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Chapter 1

Introduction

    Creep is a time-dependent deformation that happens when metals or other materials are

subjected to stress over a period of time [1]. The applied stress in creep is always less

than the yield strength as measured in a tensile test, and yet, creep causes permanent

deformation.

    Materials such as components of power plant, steam generators or turbine rotors must

operate at high temperature, under significant stress. For this reason, the components and

structures need to be designed on the basis that excessive creep distortion or creep failure

must not occur within the expected operating life of the plant [2]. Knowledge of the creep

behaviour of the metals is therefore important, and prediction of creep deformation, i.e.

the strain and rupture life, could help to design more reliable parts and components.

1.1 The aim of the work

    Creep can be described as a time-dependent and permanent process of materials when

subjected to a constant load or stress, which is generally below the yield strength at a

certain temperature (usually temperature is greater than approximately 0.4 of the absolute

melting temperature T=0.4Tm) [3]. Creep deformation can be very large at temperatures

around 0.5Tm.

    Creep deformation is normally an undesirable phenomenon, and it is often the limiting

factor in the lifetime of a component especially at high temperature and significant stress.

In metals, creep usually occurs only at elevated temperatures. Creep at room temperature
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is more common in polymeric materials and is called cold flow or deformation under load

[4].

    The tendency of a material to undergo plastic deformation under the influence of a

stress is often characterised using a tensile test, which is in generally conducted under

conditions where the measured properties are independent of time [2]. The details on

mechanisms of plastic deformation and creep test have been reviewed in a number of

excellent publications [5]. The plastic strain is time-dependent in creep deformation.

Most creep data are obtained by measuring the deformation of a bar under constant load

and temperature over a period of time. The plastic strain on loading is measured as a

function of time and a typical variation of creep strain with time for a specimen subjected

to a constant tensile stress is shown in Figure 1.1 [6].

Figure 1.1: General form of strain against time curve. AB, elastic extension; BC,

decreasing creep rate; CD, minimum rate of creep; DE, increasing creep rate.
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    As shown in Figure 1.1, the slope of the curve is called creep rate (
•

ε ) and the end

point of the curve E is the time for rupture. The creep rate is not ordinarily constant and

can be divided into three phases. The region BC is commonly considered as primary or

transient creep stage [6], and it starts at a rapid rate and slows with time. The region CD

stands as secondary or steady state creep, which has a relatively uniform rate. DE as

tertiary creep has an accelerating creep-rate and terminates at the point E by failure of

material at time for rupture [6].

1.2 Three stages of creep

    With the basic definitions and mechanisms of material behaviour explained above, the

processes of creep can be subdivided and examined into the three of categories primary

creep, tertiary creep, and steady state creep [7]

    1.2.1 Primary Creep

    During primary creep, the strain rate decreases with time until a constant rate is

reached. And this tends to occur over a short period. [8].

    Primary creep strain is usually less than one percent of the sum of the elastic, steady

state, and primary strains. The mechanism in the primary region is the climb of

dislocations that are not pinned in the matrix [7]. Since the amount of initial strain of a

material is due to the number of dislocations initially present, the primary region is

strongly dependent on the history of the material. If the material has been heavily worked

before the creep test, there would be many more dislocations present and the

characteristics of the primary creep region would be much different.
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    1.2.2 Steady State Creep

    Steady-state creep is so named because the strain rate is constant. In this region, the

rate of strain hardening by dislocations is balanced by the rate of recovery. Steady-state

creep is roughly centred at the minimum in the plot of creep rate versus time. The

minimum rate is empirically found to be inversely proportional to the time to rupture.

This is often called the Monkman-Grant (1956) relationship [9] in which the product of

the minimum creep rate and rupture time is found to be constant for a given mechanism.

    1.2.3 Tertiary Creep

    In the tertiary region, the high strains start to cause necking of the material just as in

the uni-axial tensile test. This necking causes an increase in the local stress of the

component, which further accelerates the strain [7]. Eventually the material will pull

apart in a ductile fracture around defects in the solid. These defects could be precipitates

at high temperatures or grain boundaries at lower temperatures [10].

    In any case the importance of the tertiary region to normal operation and creep design

criteria is minimal. In Figure 1.1 above, the time scale of the tertiary region is greatly

expanded for the purpose of clarity. Considering the small amount of time in addition to

the fact that the tertiary region develops a plastic instability similar to necking, operating

in the tertiary region is not feasible. Therefore it is a conservative estimate to

approximate the end of serviceable life of any component to coincide with the end of the

steady state creep region. Only under accidental conditions may the extra time in the

tertiary region be useful to consider.
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    The primary creep could be described as the work-hardening stage for the material in

which the resistance to creep is built up by virtue of its own deformation; during steady-

state creep there is a state of balance between work-hardening and thermal softening;

tertiary creep precedes fracture through cavitations, inter-crystalline cracking or some

other damage mechanism [11]. The studies on the primary and steady stages of creep are

usually more interesting for engineering analysis. Tertiary creep is usually associated

with the onset of failure (necking, damage) and is short-lived [11].

    Although there are a great number of fundamental theories describing the process of

creep deformation and rupture life in different regimes of stress, temperature and strain

rate, the theories have not been applied with effect in useful materials of the type used in

engineering. This is because practical materials tend to be complex.

    1.3  Parametric models

    It is very important to understand the long-term creep deformation and its rupture

properties of components for their safe use such as power plant and aero-engines [2].

There exist a great number of empirical or semi-empirical methods, which permit the

accurate formulation of experimental data and extrapolate long-term creep data. Details

of these methods have been reviewed in published literature [12]. For instance, a popular

empirical method involving the use of θ-parameter equation was summarized by Evans

and Wilshire in 1985 [2, 11]:

                          ε=θ1 [1−exp{-θ2t}]+θ3 [exp{θ4t}-1]                (Eq. 1.1)
                                  



6

where θi  were obtained by fitting to experimental data, and t is the time at temperature.

The first two of these parameters describe the primary or decaying strain rate component,

whereas the remaining terms the accelerating regime.

