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Abstract—Transformations in steels rarely occur in isolation. This paper describes a modification of

the Avrami overall transformation kinetics theory as adapted by Cahn,

nucleated phases.

for grain boundary

The modification deals with the simultaneous occurrence of two or more

transformations. The method is demonstrated to faithfully reproduce published data on the volume
fractions of allotriomorphic, Widmanstatten ferrite and pearlite as a function of chemical composition,

austenite grain size and heat treatment (isothermal or continuous cooling transformation). © 1997 Acta

Metallurgica Inc.

INTRODUCTION

Almost all commercial steels are produced using
heat-treatments in which the austenite cools
continuously through the transformation tempera-
ture range. This usually leads to a final microstruc-
ture which is a mixture of many transformation
products, because the high-temperature austenite
can decompose into a large variety of ferritic
transformation products, each of which can form
by a different mechanism. These reactions may
overlap and interact with each other, either by
“hard”-impingement in which adjacent particles
touch, or by ‘soft’-impingement where  their
diffusion or thermal fields overlap [1]. The inter-
actions are known to be important in determining the
final microstructure.

It follows that in order to model the develop-
ment of microstructure, it is necessary to develop a
theory capable of handling simultaneous, interact-
ing precipitation reactions. The evolution of volume
fraction during solid-state transformation is usually
described using the classical Johnson-Mehl-Avrami
theory, which has been reviewed thoroughly by
Christian [1]. The present work deals with a general
extension of this theory to multiple reactions, which
is then applied to explain published data on steels.
In particular, structural steels frequently have
a microstructure consisting of allotriomorphic
ferrite, Widmanstitten ferrite  and pearlite.
Although a great deal is known about allotriomor-
phic ferrite and pearlite, kinetic theory for Wid-
manstitten ferrite is rather  limited. ~An
understanding of Widmanstétten ferrite is import-
ant because it is a phase which greatly influences
the mechanical properties of steels. There are

many investigations which suggest that Wid-
manstitten ferrite can be detrimental to toughness
[2]. It tends to grow in packets of parallel plates
across which cracks tend to propagate without
much deviation.

Watson and McDougall [3] demonstrated that the
growth of Widmanstatten ferrite leads to a change in
the shape of the transformed region. This shape
deformation is an invariant-plane strain (IPS) with a
large shear component, which is characteristic of
displacive transformation. Carbon nevertheless has to
partition into the austenite during the growth of
Widmanstitten ferrite. The transformation is there-
fore a paraequilibrium displacive transformation with
the growth rate controlled by the diffusion of carbon
in the austenite ahead of the plate tip, with an
appropriate allowance made for the strain energy due
to the IPS shape change [4]. The nucleation
mechanism of Widmanstitten ferrite is understood to
the extent that it is possible to calculate the
transformation start temperature (Ws) and the rate as
a function of undercooling below Ws [5, 6]. It should
therefore be possible to estimate the overall
transformation kinetics as a function of the steel
composition and heat treatment.

It is emphasised that Widmanstitten ferrite
rarely occurs in isolation. It is usually preceded by
the formation of allotriomorphic ferrite at the
austenite grain surfaces and there may be other
transformations such as pearlite which compete for
untransformed austenite [7]. To deal with this
complexity, we begin with a brief introduction to
the classical Johnson—Mehl-Avrami model, in order
to set the scene for the modifications made to allow
for simultaneous reactions.
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OVERALL TRANSFORMATION KINETICS

A given precipitate particle of the phase f
effectively forms after an incubation period <.
Assuming growth at a constant rate G, the volume w,
of a spherical particle is given by

we = (41/3)G¥(t — 1) (t>1) )

with w, = 0 for (¢ < t) where ¢ is the time defined
from the instant the sample reaches the isothermal
transformation temperature.

