be taken into account. This is

generally done using the extended volume concept of Johnson, Mehl, Avrami, and

Kolmogorov [5] as illustrated in Fig. 3. Suppose that two particles exist at time t;

a small interval δt later, new regions marked a, b, c & d are formed assuming that

they are able to grow unrestricted in extended space whether or not the region



        

Fig. 2: Equilibrium fractions of carbides in some common power

plant steels, as calculated using MTDATA and the SGTE ther-

modynamic database for 565 ◦C (838 K). Very small fractions

of vanadium and niobium carbonitrides are are present in some

steels but are not shown. Thus, the modified 9Cr1Mo contains

0.0009 NbN and 0.003 VN, the 9CrMoWV steel contains 0.0008

NbN and 0.0032 VN. The calculations allowed the existence of all

the carbides described in Figure 1 with the exception of graphite,

epsilon, Chi, Z–phase and M5C2.

into which they grow is already transformed. However, only those components

of a, b, c & d which lie in previously untransformed matrix can contribute to a

change in the real volume of the product phase (identified by the subscript ‘1’) so

that :

dV1 = (1− V1

V
)dV e1 (1)

where it is assumed that the microstructure develops randomly. The superscript

e refers to extended volume, V1 is the volume of phase 1 and V is the total

volume. Multiplying the change in extended volume by the probability of finding

untransformed regions has the effect of excluding regions such as b, which clearly

cannot contribute to the real change in volume of the product. This equation can

easily be integrated to obtain the real volume fraction,

V1

V
= 1− exp

{
−V

e
1

V

}
(2)

Nucleation and growth rates can readily be substituted into V e1 , leading to the

familiar Avrami equation.



      

Fig. 3: The concept of extended volume. Two precipitate parti-

cles have nucleated and grown to a finite size in the time t. New

regions c and d are formed as the original particles grow, but a

& b are new particles, of which b has formed in a region which

is already transformed.

In practice, there are many cases where several transformations occur together.

The different reactions interfere with each other in a way which is seminal to

the development of power plant microstructures. The principles involved are first

illustrated with an example in which β and θ precipitate at the same time from the

parent phase which is designated α. For the sake of discussion it is assumed that

the nucleation and growth rates do not change with time and that the particles

grow isotropically.

The increase in the extended volume due to particles nucleated in a time interval

t = τ to t = τ + dτ is, therefore, given by

dV eβ =
4

3
πG3

β(t− τ)3Iβ(V ) dτ (3)

dV eθ =
4

3
πG3

θ(t− τ)3Iθ(V ) dτ (4)

where Gβ , Gθ, Iβ and Iθ are the growth and nucleation rates of β and θ respec-

tively, all of which are assumed here to be independent of time. V is the total

volume of the system. For each phase, the increase in extended volume will consist

of three separate parts. Thus, for β:

(i) β which has formed in untransformed α.

(ii) β which has formed in regions which are already β.



        

(iii) β which has formed in regions which are already θ.

Only β formed in untransformed α will contribute to the real volume of β. On

average a fraction
(

1− Vβ+Vθ
V

)
of the extended volume will be in previously un-

transformed material. It follows that the increase in real volume of β is given

by

dVβ =

(
1−

Vβ + Vθ
V

)
dV eβ (5)

and similarly for θ,

dVθ =

(
1−

Vβ + Vθ
V

)
dV eθ (6)

Vβ is expected to be some complicated function of Vθ so it is not generally possible

to integrate these expressions analytically to find the relationship between the

real and extended volumes. Numerical integration is straightforward and offers

the opportunity to change the boundary conditions for nucleation and growth

as transformation proceeds, to account for the change in the matrix composition

during the course of reaction. The method can in principle be applied to any

number of simultaneous reactions.

Complex reactions The multiple reactions found in power plant steels have

important complications which can all be dealt with in the scheme of simultaneous

transformations as presented above. The phases interfere with each other not only

by reducing the volume available for transformation, but also by removing solute

from the matrix and thereby changing its composition. This change in matrix

composition affects the growth and nucleation rates of the phases. The main

features of the application of the theory to power plant steels are summarised

below; a full description is given in references [4].

• The model allows for the simultaneous precipitation of M2X, M23C6,

M7C3, M6C and Laves phase. M3C is assumed to nucleate instanta-

neously with the paraequilibrium composition [6]. Subsequent enrich-

ment of M3C as it approaches its equilibrium composition is accounted

for.

• All the phases, except M3C, form close to their equilibrium composition.

The driving forces and compositions of the precipitating phases are



        

calculated using MTDATA [1].

• The interaction between the precipitating phases is accounted for by

considering the change in the average solute level in the matrix as each

phase forms.

• The model does not require prior knowledge of the precipitation se-

quence.

• Dissolution of non–equilibrium phases is incorporated as a natural

event.

• A single set of fitting parameters for the nucleation equations (site

densities and surface energies) has been found which is applicable to a

wide range of power plant steels.