      Previous work on prediction of long term creep rupture life of 2.25Cr-1Mo showed

that a constitutive creep equation of steady-state stage could predict long-term creep

curves [13]:

ε=ε0+Α{1−exp(-αt)}+B{exp(αt)-1}                     (Eq. 1.2)

where ε0, A, B, α are parameters determined by curve fitting to a measured creep curve. It

is almost the same as the θ-parameter method discussed in the previous paragraph. This

equation can represent creep curves up to the tertiary creep stage. The parameters are

formulated as simple functions of stress and temperature, and they can be extrapolated to

long-term creep properties with a lower stress and a lower temperature [13].  Maruyama

et al. summarized that rupture life was linearly related to the following rupture parameter

P derived from the creep equation [14, 15]:

                          P=(1/α) ln{(εr-ε0-A)/B}                                        (Eq. 1.3)

where εr is the strain to rupture. The long-term creep rupture life could be predicted with

the aid of the parameter P. And the prediction of creep curves and rupture life were

confirmed by long-term creep tests [13].

    However, the parametric models are not sufficiently general to deal with large numbers

of variables although they have been applied widely. An artificial technique, the neural

network method, has shown superior ability in extrapolation of long-term creep

properties. And it is the most general method for empirical representation of creep data.
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Chapter 2

Neural Network Model

2.1 Neural Networks

    A neural network is a general statistical method of regression analysis, in which a very

flexible non-linear function can be fitted to the experimental data. And a neural network

model can be used to perform empirical regression [16]. The details of neural networks

have been extensively reviewed in many references [17, 18]. The artificial neural network

can overcome some difficulties associated with general linear regression in which one

must choose an exact relationship between the parameters before the analysis started. It

can therefore arrive at the mathematical model without prior assumptions about the form

of the relationships [19].

    Generally speaking, a neural network model is built by adjusting a set of fitting

parameters known as weights, and the weights make up a model, which represents a

mapping from the input values to the output values [20]. The weights are calculated by

passing examples of input-output pairs through the model in order to minimise a carefully

constructed error function [21]. A potential difficulty with using the non-linear regression

methods is the possibility of over-fitting data. Using Bayesian methods to control model

complexity can solve the over-fitting problem [16]. However, the weights may not

always be easy to interpret. For instance, there may exist more than just pair-wise

interactions, in which case the problem becomes more difficult to visualize from an

examination of the weights [12]. A better method is to actually use the network to make

predictions and to see how these depend on various combinations of inputs [22].
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    The flexibility of the non-linear function is related to the number of hidden nodes i.

The final output y (dependent variable) is defined as below [22]:

                            y= )2()2( θ+∑ i
i

i hw                                               (Eq. 2.1)

 where

                            hi=tanh 







+∑

j
ijij xw )1()1( θ                                    (Eq. 2.2)

where xj  are variables on which the output y depends, wi are weights, and θι the biases.

They are treated internally as weights associated with a constant input set to unity. A

hyperbolic tangent function is used because such a function is non-linear and flexible in

the sense that its shape is dependent on weights [16]. Combining several hyperbolic

tangents together gives greater flexibility so that the complexity of the model is related to

the number of hyperbolic tangent operators used. Given the functions and weights, the

minimum and maximum values of the input variables define the network completely

[22]. Note that the complexity of the function is related to the number of hidden units.

The availability of a sufficiently complex and flexible function means that the analysis is

not as restricted as in linear regression where the form of the equation has to be defined

explicitly before the analysis [17].

    The neural network can capture interactions between the input variables because of the

non-linear hidden units have excellent flexibility [21]. However it is also possible to

discover more complex relationships in data than the traditional linear regression method.

In this case, the over-fitting will unavoidably appear in the model, which means a neural

network model that fits the training data well may exist, but it will generalize the test data
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poorly. To solve this problem, Mackay discovered that a Bayesian regularization theory

can be used to control the complexity of the neural network model [16, 19]. And the

Bayesian neural network method, by avoiding over-fitting, can also automatically

identify which of many possibly relevant input variables are actually significant factors

for the non-linear regression [16].

    When the neural network is trained on empirical data, the parameters are adjusted so as

to produce a non-linear function that fits the data well. The outcome of training is a set of

coefficients and a specification of the functions, which include the weights relating the

input to the output [17]. The training process involves a search for the optimum non-

linear function between the inputs and the outputs, and is computer intensive. Once the

network is trained, the estimation of the outputs for any given inputs is very rapid [18].

    On the basis of the trained and tested neural network creep strain model, predictions of

creep strain   against each of the input variables such as time, temperature, and stress

could be made. And the error bars of the predictions quantify the certainty about its

predictions.

2.2  Hybrid procedure of modelling

    There are a lot of empirical equations for modelling and extrapolating creep strain. For

example, the θ-parameter method has been discussed in previous section. Neural network

model is the most general method for the empirical representation of creep properties [2].

Although empirical equations have been generally applied, a potential difficulty in

predicting creep strain and rupture life with empirical models is that they do not deal with

large number of variables and have no firm physical basis. This explains why most of the
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empirical approaches are restricted to limited ranges of compositions and types of creep

mechanisms.

    On the other hand, physical models can describe creep strain with few arbitrary

parameters (in terms of stress, temperature and time, etc.), and predictions made by

physical models can be verified or disproved. This work presented here is a hybrid

procedure in which a neural network model was created with inputs determined by the

physical formulations of the simple creep theory, thereby combining the best of both

empirical representations and physical models. It aims at predicting long-term creep

strain and its dependence on stress, temperature, etc.
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Chapter 3

Modelling of Creep Strain

3.1 Constitutive Creep equations

    Bhadeshia [12] had summarised the steady-state creep strain rate as a function of the

applied stress (σ), the absolute temperature T, and the grain size (d) :

                     
•

ε =f {σ, Τ, d}                                                                (Eq.  3.1)

or more explicitly as [23]

                       
•

ε =α1 
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where a1 is  usually an empirical constant, D is an appropriate diffusion coefficient, b is

the magnitude of the Burgers vector and G is the shear modulus. The stress-exponent n

and the grain size exponent m are dependent on the mechanism of creep. And the

diffusion coefficient D in ferrite can be expressed as below [24].

                       D=D0exp 





−

RT
Q                                                           (Eq. 3.3)

where D0 is the pre-exponential term in diffusion coefficient, Q is the activation energy

[25]; R is the real gas law constant. The equation of creep strain can therefore be

expressed as below:

                      ε=α1 
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In this physical creep strain equation, variables
T
1 , ln(T), ln 








G
σ , ln(t) are four inputs in

the neural network model, and ln(ε) is the output variable.

