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Thermodynamics and Phase Diagrams

Lecture 4: Mechanical Alloying, Case Study

Introduction

An alloy can be created without melting, by violently deforming mixtures of
different powders, Fig. 1. Inert oxides can, using this technique, be introduced
uniformly into the microstructure. The dispersion–strengthened alloyed powders
are then consolidated using hot–isostatic pressing and extrusion, to produce a solid
with a very fine grain structure. Heat treatment then induces recrystallisation,
either into a coarse columnar grain structure or into a fine, equiaxed set of grains.

Fig. 1: The manufacture of mechanically alloyed metals

for engineering applications. The elemental powders/master–

alloys/oxides are milled together to produce solid solutions with

uniform dispersions of oxide particles. This powder is con-

solidated and the resulting material heat–treated to achieve a

coarse, directional grain structure.

The chemical compositions of some of the commercial alloys produced using
this method are listed in Table 1. They all contain chromium and/or aluminium
for corrosion and oxidation resistance, and yttrium or titanium oxides for creep
strength.



       

Fe–base C Cr Al Mo Ti N Ti2O3 Y2O3 Fe

MA956 0.01 20.0 4.5 – 0.5 0.045 – 0.50 Balance

PM2000 < 0.04 20.0 5.5 0.5 – 0.5 Balance

Ni–Base C Cr Al Ti W Fe N Total O Y2O3 Ni

MA6000 0.06 15.0 4.5 2.3 3.9 1.5 0.2 0.57 1.1 Balance

PM1000 † 20.0 0.3 0.5 3.0 0.6 Balance

Table 1: Compositions (wt% ) of some typical alloys.

CHEMICAL STRUCTURE

The intense deformation associated with mechanical alloying can force atoms
into positions where they may not prefer to be at equilibrium. The atomic struc-
ture of solid solutions in commercially important metals formed by the mechanical
alloying process can be studied using field ion microscopy and the atom–probe.

A solution which is homogeneous will nevertheless exhibit concentration differ-
ences of increasing magnitude as the size of the region which is chemically anal-
ysed decreases. These are random fluctuations which obey the laws of stochastic
processes, and represent the real distribution of atoms in the solution. These
equilibrium variations cannot usually be observed directly because of the lack of
spatial resolution and noise in the usual microanalytical techniques. The fluc-
tuations only become apparent when the resolution of chemical analysis falls to
less than about a thousand atoms block. The atom probe technique collects the
experimental data on an atom by atom basis. The atom by atom data can be
presented at any block size.

Fig. 2 illustrates the variation in the iron and chromium concentrations in fifty
atom blocks, of the ferrite in MA956. There are real fluctuations but further anal-
ysis is needed to show whether they are beyond what is expected in homogeneous
solutions

Fig. 2: The variation in the iron and chromium concentrations

of 50 atom samples of MA956.



  

For a random solution, the distribution of concentrations should be binomial
since the fluctuations are random; any significant deviations from the binomial
distribution would indicate either the clustering of like–atoms or the ordering of
unlike pairs.

The frequency distribution is obtained by plotting the total number of com-
position blocks with a given number of atoms of a specified element against the
concentration. Fig. 3 shows that the experimental distributions are essentially
identical to the calculated binomial distributions, indicating that the solutions
are random.

Fig. 3: Frequency distribution curves for iron, chromium and

aluminium in mechanically alloyed MA956.

This does not mean that the solutions are thermodynamically ideal, but rather
that the alloy preparation method which involves intense deformation forces a
random dispersal of atoms. Indeed, Fe–Cr solutions are known to deviate signif-
icantly from ideality, with a tendency for like atoms to cluster. Thus, it can be
concluded that the alloy is in a mechanically homogenised nonequilibrium state,



      

and that prolonged annealing at low temperatures should lead to, for example,
the clustering of chromium atoms.

Solution Formation

Normal thermodynamic theory for solutions begins with the mixing of compo-
nent atoms. In mechanical alloying, however, the solution is prepared by first
mixing together lumps of the components, each of which might contain many mil-
lions of identical atoms. We examine here the way in which a solution evolves from
these large lumps into an intimate mixture of different kinds of atoms without the
participation of diffusion or of melting. It will be shown later that this leads to
interesting outcomes which have implications on how we interpret the mechanical
alloying process.