The compositions of three power plant alloys used here for illustration pur-

poses, are shown in Table 3. These three alloys, whilst of quite different chemical

compositions, show similar precipitation sequences [4,7,8] but with vastly different

rates. For example, at 600 ◦C the time taken before M23C6 is observed is 1 h in

the 10CrMoV steel [4], 10 h in the 3Cr1.5Mo alloy [7] and in excess of 1000 h in

the 2 1
4Cr1Mo steel [8]. These differences have never before been explained prior

to the simultaneous transformations model [4].

C N Mn Cr Mo Ni V Nb

2
1
4 Cr1Mo 0.15 – 0.50 2.12 0.9 0.17 – –

3Cr1.5Mo 0.1 – 1.0 3.0 1.5 0.1 0.1 –

10CrMoV 0.11 0.056 0.50 10.22 1.42 0.55 0.20 0.50

Table 3: Concentration (in weight%) of the major alloying

elements in the steels used to demonstrate the model.

MICROSTRUCTURE CALCULATIONS

A plot showing the predicted variation of volume fraction of each precipitate as

a function of time at 600 ◦C is shown in Fig. 4. Consistent with experiments, the

precipitation kinetics of M23C6 are predicted to be much slower in the 2 1
4Cr1Mo

steel compared to the 10CrMoV and 3Cr1.5Mo alloys. One contributing factor is



    

that in the 2 1
4Cr1Mo steel a relatively large volume fraction of M2X and M7C3

form prior to M23C6. These deplete the matrix and therefore suppress M23C6

precipitation. The volume fraction of M2X which forms in the 10CrMoV steel is

relatively small, and there remains a considerable excess of solute in the matrix,

allowing M23C6 to precipitate rapidly. Similarly, in the 3Cr1.5Mo steel the volume

fractions of M2X and M7C3 are insufficient to suppress M23C6 precipitation to

the same extent as in the 2 1
4Cr1Mo steel.

M23C6 is frequently observed in the form of coarse particles which are less

effective in hindering creep deformation. Delaying its precipitation would have

the effect of stabilising the finer dispersions of M2X and MX to longer times with

a possible enhancement of creep strength.

Calculations like these can be used to design microstructures exploiting knowl-

edge built up over decades concerning what is good and bad for creep strength.

It is often argued that Laves phase formation is bad for creep resistance – it leads

to a reduction in the concentration of solid solution strengthening elements; since

the Laves precipitates are few and coarse, they do not themselves contribute sig-

nificantly to strength. The model presented here can be used to design against

Laves phase formation.

We note for the moment, that this is as far as microstructure modelling has

progressed. The models are not yet capable of giving size distributions and even

if that were to be possible, there are no physical models of creep deformation

which have sufficient precision to make use of this information. We shall not

be discouraged by this since good empirical methods are available. The work

described below originates from research by Brun et al. [9] and Cole and Bhadeshia

[10].

Creep Rupture - the variables

The basic principles of alloy design for creep resistance are well–established

and well–founded on experience. The steels must have a stable microstructure

which contains fine alloy carbides to resist the motion of dislocations; however,

changes are inevitable over the long service time so that there must be sufficient



    

Fig. 4: The predicted evolution of precipitate volume frac-

tions at 600 ◦C for three power plant materials (a) 2 1
4Cr1Mo

(b) 3Cr1.5Mo and (c) 10CrMoV.

solid solution strengthening to ensure long term creep resistance. There may be

other requirements such as weldability, corrosion and oxidation resistance. It is



     

nevertheless difficult to express the design process quantitatively given the large

number of interacting variables.

These variables are described later in the context of calculations in Table 4.

For the moment we note that the entire information about microstructure and

properties is in principle locked up in this set of parameters since chemical com-

position and heat treatment are comprehensively included. There may, of course,

be many other independent variables that might be considered important in creep

analysis, but these are for the moment neglected for two reasons. Firstly, an em-

pirical analysis requires experimental data; an over ambitious list would simply

reduce the dataset since publications frequently do not report all of the necessary

parameters. Secondly, the effect of any missing variables would simply be reflected

in the uncertainties of prediction. If the predictions are noisy then they can be

improved with carefully designed experiments at a future date. Bearing this in

mind, the results to be presented are based on some 2000 sets of experiments

obtained from the published literature. We now proceed to describe briefly the

methodology.

Neural Network Method

Most people are familiar with regression analysis where data are best–fitted to

a specified relationship which is usually linear. The result is an equation in which

each of the inputs xj is multiplied by a weight wj ; the sum of all such products

and a constant θ then gives an estimate of the output y =
∑
j wjxj + θ. It is well

understood that there are dangers in using such relationships beyond the range

of fitted data.