3.2  Physical input variables for neural networks

    A neural network within a Bayesian framework is used to estimate creep rate of

2.25Cr-1Mo steels. This technique not only reproduces correctly known influence of

creep stress, temperature, time and chemical compositions, but also grasps the

interactions between different parameters.

    3.2.1 The logarithm of the constitutive creep equation

    Since there are two exponents in the creep strain constitutive equations (Eq. 3.4), in the

database of neural network model, the output variable creep strain ε  would be replaced

by ln(ε ) in order to find out more accurate predictions on creep strain ε and its dependent

physical inputs. A function of creep strain could be expressed as below:

    ln(ε)=nln 







G
σ +ln 








k
Gb +lnD0 - RT

Q -lnT+mln 







d
b +lnt                  (Eq. 3.5)

    It would be possible to improve the prediction of the creep strain by changing the input

variables to the inverse of the absolute temperature (
T
1 ), the natural logarithm values of

creep time (lnt), the temperature (lnT) and ln 







G
σ  respectively. Changing the inputs in

terms of the natural logarithm could help a lot to get more sensible graphs of ln(ε) on its

dependent inputs. In Equation 3.5, ln 







G
σ , lnt, 

T
1 , lnT are four important variables on

which the creep strain ln(ε ) depends on.
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    3.2.2 Heat treatment conditions and compositions of 2.25Cr-1Mo steels

    Besides those four variables, heat treatment, and main chemical compositions of

several different experimental 2.25Cr-1Mo steels were also necessary input variables for

an artificial neural network model [22].

Steel                                              2.25Cr-1Mo

Normalising temperature /K             1203
         Duration / h                                 6
         Cooling rate                         water quenched
Tempering temperature / K               908
         Duration / h                                6
         Cooling rate                         air cooled
Annealing temperature / K                873
         Duration / h                                2
         Cooling rate                         air cooled
Composition
    C wt%                                           0.15
    Si                                                   0.21
    Mn                                                 0.53
    P                                                    0.012
    S                                                    0.012
   Cr                                                   2.4
   Mo                                                 1.01
   Ni                                                   0.014
   Al                                                   0.018
   B                                                    0.0003
   Co                                                  0.05
   Cu                                                  0.16
   N                                                    0.0108
   Nb                                                  0.005
   V                                                    0.01
   W                                                   0.01
   Re                                                  0.0003
   Ta                                                  0.0003
Table 1. Heat treatment and chemical composition of 2.25Cr-1Mo steel [22].
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 3.2.3 Detailed chemical analysis of 7 different steels of 2.25Cr-1Mo (wt %)

    Data of chemical compositions were from NRIM datasheet [26] and published

literatures. Information on compositions of each steel varied because it was collected

from various sources. And the steel reference codes from literatures [27] are W1413,

W1414, W1417, W1420, W1473 and W1486 respectively. The NRIM reference code of

normalized and tempered 2.25Cr-1Mo steel plates was MaC.

Composition (wt%)Steel

Code C Si Mn S P Ni Cr Mo Al

W1413

W1414

W1417

W1420

W1473

W1486

MaC

0.08

0.08

0.08

0.08

0.09

0.07

0.12

0.17

0.16

0.16

0.15

0.16

0.17

0.29

0.78

0.79

0.82

0.79

0.88

0.89

0.48

0.009

0.009

0.009

0.008

0.011

0.011

0.007

0.021

0.021

0.018

0.009

0.015

0.015

0.015

0.18

0.17

0.17

0.17

0.17

0.17

0.05

2.91

2.85

2.91

2.89

2.96

3.02

2.20

0.99

0.98

0.98

0.99

0.97

0.98

0.99

0.011

0.011

0.012

0.012

0.001

0.002

0.017

Table 2. Detailed chemical analysis of 7 different steel of 2.25Cr-1Mo (wt %) [26].

    The chemical composition data for some of the steels were incomplete, especially with

respect to some of the trace impurity elements (such as Sn, Ti, Co, As, Nb, Zr, B etc.). It

would probably mislead the neural network analysis by assuming the missing impurity

elements were at zero concentration. Therefore, these impurity elements were assumed to

have values given by the mean concentration in each case. By contrast, for the major
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chemical composition elements (C, Si, Mn, S, P, Ni, Cr, Mo, Al), compositions were set

to the exact data listed in Table 2 for various steels.

3.3 Extrapolation of shear modulus

    The value of the shear modulus for pure iron is G=8.065×1010Ν/m2 [28, 29]. Early

experimental works of Speich, et al. [30] had summarized that both the Young 's modulus

(E) and shear modulus (G) of isotropic Fe and binary Fe-C, Fe-Co, Fe-Cr, Fe-Ir, Fe-Ni,

Fe-Pt, Fe-Re, Fe-Rh, and Fe-Ru alloys had been determined as functions of composition

and temperature (77 to 473 K) by a pulse-echo technique (100 kHz elastic waves). To

prepare the input variables datasheet for the neural network model, the shear modulus G

should be extrapolated as a function of temperature. The temperature dependence of

shear modulus G for iron and a number of the binary alloys were given in Figure 3.1 [30].

The shear modulus G decreases in a non-linear manner between 77 and 473 K. At this

stage, the influence of the chemical compositions to the shear modulus may be neglected,

and a simple neural network could extrapolate the shear modulus G=f (T) as a function of

temperature ranging from 477 to 1000 K.
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Fig 3.1 The temperature dependence of shear modulus G for iron and a number of the

binary alloys [30].

    The data of shear modulus and temperature were collected by digitizing the plot of

shear modulus as it varied with the temperature for the pure iron (Figure 3.1) with the

help of DATA Thief software. As the data were based on extrapolation from a larger

number of alloys, all of which were substantially isotropic, they were believed to

represent more truly polycrystalline isotropic iron. And the database of neural network

model was prepared in which the temperature T was the input variable and the shear

modulus G was the output. Since there were only one input variable and one output, a

simple neural network model was trained and tested, and an equation of shear modulus

had been extrapolated:

                   G=-1.08×10-3 ×T+ 8.87                                                   (Eq. 3.6)

where T is the temperature (K) and the unit of shear modulus G is (×1010 N/m2)
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3.4 Building a database

    In order to build a neural network model, the first step was to prepare a database,

which was compiled for the creep data of various kinds of 2.25Cr-1Mo steels. When

training a model, the selection of input variables is very important as well as the specific

combination of these variables. In order to predict the non-linear relationship between the

strain ε and dependence, variables
T
1 , ln(T), ln(

G
σ ), ln(t) would be selected as the inputs

instead of the test conditions themselves (stress σ and temperature T, creep time t).

