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Kinetics and Microstructure Modelling

Lecture 7: Diffusion–Controlled Growth

Rate–Controlling Processes

An electrical current i flowing through a resistor will dissipate en-

ergy in the form of heat (Fig. 1). When the current passes through

two resistors in series, the dissipations are iv1 and iv2 where v1

and v2 are the voltage drops across the respective resistors. The

total potential difference across the circuit is v = v1 + v2. For a

given applied potential v, the magnitude of the current flow must

depend on the resistance presented by each resistor. If one of the

resistors has a relatively large electrical resistance then it is said to

control the current because the voltage drop across the other can

be neglected. On the other hand, if the resistors are more or less

equivalent than the current is under mixed control.

Fig. 1: Rate–controlling processes: electrical

analogy.



      

This electrical circuit is an excellent analogy to the motion of

an interface. The interface velocity and driving force (free energy

change) are analogous to the current and applied potential differ-

ence respectively. The resistors represent the processes which im-

pede the motion of the interface, such as diffusion or the barrier

to the transfer of atoms across the boundary. When most of the

driving force is dissipated in diffusion, the interface is said to move

at a rate controlled by diffusion. Interface–controlled growth occurs

when most of the available free energy is dissipated in the process

of transferring atoms across the interface.

These concepts are illustrated in Fig. 2, for a solute–rich precip-

itate β growing from a matrix α in an alloy of average chemical

composition C0. The equilibrium compositions of the precipitate

and matrix are respectively, Cβα and Cαβ .

Fig. 2:Concentration profile at an α/β inter-

face moving under: (a) diffusion–control, (b)

interface–control, (c) mixed interface.

A reasonable approximation for diffusion–controlled growth is

that local equilibrium exists at the interface. On the other hand, the



        

concentration gradient in the matrix is much smaller with interface–

controlled growth because most of the available free energy is dis-

sipated in the transfer of atoms across the interface.

Diffusion–Controlled Growth

Precipitates can have a different chemical composition from the

matrix. The growth of such particles (designated β) is frequently

controlled by the diffusion of solute which is partitioned into the

matrix (designated α).

As each precipitate grows, so does the extent of its diffusion field.

This slows down further growth because the solute has to diffuse

over ever larger distances. As we will prove, the particle size in-

creases with the square root of time, i.e. the growth rate slows

down as time increases. We will assume in our derivation that

the concentration gradient in the matrix is constant, and that the

far–field concentration C0 never changes (i.e. the matrix is semi–

infinite normal to the advancing interface). This is to simplify the

mathematics without loosing any of the insight into the problem.

For isothermal transformation, the concentrations at the interface

can be obtained from the phase diagram as illustrated below. The

diffusion flux of solute towards the interface must equal the rate at

which solute is incorporated in the precipitate so that:

(Cβ − Cα)
∂x

∂t︸ ︷︷ ︸
rate solute absorbed

= D
∂C

∂x︸ ︷︷ ︸
diffusion flux towards interface

' DC0 − Cα
∆x



      

A second equation can be derived by considering the overall con-

servation of mass:

(Cβ − C0)x =
1

2
(C0 − Cα)∆x (1)

On combining these expressions to eliminate ∆x we get:

∂x

∂t
=

D(C0 − Cα)2

2x(Cβ − Cα)(Cβ − C0)
(2)

If, as is often the case, Cβ À Cα and Cβ À C0 then

2

∫
x∂x =

(
C0 − Cα
Cβ − Cα

)2

D

∫
∂t so that x ' ∆Css

∆Cαβ

√
Dt

and v ' 1

2

∆Css
∆Cαβ

√
D

t
(3)

where v is the velocity. A more precise treatment which avoids the

linear profile approximation would have given:

v ' ∆Css
∆Cαβ

√
D

t

The growth rate decreases with time (Fig. 3). The physical rea-

son why the growth rate decreases with time is apparent from equa-

tion 1, where the diffusion distance ∆x is proportional to the precip-

itate size x (Fig. 3b). As a consequence, the concentration gradient



  

Fig. 3: (a) Parabolic thickening during one di-

mensional growth. (b) Increase in diffusion dis-

tance as the precipitate thickens.

decreases as the precipitate thickens, causing a reduction in the

growth rate.