A more general method of regression is neural network analysis. As before, the

input data xj are multiplied by weights, but the sum of all these products forms

the argument of a hyperbolic tangent. The output y is therefore a non–linear

function of xj , the function usually chosen being the hyperbolic tangent because

of its flexibility. The exact shape of the hyperbolic tangent can be varied by

altering the weights (Fig. 5a). Further degrees of non–linearity can be introduced

by combining several of these hyperbolic tangents (Fig. 5b), so that the neural



   

network method is able to capture almost arbitrarily non–linear relationships. For

example, it is well known that the effect of chromium on the microstructure of

steels is quite different at large concentrations than in dilute alloys. Ordinary

regression analysis cannot cope with such changes in the form of relationships.

Fig. 5: (a) Three different hyperbolic tangent functions; the

“strength” of each depends on the weights. (b) A combination

of two hyperbolic tangents to produce a more complex model.

A potential difficulty with the use of powerful regression methods is the possi-

bility of overfitting data (Fig. 6). For example, one can produce a neural network

model for a completely random set of data. To avoid this difficulty, the experi-

mental data can be divided into two sets, a training dataset and a test dataset.

The model is produced using only the training data. The test data are then used

to check that the model behaves itself when presented with previously unseen

data.

Fig. 6: A complicated model may overfit the data. In this case,

a linear relationship is all that is justified by the noise in the

data.



    

Neural network models in many ways mimic human experience and are capable

of learning or being trained to recognise the correct science rather than nonsensical

trends. Unlike human experience, these models can be transferred readily between

generations and steadily developed to make design tools of lasting value. These

models also impose a discipline on the digital storage of valuable experimental

data, which may otherwise be lost with the passage of time.

The technique is extremely powerful and useful. Its application to creep rupture

strength analysis is presented below. The details can be found elsewhere [11] but

it is important to note that the generalisation of the model on unseen data has

been tested extensively against large quantities of information.

Calculations of Creep Rupture Strength

Fig. 7 shows the variation in the creep rupture strength (105 h) of a modern

“10CrMoW” creep resistant steel (Table 4) as a function of the temperature,

carbon, chromium and molybdenum concentrations. The error bounds represent

the uncertainty in fitting the non–linear function to the training data, as 65%

confidence limits. There is an additional error associated with each calculation,

which is the noise in the experimental data, which is perceived to be of the order

of ±2%. The engineering design of power plant is based on the ability to support a

stress of 100 MPa for 105 h at the service temperature. The apparent insensitivity

of the creep rupture strength to the molybdenum or chromium concentrations for

105 h is not surprising given that the carbides will all be extremely coarse at that

stage of life.

Similar data for the classical 2 1
4Cr1Mo steel are illustrated in Fig. 8. The fitting

uncertainties are smaller in this case because of the larger quantity of available

data since this alloy has been available and studied for a much longer time.

Calculations like these can now be routinely carried out. Furthermore, the

models can be improved both as more data become available and as creep de-

formation becomes better understood. The model can be used in a variety of

ways. The combined application of the physical models presented earlier, and the

neural network model has led to predictions of novel alloys which ought to have



   

Fig. 7: Creep rupture stress at 600 ◦C and 100,000 h for 10Cr–

0.5Mo type steel

much better creep resistance than any comparable commercial alloy [9]. There are

long–term experiments in progress to test these designer–alloys. Another way is

to apply the models to welding alloys, for which there are much fewer data when

compared with wrought steels.



     

STEEL 2 1
4 CrMo 10CrMoW

Normalising temperature / K 1203 1338

Duration / h 6 2

Cooling rate water quenched air cooled

Tempering temperature / K 908 1043

Duration / h 6 4

Cooling rate air cooled air cooled

Annealing temperature / K 873 1013

Duration / h 2 4

Cooling rate air cooled air cooled

C wt% 0.15 0.12

Si 0.21 0.05

Mn 0.53 0.64

P 0.012 0.016

S 0.012 0.001

Cr 2.4 10.61

Mo 1.01 0.44

W 0.01 1.87

Ni 0.14 0.32

Cu 0.16 0.86

V 0.01 0.21

Nb 0.005 0.01

N 0.0108 0.064

Al 0.018 0.022

B 0.0003 0.0022

Co 0.05 0.015

Ta 0.0003 0.0003

O 0.01 0.01

Table 4: The standard set of input parameters for two alloys

used to examine trends predicted by the neural network. The

chemical compositions are all in wt.%

Conclusions

It is now possible to attempt a quantitative design of heat resistant steels and

welding alloys. This is true both with respect to the kinetics of microstructural

evolution and in the estimation of creep rupture strength. The combined mod-

els provide for the first time an ability to predict new alloys. It would now be



  

Fig. 8: Creep rupture stress for 2.25Cr–1Mo type steel



 

interesting for industry to set some challenges, which would stimulate theoreti-

cal predictions and finally experimental verification. The whole process from the

conception of an alloy to its verification should take much less time than has

previously been the case.

In the longer term it is necessary for the microstructure models to predict

particle size and spatial distributions, and the effect of stress and strain on trans-

formation kinetics. Such information can then be used in a more sophisticated

mechanical model, perhaps based on dislocation and recovery theory.
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