Particles nucleated at different locations may
eventually touch; this problem of hard impingement
is neglected at first, by allowing particles to grow
through each other and by permitting nucleation to
happen even in regions which have already trans-
formed. The calculated volume of the f phase is
therefore an extended volume. The change in extended
volume due to particles nucleated in a time interval
t =1 to t =1+ dr is, therefore,

dVi=w.IV dr
V= (4nV/3) J GI(t — )’ dr 2)
=0

where I is the nucleation rate per unit volume and V'
is the total sample volume.

Only those parts of the change in extended volume
which lie in untransformed regions of the parent
phase can contribute to the change in real volume of
B. If nucleation occurs randomly in the parent
material then the probability that any change in
extended volume lies in the untransformed parent
phase is proportional to the fraction of untrans-
formed material at that instant. It follows that the
actual change in volume in the time interval 7 to

t+dtis
V,
dv, = <1 ——7”>de,
so that
14
Vs = —Vln( —7">
and

—ln(l _ 1/V£> - (473G J It—xpde. (3

0

For a constant nucleation rate, integration of
equation (3) gives the familiar Johnson-Mehl-
Avrami equation:

= -II/-/E -1— exp(—% nG’It“) (€]

where {; is the volume fraction of j.
This approach is limited to the precipitation of a
single phase; it can be applied to cases where more
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than one decomposition reaction occurs, if the
individual reactions occur over different temperature
ranges, i.e. they occur successively and largely
independently [8, 9]. This is not the case in practice.
The adaptation of the Johnson-Mehl-Avrami ap-
proach to deal with many reactions occurring
simultaneously is illustrated with a simple example
below.

SIMPLE SIMULTANEOUS REACTIONS: RANDOM
DISTRIBUTION OF NUCLEATION SITES

The principles involved are first illustrated with a
simplified example in which « and  precipitate at the
same time from the parent phase which is designated
y. Tt is assumed that the nucleation and growth rates
do not change with time and that the particles grow
isotropically.

The increase in the extended volume due to
particles nucleated in a time interval /=1t to
t =t + dt is, therefore, given by

dV: =1nGi(t — 1)LV dt
and
dVs =3inGy(t — 1)’V dr %)

where G,, Gy, I, and I; are the growth and nucleation
rates of o and B, respectively, all of which are
assumed here to be independent of time. ¥ is the total
volume of the system. For each phase, the increase in
extended volume will consist of three separate parts.
Thus, for o the parts are:

(a) o which forms in untransformed 7;
(b) o which forms in existing «;
(c) o which forms in existing .

Only o formed in untransformed y will contribute to
the real volume of «. On average, a fraction
[1 — (Va + V3)/V] of the extended volume will be in
the previously untransformed material. It follows
that the increase in real volume of o in the time
interval ¢ to ¢ + dt is given by

V., = ___I,, Vs Ve
d o (1 1% )d o
and similarly for f,

v, = (1 —E—J;—I/“)dV;.

In general, V, will be some complex function of Vj
and it is not possible to analytically integrate these
expressions to find the relationship between the real
and extended volumes, although they can, of course,
be integrated numerically. However, in certain simple
cases it is possible to relate V, to ¥ by multiplication
with a suitable constant, K, in which case V= KV,
and analytical integration becomes possible.
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The equations relating the increment in the real
volume to that of the extended volume can therefore
be written as

av, = <1 —Z“—’LvKZf)dvg

and

Vs + KV,
dv, = <1 ——E—K—V—’?>dV;. (6)

They may then be integrated to find an analytical
solution relating the extended and real volumes
analogous to that for single-phase precipitation:

o

e -1 N2
7—1+Kln[1 V(1+K)]
v —K

_ _V(1£K
V_1+K1n[1 V( K ﬂ

The total extended volume fraction is found for each
phase by integrating equation (5) with respect to 7.
This gives:

Ca = <—1_—Tl-_‘[_<><l _ exp[—% (1 + K)nGzIaﬁ]) (8)
Y-l i) o

These equations resemble the well-known Avrami
equation for single-phase precipitation with extra
factors to account for the presence of a second
precipitate phase. When the volume fraction of both
precipitating phases is very small the equations
approximate to the expressions for each phase
precipitating alone. This is because nearly all of the
extended volume then lies in previously untrans-
formed material and contributes to the real volume.
As simultaneous precipitation proceeds, the predicted
volume fraction of each phase becomes less than that
predicted if the phases were precipitating alone. This
is expected, because additional phases reduce the
fraction of the extended volume which lies in
previously untransformed material.