    There were 14 input variables in the whole database including the chemical

compositions of the test steels and the heat treatment conditions. The conditions of heat

treatment for the various 2.25Cr-1Mo steels are different, which is obviously shown in

Table 3 [26, 27].

Reference code Heat treatment

W1413/W1414 1233K/8h           Air cool
973K/12h           Furnace cool

W1417/W1420
W1473/W1486

973K/12h           Furnace cool

MaC 1203K/1h          Air cool
1013K/2h          Air cool
  973K/4h          Furnace cool

Table 3. Different heat treatment conditions of various 2.25Cr-1Mo steels [26, 27].

    In the preparation of the database for the neural network model, the raw information of

heat treatment conditions had to be converted into a form suitable for the neural network

analysis. Three heat treatment (each characterised by a temperature, duration, and cooling

rate from the treatment temperature) would be differentiated with three simple numbers
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1, 2, 3, which was shown in Table 4. The output variable was ln(ε)  and the minimum and

maximum values were given in Table 4.

Input variables Minimum Maximum Mean Std deviation

1/T (K-1)

ln(T) (K-1)

ln(σ/G)

ln(t) (h)

Heat treatment

C wt%

Si

Mn

S

P

Ni

Cr

Mo

Al

ln(ε)

0.0012

6.517

-7.8859

0.6931

1.0000

0.07

0.15

0.48

0.007

0.009

0.05

2.20

0.97

0.001

-7.6009

0.0015

6.7130

-5.4919

11.3908

3.0000

0.12

0.29

0.89

0.01

0.02

0.18

3.02

0.99

0.017

-2.9957

0.0013

6.683

-6.7513

6.6509

2.02115

0.0963

0.2134

0.6849

0.0085

0.0157

0.1228

2.6319

0.9854

0.0117

-5.6123

0.0001

0.0469

0.7483

2.31

0.74

0.02

0.635

0.1727

0.0015

0.0034

0.0602

0.3588

0.0069

0.0057

1.4157

           Table 4. The variables involved in the neural network analysis

    It is impracticable to provide comprehensive creep data in the database, because some

creep deformation has to be predicted for very long times (greater than 200,000h in some

cases); and at the same time, creep strain data are generally kept secret for commercial

reasons. Therefore, it was decided to focus on 2.25Cr-1Mo steel, which is a very well

established alloy, and for which there are a few creep data available in the literature.
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3.5 Creep strain model with physical inputs

    Data from published literature were collected in a database, and all the data of input

variables were randomized and split into a training set and a testing set [20]. All the 14

input variables and the output variable were first normalized within the range

5.0± according to:

                             5.0
minmax

min −
−

−
=

xx
xxxN                                       (Eq. 3.7)

where x  is the original value from the database, maxx  and minx are the maximum and

minimum of each variable in the original data, and Nx is the normalized value [22]. The

step of normalization variables was not significant for running the neural network model

but it allows a convenient way to compare the results of the output [22]. The minimum

and maximum of each variable and the target were searched, and the information was

stored in the data file of MINMAX.

    3.5.1 σv, LPE, TE plots of creep strain model

    About 86 sub-models have been trained successfully and 20 sub-models have been

tested to build a committee. These sub-models were different from one another in the

initial number of hidden units and starting weight values. For several runs of the neural

network model, Figure 3.2 (a) showed the model perceived noise σv as a function of the

number of hidden units in the creep strain model. As expected, σv decreased as the fitting

function became more flexible with the large number of hidden units. On the other hand,

Figure 3.2 (b) showed that the test error at first decreased and then nearly levelled out,
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with minima appearing between 18 and 20 hidden units. The log predictive error (LPE)

was used to evaluate the performances of different models [31].

                                     (a)                                                               (b)

                                         (c)

Figure 3.2: The perceived level of noise σv (a), the test error (b), the log predictive error

(c) of models with increasing numbers of hidden units.
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    Figure 3.3 compares the predicted values with the actual values for the best model,

consisting of 20 hidden units, using the split database. The comparison of training

database (seen data) with the model showed good agreement as should be expected

Figure 3.3 (a) The analysis of testing database (unseen data) by the physical strain model

also showed agreement (b).

Figure 3.3 Comparison of predicted versus actual creep strains for the training set (a) and

testing set (b), using the best model.

     3.5.2 Committee of the trained models

    The purpose and methods for building a committee model has been discussed in a lot

of the reference [17, 18, 32]. In real data analysis situation, no single model will

completely capture the true relationship between the inputs and outputs. Using a

committee of sub-models rather than only one sub-model can improve predictions of the

creep strain model in regions where there is great uncertainty. Committees of sub-models

were formed with the best prediction models, and the best models were ranked using the
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values of the test errors. To do this, a given number of sub-models was considered and

predicted on the second half of the database (the unseen data) to calculate the combined

test error.

Figure 3.4 The combined test error for the optimum model committee suggested by

neural network.

    After the sub-models had been trained, a plot of the test error of the committee versus

the number of models in the committee gives a minimum which defines the optimum size

of the committee, as shown in Figure 3.4. The test error associated with the best single

model is clearly greater than that of any of the committees. It was determined in the

present case that a committee of only one model would be the best choice, being the

committee of the lowest test error. The committee was then retrained on the entire data

set without changing the complexity of any of its members. The tested sub-models were

ranked with the decreasing orders of Log Predictive Error (LPE) values. In this creep

strain model, the optimum committee was suggested to have only one member with the
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largest value of LPE (LPE=119.44 for the sub-model “_rs5”), and the minimum test error

would be equal to 0.1359.

