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Kinetics and Microstructure Modelling

Lecture 8: Other Interface–Response Functions

Interface–Controlled Growth

Consider the transfer of atoms across a grain boundary in a pure

material, across a barrier of height G∗, Fig. 1. The probability of

forward jumps (i.e. jumps which lead to a reduction in free energy)

is given by

exp{−G∗/kT}

whereas that of reverse jumps is given by

exp{−(G∗ + ∆G)/kT} = exp{−G∗/kT} exp{−∆G/kT}

. The rate at which an interface moves is therefore given by

v ∝ exp{−G∗/kT}[1− exp{−∆G/kT}]

Note that this relation is hardly that predicted from irreversible

thermodynamics. However, they become identical when ∆G is

small, i.e. there is not a great deviation form equilibrium. Note

that for small x, exp{x} ' 1 + x. Thus, at small driving forces,

v ∝ exp{−G∗/kT}[∆G/kT ]



      

Fig. 1: Activation barrier to the transfer of atoms

across a boundary.

Aziz Solute Trapping Function

An interface can move so fast that solute atoms do not have an

opportunity to partition. The solute is said to be trapped when its

chemical potential increases on transfer across the interface. When

the concentration of the solute is smaller than expected from equi-

librium, it is the solvent that is trapped.

Fig. 2 illustrates a transformation front between the shaded and

unshaded crystals, in a binary alloy containing A (solvent) and B

(solute) atoms. The smaller solute atoms prefer to be in the parent

phase (γ). The atoms in the central layer have to move along the

vectors indicated in order to transform into the product phase (α).

δs is a typical diffusion jump distance for the solute atom; the

motions required for the atoms in the interfacial layer to adjust to

the new crystal structure are rather smaller.

Solute will be trapped if the interface velocity v is greater than

that at which solute atoms can diffuse away. The maximum dif-



      

Fig. 2: Choreography of solute trapping, adapted

from Aziz (1982). The solvent is labelled A, so-

lute B and the product phase is shaded dark.

The transformation front is advancing towards

the right.

fusion velocity is approximately D/δs since δs is the minimum dif-

fusion distance, so that trapping occurs when v > D/δs. In terms

of concentrations, solute is said to be trapped when the concentra-

tion Cα > Cαγ where Cαγ is the concentration in α which is in

equilibrium with γ and Cα is the actual concentration.

Consider now a situation where the interface is moving at a steady

rate. Then the rate at which the solute is absorbed by α as it grows

is given by

v(Cγα − Cα) (1)

where Cγα is the concentration in γ which is in equilibrium with α.

The trapping of solute is opposed by equilibrium so there will be a

net flux Jαγ−Jγα tending to oppose trapping. Applying Fick’s first

law over the thickness of the interface, the flux opposing trapping



      

is

Jαγ − Jγα =
D

δs
(Cα − Cαγ) (2)

where D is the diffusion coefficient. On equating relations (1) and

(2) to define the steady–state, we see that

v(Cγα − Cα) =
D

δs
(Cα − Cαγ)

and writing the equilibrium partition coefficient as

ke =
Cαγ

Cγα

we get the actual partition coefficient kp as

kp =
Cα

Cγα
=
βp + ke
βp + 1

where βp =
vδs
D

(3)

This equation enables the composition of a growing phase to be

estimated even when it deviates from equilibrium, as long as the

velocity of the interface is known.

The Actual Growth Rate

We have seen that there are many processes, including diffusion,

which occur in series as the particle grows. Each of these dissipates

a proportion of the free energy available for transformation. For

a given process, the variation in interface velocity with dissipation

defines a function which is called an interface response function.

The actual velocity of the interface depends on the simultaneous

solution of all the interface response functions, a procedure which

fixes the composition of the growing particle.



       

Fig. 2: An illustration of the activation energy

barrier G∗ for diffusion across the interface, on a

plot of the chemical potential of the solute ver-

sus distance. Note that this solute potential is

lowest in the parent phase γ. The increase in the

solute chemical potential as it becomes trapped

is ∆µ = µα − µγ .

Fig. 3 shows an electrical analogy; the resistors in series are the

hurdles to the movement of the interface. They include diffusion in

the parent phase, the transfer of atoms across the interface, solute

drag etc. The electrical–potential drop across each resistor corre-

sponds to the free energy dissipated in each process, and the cur-

rent, which is the same through each resistor, represents the inter-

face velocity. The relationship between the current and potential is

different for each resistor, but the actual current is obtained by a

simultaneous solution of all such relations.

Following on from this analogy, the available free energy can be

partitioned into that dissipated in diffusion ahead of the interface,

a quantity expended in the transfer of atoms across the interface,



  

Fig. 3: Electrical analogy of dissipations due to

processes which occur in series during interface

motion. The resistors in series are the hurdles to

the motion of the interface, the voltage the driv-

ing force and the current the interface velocity.

The way in which voltage (driving force) is dis-

sipated as a function of current (velocity) across

each resistor is different. There is one interface so

all processes must yield the same velocity, as in-

dicated by the identical current passing through

all the resistors.

and in any other process (such as solute trapping) determining the

motion of the interface.