Since the nucleation and growth rates were
assumed to be constant, it is possible to calculate
explicitly the value of K, which is given by

K = V3|V = GD/G)-

and

0

An example calculation for the case of linear (i.e.
constant) growth is presented in Fig. 1, for the case
where the growth rate of B is set to be twice that of
o (with identical nucleation rates). The final volume
fraction of the B phase is eight times that of the «
phase because volume fraction is a function of the
growth rate cubed.
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Whereas the analytical method is more satisfying,
numerical methods are more amenable to changes in
the boundary conditions during transformation, as
described below.

COMPLEX SIMULTANEOUS REACTIONS

The analytical expressions discussed above for
simultaneous reactions rely on the assumptions of
constant nucleation and growth rates, which are not
appropriate for the present purposes. The nucleation
and growth rate of allotriomorphic ferrite, Wid-
manstitten ferrite and pearlite may change with the
progress of the transformation as the composition of
the austenite and/or the temperature changes whilst
the nucleation sites are grain surfaces.

There are two applications of the Avrami extended
space idea for grain boundary nucleated reactions,
the first applying to the gradual elimination of free
grain boundary area and the second to the gradual
elimination of volume of untransformed material
[10]. If we consider a boundary of area Op (Which is
equal to the total grain boundary area of the sample)
in a system with n precipitating phases, where O, is
the total real area intersected by the ith phase on a
plane parallel to the boundary but at a distance y
normal to that boundary at the time 7, we have for
the jth phase,

2 Ou

i=1
AO,,y=<1— o >A0ﬁy

where AO,, is the change in the real area intersected
with the plane at y by the phase j, during the small
time interval  to ¢ + At. AOj, is similarly, the change
in extended area of intersection with the same plane
at y. This may have a contribution from particles
nucleated throughout the period 1 =0 to t=m At,
where m is an integer such that m At is the current

(10)

1.00
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0

Fig. 1. Simultaneous precipitation of and «. Identical

nucleation rates but with § particles growing at twice the
rate of the a particles.
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time, so that

AOj, = Oy 3, (I Atdyuy A1)

k=0

where A;, is the rate of change of area of intersection
on plane y of a particle of the phase j which nucleated
at = k At at the current time ¢ = m At. I is the
nucleation rate per unit area of the phase j during the
time interval ¢t = k At to t = k At + Az. Note that
At and At are taken to be numerically identical and
the number of extended particles nucleated in this
time interval is therefore Ozl At. AO;, is then used
to update the total real area of intersection of the
phase j with the same plane at y at the time 7 + At
by writing

Oj‘y‘,+A, = Oj,y,; —+ AOj’y for ] =1. .. n.

To obtain a change in the extended volume of the
phase j on one side of the boundary, it is necessary
to integrate as follows:

-
dw=j do,, dy
Y

=0

where the integrand dO;, is equivalent to AO;, and
g™~ is the maximum extended size of a particle of
phase j in a direction normal to the grain boundary
plane. Thus the change in the extended volume of the
phase j on one side of the boundary in the time
interval 7 to ¢ + At may be numerically evaluated as

gmax

AV;=Ay ¥

y=0

AO;, (11)

where Ay is a small interval in y. Therefore, the
corresponding change in real volume after allowing
for impingement with particles originating from other
boundaries is