     3.5.3 Perceived significance bar chart

    The perceived significance parameter σw indicated the importance of an input variable

in terms of its variation having an effect on the output of the model. Figure 3.3 compared

values of σw for a selection of input variables for the optimum model committee. A high

value of σw for a specific input variable can be caused by the corresponding variable

inducing a large variation in the output.
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Figure 3.4 The perceived significances parameter σw for input variables of the optimum

model committee.
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    As the bar chart of perceived significance value σw shows (Figure 3.4), the five input

variables with largest σw are the most important inputs for the output of the model. They

were 
T
1 , ln(T), ln(

G
σ ), ln(t) and the composition of carbon  C wt% in the 2.25Cr-1Mo

steels respectively. The other nine input variables with very small values of perceived

significance σw, including the heat treatment conditions for the steel, did not have strong

influence on the output ln(ε), and predictions of these variables and detailed analysis of

their influence would be neglected.

3.6   Completely empirical neural network model

    There was another way to build a completely empirical neural network model, in

which case all the inputs were directly from the published literature on creep strain.

Input variables Minimum Maximum Mean Std deviation

σ (MPa)

T (K)

t (h)

C wt%

Si

Mn

S

P

Ni

Cr

Mo

Al

ε (%)

20.0

673.000

2.0000

0.0700

0.15

0.48

0.007

0.009

0.05

2.20

0.97

0.001

0.0500

333.0

823.0000

88500.00

0.1200

0.29

0.89

0.01

0.02

0.18

3.02

0.99

0.017

5.0000

116.50

799.6025

5036.394

0.0963

0.2134

0.6849

0.0085

0.0157

0.1228

2.6319

0.9854

0.0117

0.9609

87.2830

36.3317

11602.27

0.0200

0.635

0.1727

0.0015

0.0034

0.0602

0.3588

0.0069

0.0057

1.4397

Table 5. Empirical input variables of the neural network model [26, 27].
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    A database was prepared for training of the empirical neural networks. All the data of

inputs and output were randomized and split into a training set and a testing set. The

procedure of training and testing the empirical model was the same as the physical creep

strain model detailed discussed in previous sections.  The normalized values of 12 inputs

and the output  were shown in Table 5.

                                  (a)                                                          (b)

(c)
Figure 3.4 The perceived level of noise σv (a), the test error (b) and the log predictive
error (c) of empirical model with increasing numbers of hidden units.
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    As it showed in Figure 3.4, the perceived level of noise σv did not decreased as the

number of hidden units increased. The log predictive error (LPE) nearly levelled out as

the fitting function became more flexible with large number of hidden units.

                                (a)                                                                  (b)
Figure 4.4 Comparison of predicted versus actual creep strains for the training set (a) and
testing set (b), using the best model.

    Figure 4.4 shows the comparison of predicted versus actual creep strains for the

training set (a) and testing set (b), using the best model. The predictions on the testing

database (unseen data) by the neural network model show very poor agreement.

Additional physical inputs were required in order to get more accurate non-linear

relationship between the empirical inputs and the creep strain. Comparing the training

data and testing data of the completely empirical model with the ones of the model using

physical inputs, it is clear that the model with physical inputs (which has been discussed

in detail in section 3.5) has better agreement with experimental data. And predictions

with the physical strain model should be reliable.
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Chapter 4

Results and Discussion

4.1 Prediction

    A great number of predictions were made under different creep conditions (creep

stress, time and temperature etc.) and for various steels. Since the two input variables 
T
1

and ln(T) were both dependent on the absolute temperature T, in the case of prediction,

the variable
T
1  was selected as the only one input variable varying when predicting the

dependence of the output ln(ε) on the input, and the other variable ln(T) would vary

automatically as the temperature T changed from its minimum to the maximum with the

same step of the variable.

4. 2 Plots and analysis of the predictions

    4.2.1 Predictions of ln(ε) versus 
T
1

    When predicting the dependence of ln(ε) on the first input variable 
T
1 , the variable

ln(T) would vary automatically as the temperature T varies. And the other twelve input

variables were set as the constant values associated with one of the specific 2.25Cr-1Mo

steels, e.g. the chemical compositions and heat treatment methods were set to the steel of

W1413. A large number of predictions were made, and some plots are shown below for

detailed study.
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    When the temperature ranging from 700K to 900K in the case of prediction, the

variable shear modulus G=-1.08×10-3×T+8.87 could be regarded as a constant since the

difference between Gmin and Gmax was quite small (Gmin= 7.9×1010 N/m2, when T= 900K;

and Gmax=8.114×1010 N/m2, when T= 700K). In this prediction, when the only varying

variable 
T
1  ranging from 0.0011 to 0.00125 (K-1), the shear modulus could be regarded

as a constant (G=8.006×1010 N/m2 for T=800K), and the rest of the variables were set as

constant values such as ln(
G
σ )=-7.3785 for stress σ=50MPa. And the chemical

compositions were set as one of the particular steels.

    As the plots of predictions had shown in Figure 4.1, a definite trend was evident that

the output ln(ε) decreased as the input variable 
T
1  varied. In other words, creep strain ε

was getting lower when the temperature T of the test steel varied from 909K to 800K at

different stresses and for different creep time. It has long been known, the creep strain

would increase as the temperature elevates, which means the predictions were reasonable

theoretically.

    When the predictions were made under the same stress σ=50MPa, the predicted value

of the output variable ln(ε ) augmented when the creep time t varied from 100h to 1000h,

and 10000h, which could be seen from Figure 4.1 (a), (c) and (e). And the predictions at

σ=70MPa had the same characteristics (shown in Figure 4.1 (b), (d), (f)). When the

predictions were made for the same creep time (t=100h) but at different stresses

(σ1=50MPa, σ2=70MPa), as shown in Figure 4.1 (a) and (b), at one particular
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temperature, the value of ln(ε ) with larger stress σ2=70MPa (Figure 4.1 (b)) was greater

than the one with smaller stress σ1=50MPa (Figure 4.1 (a))..

                                   (a)                                                                    (b)

                                  (c)                                                                   (d)
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(e) (f)

Figure 4.1 Prediction of ln(ε) vs. 1/T for W1413 at different stress σ for different creep

time t.

    There were a lot of data on the creep strains at different stresses when T=823K, but the

database lacked enough experimental data on strain under other temperatures. That was

why the predictions in this area were more reasonable than others. The elastic strain at the

yield strength is approximately ε=0.001 for a steel, which indicated the regions below

ln(0.001)= –6.9 did not have physical sense because the strain values were very small

(Figure 4.1). The creep curve of strain against time would stop at its rupture point

(detailed analysis on strain against time would be shown next step).

