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Kinetics and Microstructure Modelling

Lecture 9: Overall Transformation Kinetics

Isothermal Transformation

To model transformation it is obviously necessary to calculate the nucleation

and growth rates, but an estimation of the volume fraction requires impingement

between particles to be taken into account.

Fig. 1: An illustration of the concept of extended volume. Two

precipitate particles have nucleated together and grown to a fi-

nite size in the time t. New regions c and d are formed as the

original particles grow, but a & b are new particles, of which b

has formed in a region which is already transformed.

This is done using the extended volume concept of Kolmogorov, Johnson, Mehl

and Avrami. Referring to Fig. 1, suppose that two particles exist at time t; a

small interval δt later, new regions marked a, b, c & d are formed assuming that

they are able to grow unrestricted in extended space whether or not the region

into which they grow is already transformed. However, only those components

of a, b, c & d which lie in previously untransformed matrix can contribute to a

change in the real volume of the product phase (α) :

dV α =

(
1− V α

V

)
dV αe (1)



       

where it is assumed that the microstructure develops at random. The subscript

e refers to extended volume, V α is the volume of α and V is the total volume.

Multiplying the change in extended volume by the probability of finding untrans-

formed regions has the effect of excluding regions such as b, which clearly cannot

contribute to the real change in volume of the product. For a random distribution

of precipitated particles, this equation can easily be integrated to obtain the real

volume fraction,
V α

V
= 1− exp

{
−V

α
e

V

}

The extended volume V αe is straightforward to calculate using nucleation and

growth models and neglecting completely any impingement effects. Consider a

simple case where the α grows isotropically at a constant rate G and where the

nucleation rate per unit volume, IV . The volume of a particle nucleated at time

t = τ (Fig. 2) is given by

vτ =
4

3
πG3(t− τ)3

The change in extended volume over the interval τ and τ + dτ is

dV αe =
4

3
πG3(t− τ)3 × IV × V × dτ

On substituting into equation 1 and writing ξ = V α/V , we get

dV α =

(
1− V α

V

)
4

3
πG3(t− τ)3IV V dτ

so that − ln{1− ξ} =
4

3
πG3IV

∫ t

0

(t− τ)3 dτ

and ξ = 1− exp{−πG3IV t
4/3}

(2)

Fig. 2: An illustration of the incubation time τ for each particle.



       

This equation has been derived for the specific assumptions of random nucle-

ation, a constant nucleation rate and a constant growth rate. There are different

possibilities but they often reduce to the general form:

ξ = 1− exp{−kAtn} (3)

where kA and n characterise the reaction as a function of time, temperature and

other variables. The values of kA and n can be obtained from experimental data

by plotting ln(− ln{1−ξ}) versus ln{t}. The specific values of kA and n depend on

the nature of nucleation and growth. Clearly, a constant nucleation and growth

rate leads to a time exponent n = 4, but if it is assumed that the particles all begin

growth instantaneously from a fixed number density of sites (i.e. nucleation is not

needed) the n = 3 when the growth rate is constant. There are other scenarios

and the values of the Avrami parameters are not necessarily unambiguous in the

sense that the same exponent can represent two different mechanisms.

The form of equation 3 is illustrated in Fig. 3. Note that the effect of tem-

perature is to alter the thermodynamic driving force for transformation, to alter

diffusion coefficients and to influence any other thermally activated processes. The

effect of manganese is via its influence on the stability of the parent and product

phases.

The results of many isothermal transformation curves such as the ones illus-

trated in Fig. 3 can be plotted on at time–temperature–transformation diagram

as illustrated in Fig. 4. The curves typically have a C shape because the driving

force for transformation is small at high temperatures whereas the diffusion coeffi-

cient is small at low temperatures. There is an optimum combination of these two

parameters at intermediate temperatures, giving a maximum in the rate of reac-

tion. The curve marked start corresponds to a detectable limit of transformation

(e.g. 5%), and that marked finish corresponds to say 95% transformation.

Simultaneous Transformations

There are many circumstances in which reactions do not happen in isolation. For

example, a steel designed to serve at 600 ◦C over a period of 30 years may contain



      

Fig. 3: The calculated influence of (a) transformation temper-

ature and (b) manganese concentration on the kinetics of the

bainite reaction (Singh, 1998). Bainite is a particular kind of

solid–state phase transformation that occurs in steels.

Fig. 4: A time–temperature–transformation (TTT) diagram.

more than six different kinds of precipitates so that it can sustain a load without

creeping.

A simple modification for the simulataneous formation of two precipitates (α

and β) is that equation 1 of Lecture MP6–8 becomes a coupled set of two equa-

tions,

dV α =

(
1− V α + V β

V

)
dV αe and dV β =

(
1− V α + V β

V

)
dV βe (4)

This can be done for any number of reactions happening together. The resulting

set of equations must in general be solved numerically, although a few analytical

solutions are possible for special cases, one of which is illustrated below.
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Special Cases

For the simultaneous formation of two phases whose extended volumes are related

linearly:

V βe = BV αe + C with B ≥ 0 and C ≥ 0 (5)

then with ξi = Vi/V , it can be shown that

ξα =

∫
exp

{
− (1 +B)V αe + C

V

}
dV αe
V

and ξβ = Bξα (6)

If the isotropic growth rate of phase α is G and if all particles of α start growth at

time t = 0 from a fixed number of sites NV per unit volume then V αe = NV
4π
3 G

3t3.

On substitution of the extended volume in equation 6 gives

ξα =
1

1 +B
exp{−C

V
}
[
1− exp

{
− (1 +B)NV

4π
3 G

3t3

V

}]
with ξβ = Bξα (7)

The term exp{−C/V } is the fraction of parent phase available for transformation

at t = 0; it arises because 1 − exp{−C/V } of β exists prior to commencement

of the simultaneous reaction at t = 0. Thus, ξβ is the additional fraction of β

that forms during simultaneous reaction. It is emphasised that C ≥ 0. A case for

which C = 0 and B = 8 is illustrated in Fig. 5.

Fig. 5: Simultaneous transformation to phases α ≡ 1 and β ≡ 2

with C = 0 and B = 8.