Vi
1

where Vis the real volume of the ith phase at the time
t. The instantaneous value of AV, together with
corresponding changes in the volumes of the other
n— 1 phases, can be used to calculate the total
volume of each phase at the time # + Az in a computer
implemented numerical procedure by writing

o

AV, = (1 - (12)

Viien=Vyu+ AV, for j=1...n

so that a plot of the fraction of each phase can be
obtained as a function of time. The growth and
nucleation rates can also be updated during this step,
should they have changed because of solute
enrichment in the untransformed parent material or
because there is a change in temperature during
continuous cooling transformation.
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The next section explains how these equations
apply to allotriomorphic ferrite, Widmanstétten
ferrite and pearlite. These phases are henceforth
identified by setting the phase index as j = 1, 2 or 3,
respectively; these subscripts are also used in
identifying the nucleation and growth rates of the
phases concerned.

ALLOTRIOMORPHIC FERRITE

Classical nucleation theory is used to model the
nucleation of allotriomorphic ferrite, with the grain
boundary nucleation rate per unit area given by:

_c kTl ) G+ 0 T
L =C, 7 exp{ RT }exp{ t} (13)

where 4 is the Planck constant, k is the Boltzmann
constant, C, = 1.214 x 10”m~2 is a fitted constant
[11], R is the universal gas constant and Q = 200 kJ/
mol is a constant activation energy representing the
barrier to the transfer of atoms across the interface.
The activation energy for nucleation, G* = C,¢°/AG?,
where ¢ =0.022J/m? represents the interfacial
energy per unit area, C,= 5.58 is another fitted
constant and AG is the maximum chemical free
energy change per unit volume available for
nucleation [12]. The second exponential term relates
to the achievement of a steady-state nucleation rate;
©* = nth(4a.kT)"'exp{Q/RT}, where n. is the
number of atoms in the critical nucleus and a. is the
number of atoms in the critical nucleus which are at
the interface [1].

The nucleation and growth of allotriomorphic
ferrite has been described by modelling the allotri-
omorphs as discs having their faces parallel to the
nucleating grain boundary plane [13]. The discs are
assumed to grow on both sides of the parent
boundary under paraequilibrium conditions, so that
the half-thickness g, of each disc during isothermal
growth is given by:

@=L - )" (4

where ( is the one-dimensional parabolic thickening
rate constant. The growth rate slows down as the
concentration gradient ahead of the moving interface
decreases to accommodate the carbon that is
partitioned into the austenite. The growth rate
parallel to the grain boundary plane is taken to be
three times that normal to it, giving a constant aspect
ratio 7, of 3.0, so that the disc radius is #,¢; [14].

For non-isothermal growth the change in thickness
during a time interval dt is given by differentiating
equation (14):

dgr =Xt —7) "2 dr.

Therefore, for a particle nucleated at t = k At the
half thickness at the time (m + 1) At is evaluated
numerically as:

Grom+ At = Gimar + %C(m At — k At)~'2 At
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The rate of change of area of intersection on a plane
y of a disc of phase 1 (allotriomorphic  ferrite)
nucleated at © = k At at the time m At is:

Avpy = mﬁCz (Grom+ vac > »)

Ay = TN G m + nac/ A (Grm+nae =)
Ay = 0 (Grom+ e < ¥).

Since the ferrite allotriomorphs can grow into both of
the adjacent austenite grains, it follows from equation
(11) that

.
AVE=2Ay ¥ AO,. (15)
0

y=

The parabolic rate constant is obtained by solving
the equation [1]:

D 12 2 C
2<7—1_> Q= exp{@}erfc{m}

Q= X" =X
X — x®

with

and where x** and x* are the paraequilibrium carbon
concentrations in austenite and ferrite, respectively,
at the interface (obtained using a calculated
multicomponent phase diagram), ¥ is the average
carbon concentration in the alloy and D is a weighted
average diffusivity [15] of carbon in austenite, given
by:

%
D= j Dix}jdx
= Jw X x7
where D is the diffusivity of carbon in austenite at a
particular concentration of carbon.