    The error bars of the plots in the predictions represented the uncertainty in fitting the

non-linear function to the training data. And the error bars of the predicted values of ln(ε)

were getting enormous when the input 
T
1  ranging from 0.0011 to 0.00116 (at the same
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time, the temperature T elevated from 862K to 909K). It is clear that more additional

experimental data under different temperatures should be included in the database of the

neural network model in order to get more reliable predictions on creep strain.

    The inverse of temperature made the plots of ln(ε) versus 
T
1  have a very clear picture

of varying trend, but they were not easy to understand. Plots of ln(ε) against temperature

shown in Figure 4.2 (a), and strain against temperature shown in Figure 4.2 (b) would

express their relationship more clearly. The exact values of strain and temperature could

be calculated with the data from the data file of previous predictions on ln(ε) versus 
T
1 .
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Figure 4.2 (a) Prediction of ln(ε) versus temperature of W1413 at σ=70MPa for different

creep time.
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Figure 4.2 (b) Prediction of strain versus temperature of W1413 at σ=70MPa for different

creep times.

    As expected, Figure 4.2 (b) showed the creep strain increased its values as the

temperature elevated from 800K to 900K. At the particular temperature, the longer the

creep time lasted, the higher the strain value (e.g. at the particular temperature T=909K,

the strain was ε=5.61 for the yellow curve when t=10000h). However, the steel would

have ruptured before its strain value could reach that high value. In the original database

of the neural network model, temperature was ranging from 673 to 833K.

    A clear picture on strain against temperature would be available if the prediction was

made when temperature ranging from 800 to 840K. As Figure 4.3 shows, the prediction

was made at σ=70MPa and t=1000h for steel W1413. The error bounds shown in Figure

4.3 indicate the uncertainty of the prediction on strain against temperature. The error

bounds expanded as the temperature approached T= 850K, and the uncertainty of
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prediction also increased. The error bounds were quite small when the prediction

temperature ranging from 800K to 830K because there were a lot of creep data of steel at

T=823K in the original database, which made the prediction of this region more accurate.
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Figure 4.3 Prediction of strain with error bounds against temperature at σ=70MPa and

t=1000h for W1413.

4.2.2 Predictions of ln(ε) versus ln(
G
σ )

    In this case of prediction, the target was the natural logarithm of creep strain ln(ε), and

the varying input was ln(
G
σ ). Figure 4.4 illustrated the predicted effect of the input

variable ln(
G
σ ) on the creep strain ln(ε) for the composition of W1420 steel. The shear

modulus was also set as a constant G=8.006×1010 N/m2 at the temperature T=800K. The
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stress was allowed to vary from 70MPa to 200MPa, and the ln(
G
σ ) ranged from –7 to –6

in the prediction.

                             (a)                                                                   (b)

                                        (c)

Fig 4.4 Prediction of ln(ε) against ln(
G
σ ) for W1420 for different creep time t.
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    It was obvious to see that the prediction of ln(ε) increased as the input ln(
G
σ ) enlarging

from the minimum to its maximum (in this case, the stress increased from 70MPa to

200MPa). Comparing the Figure 4.4 (a), (b) with (c), under the same stress (when the

values of the input ln(
G
σ ) were same), the prediction of the target ln(ε) would increase

when the creep time was getting longer from 100h to 10000h.

4.2.3 Predictions of ln(ε) versus ln(t)

    According to the perceived significances value σw, the input variable of ln(t) is very

important for the prediction of ln(ε). Several predictions were made using data of various

steels and under different stress and temperature conditions. Two of the predictions

samples were focused on for detailed study (Figure 4.5).

(a)                                                              (b)

Figure 4.5 Predictions of ln(ε) against ln(t) for various steels at different creep conditions.
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    A definite trend was evident that the prediction of ln(ε) increased as the input ln(t)

extended until the creep rupture point. Some real experimental creep test data were used

to test whether the prediction of the model was reasonable or not. Creep data were

collected from reference and published literatures, and the creep strain should be less than

0.02 (ε<0.02) after 30 years testing (t=262800h).

    Several predictions were made with the same creep conditions (creep stress and

temperature) as the real experiments. For instance, the steel W1473 was selected to make

a creep test when σ=100MPa and T=838K. In the case of the prediction, the conditions of

composition were set to W1473. The temperature and stress were the same as the

experiment: T=838K, σ=100MPa. And the maximum value of the input would be

ln(t)=ln(262800)=12.48.

                           (a)                                                            (b)
Figure 4.6 Prediction of ln(ε) against ln(t). (a) for W1473 with the same creep conditions
as the experiments. (b) for W1413 with different stress and temperature.

    As expected, the output ln(ε) increased as the creep time extended. A detailed analysis

on prediction data file stated that the maximum of target was ln(ε)=-1.533 when the input
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ln(t)=12.8. In this case, the creep strain would be ε=0.21 when creep time t=362217h

under the conditions of predictions.

    However in the real experiment of creep test, the creep curve of strain against time

would stop at its rupture point. It is believed that the steel will fail under the conditions of

T=838K and σ=100MPa before the creep strain gets its ideal maximum value ε=0.21.

Actually it ruptured when the strain was ε=0.003 and the creep rupture time was t=1995h,

which could be calculated and predicted with a creep rupture model. More details of the

methods and analysis on the prediction of creep rupture are given as below.

4.2.4 Predictions of ln(ε) versus C wt%

    From the chart of model perceived significance for each input variables (Figure 3.3),

the composition of carbon is also an important input for the prediction of the creep strain

model. Predictions of ln(ε) dependence on the weight percent of carbon in the steel were

made for different kind of 2.25Cr-1Mo. Two samples of prediction for steel of W1413

were shown as below (Figure 4.7). In this case, the variable shear modulus was regarded

as a constant G=8.006×1010 N/m2 when the temperature was set to its average value

T=800K. As expected, when creep time changed from 100h to 1000h, under the same

stress σ=100MPa, the prediction of ln(ε) would increased from ln(ε)=-3.5 to ln(ε)=-2

when the element of carbon was equal to 0.07 wt% (as shown in Figure 4.7 (a), (b)). And

the creep strain decreased as the carbon weight percent (C wt%) increased.
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                            (a)                                                                     (b)

Figure 4.7 Prediction of ln(ε) against the weight percent of carbon (C wt%) in the steel

for W1420 at the same stresses for different creep time t.