Consider the pure components A and B with molar free energies µoA and µoB
respectively. If the components are initially in the form of powders then the
average free energy of such a mixture of powders is simply:

G{mixture} = (1− x)µoA + xµoB (1)

where x is the mole fraction of B. It is assumed that the powder particles are so
large that the A and B atoms do not “feel” each other’s presence via interatomic
forces between unlike atoms. It is also assumed that the number of ways in which
the mixture of powder particles can be arranged is not sufficiently different from
unity to give a significant contribution to a configurational entropy of mixing.
Thus, a blend of powders which obeys equation 1 is called a mechanical mixture. It
has a free energy that is simply a weighted mean of the components, as illustrated
in Fig. 4a for a mean composition x.

In contrast to a mechanical mixture, a solution is conventionally taken to de-
scribe a mixture of atoms or molecules. There will in general be an enthalpy
change associated with the change in near neighbour bonds. Because the total
number of ways in which the “particles” can arrange is now very large, there will
always be a significant contribution from the entropy of mixing, even when the
enthalpy of mixing is zero. The free energy of the solution is therefore different
from that of the mechanical mixture, as illustrated in Fig. 4b. The difference in
the free energy between these two states of the components is the free energy of
mixing ∆GM , the essential term in all thermodynamic models for solutions.

Whereas mechanical mixtures and atomic or molecular solutions are familiar
in all of the natural sciences, the intermediate states have only recently been
addressed. The problem is illustrated in Fig. 5 which shows the division of par-
ticles into ever smaller particles until an atomic solution is achieved. At what
point in the size scale do these mixtures of particles begin to exhibit solution–like
behaviour?

To answer this question we shall assume first that there is no enthalpy of mixing.
The problem then reduces to one of finding the configurational entropy of mixtures
of lumps as opposed to atoms. Suppose that there are mA atoms per powder
particle of A, and mB atoms per particle of B; the powders are then mixed in a
proportion which gives an average mole fraction x of B.



      

Fig. 4: (a) The free energy of a mechanical mixture, where the

mean free energy is simply the weighted mean of the components.

(b) The free energy of an ideal atomic solution is always lower

than that of a mechanical mixture due to configurational entropy.

There is only one configuration when the heaps of pure powders are separate.
When the powders are mixed at random, the number of possible configurations
for a mole of atoms becomes:

(
Na([1− x]/mA + x/mB)

)
!

(Na[1− x]/mA)! (Nax/mB)!
(2)

where Na is Avogadro’s number. The numerator in equation 2 is the total number
of particles and the denominator the product of the factorials of the A and B par-
ticles respectively. Using the Boltzmann equation and Stirling’s approximation,
the molar entropy of mixing becomes:
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(3)

subject to the condition that the number of particles remains integral and non–
zero. As a check, it is easy to show that this equation reduces to the familiar

∆SM = −kNa[(1− x) ln{1− x}+ x ln{x}] (4)



        

Fig. 5: Schematic illustration of the evolution of an atomic solu-

tion by the progressive reduction in the size of different particles,

a process akin to mechanical alloying.

when mA = mB = 1.
Naturally, the largest reduction in free energy occurs when the particle sizes are

atomic. Fig. 6 shows the molar free energy of mixing for a case where the average
composition is equiatomic assuming that only configurational entropy contributes
to the free energy of mixing. An equiatomic composition maximises configura-
tional entropy. When it is considered that phase changes often occur at appre-
ciable rates when the accompanying reduction in free energy is just 10 J mol−1,
Fig. 6 shows that the entropy of mixing cannot be ignored when the particle size
is less than a few hundreds of atoms. In commercial practice, powder metallurgi-
cally produced particles are typically 100 µm in size, in which case the entropy
of mixing can be neglected entirely, though for the case illustrated, solution–like
behaviour occurs when the particle size is about 102 atoms.

Enthalpy and Interfacial Energy

The enthalpy of mixing will not in general be zero as was assumed above. The
binding energy is the change in energy as the distance between a pair of atoms is
decreased from infinity to an equilibrium separation, which for a pair of A atoms
is written −2εAA. From standard theory for atomic solutions, the molar enthalpy
of mixing is given by:

∆HM ' Naz(1− x)xω where ω = εAA + εBB − 2εAB (5)



      

Fig. 6: The molar Gibbs free energy of mixing, ∆GM =

−T∆SM , for a binary alloy, as a function of the particle size

when all the particles are of uniform size in a mixture whose

average composition is equiatomic. T = 1000 K.

where z is a coordination number.
However, for particles which are not monatomic, only those atoms at the inter-

face between the A and B particles will feel the influence of the unlike atoms. It
follows that the enthalpy of mixing is not given by equation 5, but rather by

∆HM = zNaω 2δSV x(1− x) (6)

where SV is the amount of A − B interfacial area per unit volume and 2δ is the
thickness of the interface, where δ is a monolayer of atoms.