WIDMANSTATTEN FERRITE

There is fine detail in 777 (time-temperature—
transformation) diagrams, but they consist essentially
of two C-curves ,(Fig-' 2). One of these represents
reconstructive‘traxisférmations at elevated tempera-
tures where atoms are mobile within the time scale of
the usual experiments on steels. The lower tempera-
ture C-curve represents displacive transformations
such as Widmanstitten ferrite and bainite.

The lower C-curve has a flat top; the temperature
corresponding to this flat top is identified as Tk, the
highest temperature at which displacive transform-
ation occurs during isothermal heat-treatment. T is
cither the Widmanstitten ferrite start (Ws) or
bainite-start (Bs) temperature depending on the
driving force available at T for the steel concerned.

Figure 3 shows two plots; the first is a calculation
of the driving force for the paraequilibrium
nucleation of ferrite at T, allowing carbon to
partition between: the austenite and ferrite. The
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Fig. 2. Schematic TTT diagram illustrating the two C-curves
and the 7, temperature.

second is the case where there is no partitioning at all
during the nucleation of ferrite.

It is evident that the nucleation of Widmanstitten
ferrite or bainite cannot in general occur without
the partitioning of carbon. The second interesting
point is that the curve illustrated in Fig. 3(a) is linear.
This straight line, which represents all steels, is
henceforth called the universal Gx function and is
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Fig. 3. Curves representing the free energy change necessary

in order to obtain a detectable degree of transformation to

Widmanstitten ferrite or bainite [S]. Note that each point

represents a different steel. (a) The free energy change

assuming paraequilibrium nucleation. (b) The free energy
change assuming partitionless nucleation.
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Table 1. Chemical composition (wt%)

C Si Mn Cu A\
0.18 0.18 1.15 0.09 <0.003
P S Nb Al N
0.015 0.030 <0.005 0.026 0.0073
given by:

Gx = 3.637(T — 273.18) — 2540 (J/mol) (16)

with Gy giving the minimum free energy change
necessary to nucleate Widmanstitten ferrite or
bainite in any steel [5].

As explained elsewhere [5], a linear relation such as
this cannot be explained by nucleation based on
heterophase fluctuations. Consider a nucleation rate
(1) equation:

I oc vexp(—G*/kT) 17)

where v is an attempt frequency and all the other
terms have their usual meanings. When this is
rearranged, we get

—G* o BT (18)

where B =k In{I/v}. Consequently, the Gy vs T
relation can only be linear if

G* oc Gy (19)

and not the inverse square relationship implied by
classical nucleation theory. This is entirely consistent
with the theory for martensitic nucleation [5, 16].
What then are the conditions which determine
whether at Ty, it is Widmanstétten ferrite that forms
first or bainite? In order for a phase to form, it must
nucleate and grow. Nucleation will occur at 7, when
the driving force for nucleation becomes less than Gy:

AG < Gyx. (20)

The nucleated phase can develop into Widmanstitten

1.00
[0 Allotriomorphic
] O Widmanstatten
X Pearlite
= 0.75
3
«
£ _ ]
g [m]
= 0.50 4 &D
S e O
I o © o
5 ] o
=
[0}
£ 0254 o
D
0.00 — ——
0.00 0.25 0.50 0.75 1.00

Measured Volume Fraction

Fig. 4. A comparison of the calculated volume fraction vs
experimental data reported by Bodnar and Hansen.
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ferrite if a further condition is satisfied, that the
driving force for paraequilibrium growth exceeds the
stored energy of Widmanstitten ferrite, which
amounts to about 50 J/mol [4, 5].

For the theory presented here, the nucleation rate
per unit area for phase 2 (Widmanstitten ferrite) is
given by

Le-Lepn) G CiAG
2T P\ TRT T C.RT

@0

where C. = 6.78 x 107 m?s, C; = 2.065 x 10* J/mol
and C.=2540J/mol, all of which are constants
determined by fitting to experimental data [17]. The
equation applies below the Widmanstitten ferrite
start temperature.