    The above phenomenon can be explained by micro-structural theory. It is believed

that the increasing of the carbon (C wt%) would lead to the formation of precipitate in

the steel, which results in the strength value of the steels getting larger. As a matter of

fact, the creep strain will decrease as the weight percent of carbon increases in the

steels.

4.3 Prediction of strain versus time

     4.3.1 The prediction of creep rupture life of 2.25Cr-1Mo

    The rupture life predictor could predict the rupture life of the steel under the

particular creep conditions. For example, the predictions of rupture life of 2.25Cr-1Mo

for different temperature were shown in Figure 4.8. Rupture was predicted to occur after

1995h for a stress of 100MPa, e.g. rupture life of 2.25Cr-1Mo would be t=103.3=1995h

at the stress σ=100MPa in Figure 4.8 (a). In this prediction, the creep strain was
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ε=0.003. The creep strain of 2.25Cr-1Mo steel should be less than 0.02 (ε<0.02) after it

had been operated for 30 years (t=262800h) at σ=100MPa and T=838K. In the present

of prediction, the creep strain ε=0.003 is smaller than 0.02, which means the predictions

were reasonable.

                                 (a)                                                    (b)

Figure 4.8 Prediction of the rupture life of 2.25Cr-1Mo under different temperature.

    Another sample of creep rupture life was made as shown in Figure 4.8 (b). The

rupture life was t> 15848h as calculated when creep stress σ=70MPa and the

temperature T=823K in the prediction model. The real experimental data could be

collected from the reference [27], in which the creep rupture life was t=18384h when

σ=70MPa and T=823K. It would prove the prediction model of rupture life was reliable.

4.3.2 The prediction of W1420 steel

    A curve of creep strain against creep time could be obtained with the data file of the

prediction of ln(ε) against ln(t) ( as Figure 4.6 (b) shown). The rupture time could be

calculated with the rupture prediction model, the steel W1420 would rupture when
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t=15848h at the creep tested under the conditions of σ=70MPa and T=823K. And the

creep strain would be ε=0.0316 when the rupture occurred according to the present

prediction (Figure 4.9).

Figure 4.9 Prediction of creep strain against the creep time for W1420 at T=823K,
σ=70MPa. It would rupture at the point when t=15848h

4.4 Three dimensional plot of prediction

    The neural network strain model could make a non-linear relationship between the

output and inputs. For example, a lot of predictions of ln(ε) against 
T
1  at different

stresses were made. In this case of prediction, the compositions were set as a particular

steel (e.g. W1414), and the creep time was t=100h. When the temperature ranging from

750K to 840K, twenty predictions were made in which the stress was ranging from

σ1=30MP to σ20=220MPa (the varying step of the stress is σ=10MPa). Data of
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predicted ln(ε) and two variables 
T
1 and stress σ  were collected to make a three

dimensional graph of ln(ε) versus T, σ ( as shown in Figure 4.10). It is obvious that the

predicted ln(ε) is a non-linear function of temperature and stress. The predicted values

of ln(ε) increased as the temperature elevated and the stress increased.
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Figure 4.10 Three-dimensional plot of ln(ε) against stress and temperature for W1414 at

t=100h.

    When the temperature was low and the stress was small, i.e. at T=770K and σ=40MPa,

the predicted value ln(ε)= -20.55, therefore the strain ε=1.2×10-9, which is very small.

However, as the temperature and the stress increased, i.e. when T=826K and σ=90MPa,

the predicted ln(ε)= -5.54 and ε=0.39%. The experimental creep data at the similar

conditions could be found in literature [41], the strain ε=0.38% when T=826K, t=100h

and σ=90MPa.
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Chapter 5

Summary and Future Work

    Considerable work has been published on modelling the creep rupture rather than creep

strain, because the creep rupture stress and rupture life are more useful than creep strain

in designing alloy components.

    The aim of the present work was the study of the creep strain and the constitutive

equations. The creep strain and its dependence for a selected steel 2.25Cr-1Mo have been

analysed using a neural networks method within a Bayesian framework. The model was

based on a large data set accumulated from the literature. The data were obtained from a

variety of sources and cover a wide range of compositions and heat treatments of 2. 25Cr-

1Mo steels.

    A neural network model of creep strain based on a sample constitutive equation was

created to study the influence of stress, temperature, time, chemical compositions and

heat treatment conditions on creep strain of 2.25Cr-1Mo steels. A lot of predictions of

creep strain on various inputs at different creep conditions were made and the model

successfully predicted the strain varying with time in a particular range of input variables.

    However, the error bars of the prediction was extending when extrapolating the

prediction on a wide range of inputs. The reason why the predictions were reasonable

only in a narrow range was due to the weakness of the neural network models. The neural

network model needs a great number of data on a wide range of inputs in order to create

more accurate predictions. However, creep strain data are generally kept secretly for

commercial reasons and it is quite difficult to find general data for creep strain. In the

case of creep strain model, there were only seven types of 2.25Cr-1Mo steels available in
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Table 2; and the temperature ranged from 666K to 823K, which was a quite limited range

for the empirical neural network models.

    Generally, the prediction of strain against the creep time was on the secondary stage of

creep curve (also known as the steady-state stage). The minimum of creep strain would

be the value of elastic strain when the steel 2.25Cr-1Mo was tested at the condition of

T=838K and σ=100Mpa. When the power plant components made of 2.25Cr-1Mo steel

worked for 30 years, the strain value would be no greater than 2% (ε<0.02).

    The dependence of strain on stress, time, and temperature was discussed for steady

state of creep deformation under uni-axial loading at different constant temperatures.

Only the primary and secondary stages of creep were studied in this dissertation because

the tertiary stage is closely related to fracture. The creep rupture points of 2.25Cr-1Mo

steel at specific stress and temperature could be predicted with the creep rupture model,

and the predictions of rupture life fitted the experimental data quite well.

