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Thermodynamics and Phase Diagrams

Lecture 5: Computation of Phase Diagrams
The theory we have covered in the earlier lectures helps under-

stand solutions and has been used extensively in modelling their

behaviour. The theory is, nevertheless, too complicated mathemat-

ically and too simple in its representation of real solutions. It fails

as a general method of phase diagram calculation, where it is nec-

essary to implement calculations over the entire periodic table, for

any concentration, and in a seamless manner across the elements.

There have been many review articles on the subject (e.g. Kaufman,

1969; Chart et al., 1975; Hillert, 1977; Ansara, 1979; Inden, 1981).

A recent book deals with examples of applications (edited by Hack,

1996). We shall focus here on the models behind the phase diagram

calculations with the aim of illustrating the remarkable efforts that

have gone into creating a general framework.

One possibility is to represent thermodynamic quantities by a se-

ries expansion with sufficient adjustable parameters to adequately

fit the experimental data. There has to be a compromise between

the accuracy of the fit and the number of terms in the expan-

sion. However, such expansions do not generalise well when dealing

with complicated phase diagram calculations involving many com-

ponents and phases. Experience suggests that the specific heat

capacities at constant pressure, CP , for the pure elements are bet-

ter represented by a polynomial with a form which is known to



        

adequately describe most experimental data:

CP = b1 + b2T + b3T
2 +

b4
T 2

(1)

where bi are empirical constants. Where the fit with experimental

data is found not to be good enough, the polynomial is applied to a

range over which the fit is satisfactory, and more than one polyno-

mial is used to represent the full dataset. A standard element refer-

ence state is defined with a list of the measured enthalpies and en-

tropies of the pure elements at 298 K and one atmosphere pressure,

for the crystal structure appropriate for these conditions. With re-

spect to this state, and bearing in mind that ∆H =
T2∫
T1

CP dT and

∆S =
T2∫
T1

CP
T dT , the Gibbs free energy is obtained by integration to

be:

G = b5 + b6T + b7T ln{T}+ b8T
2 + b9T

3 +
b10

T
(2)

Allotropic transformations can be included if the transition tem-

peratures, enthalpy of transformation and the CP coefficients for

all the phases are known.

Any “exceptional” variations in CP , such as due to magnetic

transitions, are dealt with separately, as are the effects of pressure.

Once again, the equations for these effects are chosen carefully in

order to maintain generality.

The excess Gibbs free energy for a binary solution with compo-

nents A and B is written:

∆eGAB = xAxB

j∑

i=0

LAB,i(xA − xB)i (3)



       

For i = 0 this gives a term xAxBLAB,0 which is familiar in regular

solution theory, where the coefficient LAB,0 is, as usual, indepen-

dent of chemical composition, and to a first approximation describes

the interaction between components A and B. If all other LAB,i

are zero for i > 0 then the equation reduces to the regular solution

model with LAB,0 as the regular solution parameter. Further terms

(i > 0) are included to allow for any composition dependence not

described by the regular solution constant.

As a first approximation, the excess free energy of a ternary so-

lution can be represented purely by a combination of the binary

terms in equation 3:

∆eGABC =xAxB

j∑

i=0

LAB,i(xA − xB)i

+ xBxC

j∑

i=0

LBC,i(xB − xC)i

+ xCxA

j∑

i=0

LCA,i(xC − xA)i

(4)

We now see that the advantage of the representation embodied in

equation 4 is that for the ternary case, the relation reduces to the

binary problem when one of the components is set to be identical

to another, e.g. B ≡ C (Hillert, 1979).

There might exist ternary interactions, in which case a term

xAxBxCLABC,0 is added to the excess free energy. If this does

not adequately represent the deviation from the binary summa-

tion, then it can be converted into a series which properly reduces



        

to a binary formulation when there are only two components:

xAxBxC
[
LABC,0 +

1

3
(1 + 2xA − xB − xC)LABC,1

+
1

3
(1 + 2xB − xC − xA)LBCA,1

+
1

3
(1 + 2xC − xA − xB)LCAB,1

]

It can be seen that this method can be extended to any number

of components, with the great advantage that very few coefficients

have to be changed when the data due to one component are im-

proved. The experimental thermodynamic data necessary to derive

the coefficients may not be available for systems higher than ternary

so high order interactions are often set to zero.
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