Trivedi has given a solution for the problem of the
diffusion-controlled growth of plates [18]. The shape
of the plates is taken to be that of a parabolic cylinder
and is assumed to be constant throughout growth.
The plate lengthening rate (V) at a temperature 7 for
steady-state growth is obtained by solving the
equation:

Q = (np)** exp{plerfc{p"*}[1 + (r./r)QS:{p}1(22)

where the Péclet number p, which is a dimensionless
velocity, is given by p = V,r/2D. The weighted-aver-
age diffusion coefficient for carbon in austenite is
used as before, but with the integral evaluated over
the range X to x,, where x, is the carbon concentration
in the austenite at the plate tip. x, may significantly
differ from the equilibrium carbon concentration x
because of the Gibbs—-Thompson capillarity effect [1]
which allows for the change in equilibrium concen-
tration as a function of interface curvature; x,
decreases as interface curvature increases, and growth
ceases at a critical plate tip radius r. when x, = x. For
a finite plate tip radius (r),

x, = x"[1 + (T'/r)] (23)
where T is the capillarity constant [1] given by
o oVa (1= 7)) — x7) 29

RT 1 + [d(In Tc)/d(In x™)]

where ¢ is the interface energy per unit area, taken to
be 0.2J/m? T is activity coefficient of carbon in
austenite, and V,, = molar volume of ferrite. Note
that for Widmanstétten ferrite, the paraequilibrium
concentrations (e.g. x™) are calculated after allowing
for the 50 J/mol of stored energy [5].

This assumes that the « composition is unaffected
by capillarity, since x* is always very small. . can be
obtained by setting x, = X. The function S,{p}
depends on the Péclet number; it corrects for
variations in composition due to changing curvature
along the interface and has been numerically
evaluated by Trivedi [18]. Consistent with experimen-
tal data, we have also assumed the Zener hypothesis
that the plate tip adopts a radius which is consistent
with the maximum rate of growth [5].

The plates of Widmanstétten ferrite were modelled
as tetragonal prisms, the longest dimension of which
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Table 2. Details of the data plotted in Fig. 4. o and o, represent the allotriomorphic ferrite and Widmanstétten ferrite
fractions, respectively. The measured fractions are due to Bodnar and Hansen

y grain size Cooling rate o o Oy O Pearlite Pearlite
(um) (K/min) measured calculated measured calculated measured calculated
30 101 0.46 0.72 0.23 0.07 0.31 0.21
30 59 0.525 0.74 0.174 0.05 0.301 0.21
30 30 0.645 0.78 0.056 0.01 0.298 0.21
30 16 0.717 0.75 0 0.02 0.283 0.23
30 11 0.73 0.78 0 0.01 0.269 0.21
55 99 0.285 0.17 0.403 0.65 0.311 0.18
55 59 0.336 0.36 0.362 0.45 0.301 0.19
55 30 0.417 0.27 0.292 0.5 0.291 0.23
55 16 0.523 0.7 0.189 0.1 0.287 0.2
55 11 0.568 0.77 0.147 0.04 0.285 0.19
100 101 0.165 0.12 0.523 0.71 0.312 0.17
100 59 0.196 0.16 0.499 0.69 0.305 0.15
100 30 0.244 0.23 0.462 0.57 0.293 0.2
100 16 0.301 0.27 0.412 0.51 0.286 0.22
100 11 0.355 0.34 0.361 0.45 0.283 0.21

is given by ¢, = V2(¢ — t) during unhindered isother-
mal growth. For non-isothermal transformation,

Qo m + YA = Qomar + V, At.