A further enthalpy contribution, which does not occur in conventional solution
theory, is the structural component of the interfacial energy per unit area, σ:

∆HI = VmSV σ (7)

where Vm is the molar volume.
Both of these equations contain the term SV , which increases rapidly as the

inverse of the particle size m. The model predicts that solution formation is
impossible because the cost due to interfaces overwhelms any gain from binding
energies or entropy. And yet, solutions do form, so there must be a mechanism
to reduce interfacial energy as the particles are divided. The mechanism is the
reverse of that associated with precipitation (Fig. 7). A small precipitate can be
coherent but the coherency strains become intolerable as it grows. Similarly, dur-
ing mechanical alloying it is conceivable that the particles must gain in coherence
as their size diminishes. The milling process involves fracture and welding of the
attrited particles so only those welds which lead to coherence might succeed.

Another unexpected result is obtained on incorporating a function which al-
lows the interfacial energy to decrease as the particle size becomes finer during
mechanical alloying. Thermodynamic barriers are discovered to the formation of a
solution by the mechanical alloying process, Fig. 8. When the enthalpy of mixing
is either zero or negative, there is a single barrier whose height depends on the



         

Fig. 7: The change in coherence as a function of particle size.

The lines represent lattice planes which are continuous at the

matrix/precipitate interface during coherence, but sometimes

terminate in dislocations for the incoherent state. Precipita-

tion occurs in the sequence a→c whereas mechanical alloying is

predicted to lead to a gain in coherence in the sequence c→a.

competition between the reduction in free energy due to mixing and the increase
in interfacial energy as the particles become finer until coherence sets in. When
the atoms tend to cluster, there is a possibility of two barriers, the one at smaller
size arising from the fact that atoms are being forced to mix during mechanical
alloying.

The composition dependence of the barriers to solution formation becomes more
clear in plot of free energy versus chemical composition, as illustrated in Fig. 8c,d.

Shape of Free Energy Curves

There are many textbooks which emphasise that free energy of mixing curves
such as that illustrated in Fig. 4b must be drawn such that the slope is either
−∞ or +∞ at x = 0 and x = 1 respectively. This is a straightforward result from
equation 4 which shows that

∂∆SM
∂x

= −kNa ln

{
x

1− x

}
(8)

so that the slope of −T∆SM becomes ±∞ at the extremes of concentration.
Notice that at those extremes, any contribution from the enthalpy of mixing will
be finite and negligible by comparison, so that the free energy of mixing curve will
also have slopes of ±∞ at the vertical axes corresponding to the pure components†
It follows that the free energy of mixing of any solution from its components will
at first decrease at an infinite rate.

However, these conclusions are strictly valid only when the concentration is
treated as a continuous variable which can be as close to zero or unity as desired.

† The intercepts at the vertical axes representing the pure components are nevertheless
finite, with values µ0

A and µ0
B .



      

Fig. 8: Thermodynamic barriers to solution formation. (a) Case

where the enthalpy of mixing is negative, i.e. unlike atoms at-

tract. (b) Case where there is a tendency to cluster with a

positive enthalpy of mixing. (c) As case (a) but plotted against

chemical composition. The numbers alongside the curves refer

to the number of atoms per particle. (d) As case (b) but plot-

ted against chemical composition. The numbers alongside the

curves refer to the number of atoms per particle.

The present work emphasises that there is a discrete structure to solutions. Thus,
when considering N particles, the concentration can never be less than 1/N since
the smallest amount of solute is just one particle. The slope of the free energy
curve will not therefore be ±∞ at the pure components, but rather a finite number
depending on the number of particles involved in the process of solution formation.
Since concentration is not a continuous variable, the free energy is not represented
by a curve, but rather by a set of straight lines connecting the discrete values
of concentration that are physically possible when mixing particles. The shape
approximates a curve when the number of particles is large, as is the case for an
atomic solution made of a mole of atoms. But the curve remains an approximation.