    Although the aim of the research project behind this thesis has been fulfilled with the

work presented, there are some aspects that could lead to improvements in the models

presented. It is clear from the previous analysis on the predictions that much more

additional experimental creep data of various temperatures and for different steels were

required in the vast database in order to get a more reliable and accurate prediction of

neural network in which physical models were inputs. Once the neural network with

physical models as inputs was built on the basis of a database containing a large number

of creep data, more reasonable and accurate predictions could give a clear picture of

creep strain and its dependence.
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Materials Algorithms Project

Program Library

Program MAP_STEEL_FERRITIC_CREEP_RUPTURE

1. Provenance of code.

2. Purpose of code.

3. Specification.

4. Description of program's operation.

5. References.

6. Parameter descriptions.

7. Error indicators.

8. Accuracy estimate.

9. Any additional information.

10. Example of code

11. Auxiliary routines required.

12. Keywords.

13. Download source code.

14. Links.

Provenance of Source Code
Murugananth M
Phase Transformations Group,
Department of Materials Science and Metallurgy,
University of Cambridge,
Cambridge CB2 3QZ, U.K.
The neural network program was produced by:
David MacKay,
Cavendish Laboratory,
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University of Cambridge,
Madingley Road,
Cambridge, CB3 0HE, U.K.
E-mail: Murugananth

Added to MAP: May 2002.
Top | Next

Purpose
To predict the Creep Rupture Strength of plates and welds.
Top | Next | Prev

Specification
Language: C,FORTRAN, Shell script
Product form: Source code / executables
Platform : Solaris, Linux
Complete program.
Top | Next | Prev

Description
A program for the estimation of the creep life of ferritic steels as a function of elemental
composition, test conditions and solution treatment.

Description of the files and their usage in the present module :
 

Readme
Tells the name of the input variables and the order in which these are
to be presented in a file named anndata_example before using the
model for predictions.

anndata_example

A file having the base composition of the alloy that is to be analysed.
"example" is the identification of the alloy here. And the file name
from which test.dat is generated. One can resonably modify this file
to step as many variables as there are. The format of this file is
[base composition] [minimum] [maximum] [step] [1(=step) or 0 (=use value from
base comp)] [variable name]

RESULT_example Directory where the predicted results of an alloy with identification
name "example" can be found.

run

This file has to be used to predict. Either execute it with the command
"csh run" or "./run". This would take you through all the processes
and at the end will let you know the place where your results can be
located.
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Directory "bin"
MINMAX Contains the minimum and maximum ranges of each input variable.

test.dat Contains the input variables which will be used by accessory
programs to make predictions.

data_no.c A C-file to get the number of data in test.dat file via keyboard input.
predict A file containing the shell commands.

generate44

This is the executable file for the neural network program. It reads the
normalised input data file, norm_test.in, and uses the weight files in
subdirectory c, to find a value for ferrite number.The results are
written to the temporary output file _out. 

spec.c Specification file to be read by generate44.
_ot, _out, _res,
_sen These files are created by generate44 and can be deleted. 

Directory sbin
Agen_data_tmp To step the variables which are denoted in the file "anndata_example"
Aget_result To split the results if many variables are varied simultaneously
log To log or anitlog the results from predictions.

c Directory where weight files for use by the generate44 pertaining to
each model in the committee are stored.

d Directory where the normalised values of inputs and output are stored
outprdt Directory where the output from generate44 are written to.
DIRECTORY s 

committee.dat Consists of values representing the number of models in committee
and number of variables used.

normtest.for 
Program to normalise the input data read from test.dat. Also produces
the normalised input file norm_test.in. It makes use of information
read in from no_of_rows.dat and committee.dat.

gencom.for 

This program uses the information in committee.dat and combines the
predictions from the individual models, in subdirectory outprdt, to
obtain an averaged value (committee prediction). The output (in
normalised form) is written to com.dat. 

treatout.for 
Program to un-normalise the committee results in com.dat and write
the output predictions to unnorm_com. This file is then renamed as
result.
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Instructions to run the module
• Download the module according to your requirement (Unix or Linux platform)

• gunzip the module using the command "gunzip creep_model_Linux.tar.gz "

• untar the file using "tar -xvf creep_model_Linux.tar"

• Change directory to either creep_model_linux (or) creep_model_unix

• Rename or copy anndata_example file and modify it according to your
requirements (follow instructions in the above table to modify).

• To execute type ./run or csh run at the command prompt

• Follow the instructions given then

Top | Next | Prev
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Parameters
Input parameters

• log(Rupture time / h)

• Temperature / K

• Carbon / wt%

• Silicon / wt%

• Manganese / wt%

• Phosphorus / wt%

• Sulphur / wt%
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• Chromium / wt%

• Molybdenum / wt%

• Tungsten / wt%

• Nickel / wt%

• Copper / wt%

• Vanadium / wt%

• Niobium / wt%

• Nitrogen / wt%

• Alumimium / wt%

• Boron / wt%

• Cobalt / wt%

• Tantalum / wt%

• Oxygen / wt%

• Rhenium / wt%

• Normalising Temperature / K

• Normalising Time / h

• Cooling rate of normalise in air or furnace (0 or 1)

• Cooling rate of Normalise in air(0 or 1)

• Cooling rate of Normalise for oil quench  (0 or 1)

• Cooling rate of Normalise for water quench (0 or 1)

• Tempering Temperature / K

• Tempering time / h

• Cooling rate of Temper in furnace (0 or 1)

• cooling rate of Temper in air (0 or 1)

• Cooling rate of Temper for oil quench (0 or 1)

• Cooling rate of Temper for water quench (0 or 1)

• Annealing temperature / K
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• Annealing Time / h

• Cooling rate of anneal in furnace (0 or 1)

• Cooling rate of anneal in air (0 or 1)
 

Output parameters

Directory having the result files with format predictions,predictions-error,
predictions+error
Top | Next | Prev

Error Indicators
None.
Top | Next | Prev

Accuracy
No information supplied.
Top | Next | Prev

Further Comments
None.
Top | Next | Prev

Example
1. Program text

Complete program.
2. Program data

See file anndata_example

3. Program results

Refer example file in example directory  : RESULT_example
Top | Next | Prev

Auxiliary Routines
None 
Top | Next | Prev
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Keywords
Creep Rupture Strength, Power plant steels, Chromium steels
Top | Next | Prev

Download source code
• Linux platform (version 1.1)

• Unix platform (Sun OS)(version 1.1)

(Download the files according to the platform Unix or Linux and then gunzip
<filename> followed by tar -xvf <filename>)

Top | Prev

MAP originated from a joint project of the National Physical Laboratory and the
University of Cambridge.

 
  
 

Top | Program Index | MAP Homepage
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