The rate of change of area of intersection on a plane
at a distance y from the austenite grain boundary is
therefore:

Ariy =2 V3(m At — k At)  (qan+var > p)

Aspy = ﬂzqg.(m+ na/At (G20n 408 = p)

Arpy =0 (G2m+ v < Y)

where #, is the ratio of the length to the thickness of
the Widmanstitten ferrite plate, taken to be 0.02.
Since the plates grow by displacive transformation,
they can only grow into one of the adjacent austenite
grains, so that the change in the extended volume
(AV3) is given directly by equation (11).

PEARLITE

The nucleation of pearlite is treated as for
allotriomorphic ferrite but with a nucleation rate
which is two orders of magnitude smaller. This is
achieved by reducing the number density of
nucleation sites.

The growth of pearlite was approximated to occur
by a paraequilibrium mechanism, although it never in
practice grows in this way. It is also assumed that the
majority of diffusion occurs in the austenite just
ahead of the transformation front. In these
circumstances, the growth rate is given by [19]

s
where 0 represents cementite, o the ferrite within the
pearlite and y the austenite. g is a geometric factor
equal to 0.72 in plain carbon steels, s is the

interlamellar spacing, whose critical value at which
growth stops is sc and s,, s, are the respective

g .50 X7 — x* s

2%

thickness of ferrite and cementite lamellae. The values
of s and sc are estimated empirically [20] and it is
assumed that s adopts a value consistent with the
maximum rate of growth.

Like allotriomorphic ferrite, pearlite growth occurs
by a reconstructive mechanism and is not restricted
by the presence of a grain boundary. The shape of
pearlite colony is taken to be that of a disc (aspect
ratio #; = 1) of half-thickness

g =Vi(t —1) with G304 a0 = Gamar + Vi At.

The rate of change of area of intersection on a
test-plane located at a distance y is given by

Aspy =213 Viim At — k AT)  (@rn+vac > ¥)

Aspy = migqg,(m vac/ AL (@3t nar = Y)

Ay =0 (@Gomsnar < p).

Since pearlite nodules nucleate at an austenite
grain boundary and can grow into either of the
adjacent austenite grains, AVS is given by equation

(15).

RESULTS AND DISCUSSION

There have been many studies about the occur-
rence of Widmanstéitten ferrite in steels as a function
of the chemical composition, austenite grain size and
cooling rate during continuous cooling transform-
ation [e.g. 7, 21-23]. It is consequently well
established that Widmanstitten ferrite is favoured in
austenite with a large grain structure. This is
probably because Widmanstitten ferrite is rarely
found in isolation but often forms as secondary plates
growing from allotriomorphic ferrite layers. The
prior formation of allotriomorphic ferrite, which is
favoured by a small grain size, enriches the
untransformed residual austenite with carbon and
reduces the volume fraction of residual austenite
which can subsequently transform into Wid-

manstétten ferrite, so it is not surprising that a small
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Fig. 5. Calculated evolution of microstructure as a function
of the austenite grain size and cooling rate.
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austenite grain size suppresses Widmanstitten ferrite.
For the same reasons, an increase in the cooling rate
will tend to favour the formation of Widmanstitten
ferrite.

These and other concepts are implicitly built into
the model presented here. This is because allotri-
omorphic ferrite, Widmanstétten ferrite and pearlite
are allowed to grow together assuming that
thermodynamic and kinetic conditions are satisfied.
Their interactions are all taken into account during
the course of transformation. It follows that it should
be possible to reproduce the excellent quantitative
data recently published by Bodnar and Hansen [7].
The present analysis is restricted to Fe—Si-Mn—C
steel rather than the microalloyed steels also studied
by Bodnar and Hansen.

The chemical composition of the steel is given in
Table 1. They used heat-treatments which led to three
different austenite grain sizes of 30, 55 and 100 um.
In addition, samples were cooled at five different
rates; 11, 16, 30, 59 and 100°C/min.

Widmanstitten ferrite can nucleate directly from
the austenite grain surfaces or indirectly from
allotriomorphic ferrite—austenite interfaces. The pre-
sent model includes both of these scenarios because
of an approximation made in the formulation of
extended area in equation (10). It is strictly not
possible to separate out the contributions AO¢ from
each phase (for all values of y) when the phases grow
at different rates. The result of the approximation is
therefore to allow Widmanstitten ferrite to form even
if the entire austenite grain surface is decorated with
allotriomorphic ferrite. This is approximately equiv-
alent to the secondary nucleation of Widmanstitten
ferrite and pearlite on allotriomorphic ferrite.

The reasonable overall level of agreement between
experiment and theory is illustrated in Fig. 4, for all
of the data from Ref. [7]; the quantitative data plotted
in Fig. 4 are also included in Table 2 since the
complete details cannot be included in the plot. In all
cases where the allotriomorphic ferrite content is
underestimated, the Widmanstitten ferrite content is
overestimated. This is expected both because the
composition of the austenite changes when allotri-
omorphic ferrite forms and because its formation
changes the amount of austenite that is free to
transform to Widmanstétten ferrite.

MICROSTRUCTURE MAPS

Figure 5 show calculations which illustrate how the
model can be used to study the evolution of
microstructure as the sample cools. The calculations
are for the steel composition stated in Table 2.

All of the generally recognised trends are
reproduced. The amount of Widmanstitten ferrite
clearly increases with the austenite grain size, and
with the cooling rate within the range considered.
Bodnar and Hansen [7] suggested that the effect of
cooling rate on the amount of Widmanstitten ferrite
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Fig. 6. Calculated evolution of microstructure as a function of the austenite grain size and the cooling
rate. The steel composition is as given in Table 2, but with the carbon or manganese concentrations
increased as indicated.

was smaller than that of the austenite grain size (for
the values considered). This is also evident in Fig. 5.

The model also correctly predicts the influence of
alloying elements such as carbon or manganese. At
large cooling rates, Fig. 6 shows that an increase in
the carbon concentration reduces the amount of
Widmanstétten ferrite; this is because of the
reduction in the temperature at which the Wid-
manstétten ferrite first nucleates and also by
suppressing its growth rate.t The suppression of
transformation temperatures also reduces the concen-
tration of carbon in the residual austenite at which
the formation of pearlite begins, since the y/y + 0 has
a positive slope on a plot of temperature vs carbon
concentration. The fraction of pearlite is therefore
increased in the microstructure.

The effect of carbon at the slower cooling rate is
mainly to suppress the formation of allotriomorphic
ferrite and hence to increase the proportion of

tFor an austenite grain size of 30 um, a cooling rate of
101 K/min, Widmanstétten ferrite formation is sup-
pressed to 693°C (from 725°C) with the increase in carbon
concentration. Similarly, the growth rate of Wid-
manstitten ferrite at 675°C is reduced approximately by
a factor of four with the increase in carbon concentration.

pearlite (Fig. 6). At the austenite grain size of 30 yum
and a cooling rate of 11°C/min, Widmanstitten
ferrite is essentially absent at both the carbon
concentrations studied.

An increase in the concentration of manganese to
2 wt% (Fig. 6) has a different effect because the effect
on the pearlite transformation is less pronounced
than carbon. Thus, the suppression of allotriomor-
phic ferrite permits a greater degree of transform-
ation to occur to Widmanstitten ferrite.

SUMMARY

The classical Johnson—Mehl-Avrami theory for
overall transformation kinetics has been successfully
adapted to deal with the simultaneous formation of
allotriomorphic ferrite, Widmanstitten ferrite and
pearlite. A comparison with published experimental
data has shown that the model developed is
reasonable both quantitatively and with respect to
well-established trends. The model can now be used
to study theoretically the evolution of microstructure
as a function of the alloy composition, the austenite
grain size and the cooling conditions. Further work
is needed to include other phases such as bainite, and
to deal with microalloying additions. It would also be
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interesting to incorporate nucleation sites other than
austenite grain surfaces.
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