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Abstr\act

The microstructure and mechanical properties of a hot-rolled steel depend upon its com-
position and its thermomechanical history. The purpose of the work presented in this
thesis was to predict the effect of changes in composition (C, Mn, Si,...), cooling rate
and austenite grain structure on the microstructure, to-provide a tool for the design of

improved steel products.

As austenite is cooled from a high temperature it can transform into a variety of phases
as a function of the undercooling below the equilibrium temperature. These include allotri-
omorphic ferrite, Widmanstitten ferrite, pearlite, bainite and martensite. The nucleation
and growth of each of these transformation products has been treated quantitatively using
fundamental metallurgical theory. The only fitting parameters are those which are cur-

_rently impossible to determine experimentally or theoretically, and are connected with the
nucleation process. The interfacial energies, shape and site density are unknown at the
nucleation stage and have been determined by comparing theory and experimental data.
These parameters, within the limits of experimental error; are intended to apply to the

whole class of hot-rolled steels.

Using a recent method for treating reactions which occur simultaneously, all of the
important transformations have been incorporated into one grand model which properly

accounts for mutual.interactions and impingement effects.

It has been possible to predict a vast array of published and newly measured experi-
mental data in a variety of forms. This includes the ferrite grain size, transformation-start
temperatures and the evolution of volume fraction as a function of time, temperature,

austenite state and chemical composition.
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Chapter 1

Introduction

Steel is one of the most important materials produced in the world. It is used to man-
ufacture a wide range of goods, from ships and cars, construction beams and piling, to
household appliances and drinks cans. There are many complex and interacting metal-
lurgical requirements which must be taken into consideration when processing steel. A
small alteration to composition, grain structure or heat treatment can have a significant
impact on the final microstructure and properties. Therefore, it is imperative that these
effects are fully understood before introducing a new steel grade or process route. How-
ever, mill trials to test new or modified steel grades and rolling schedules are expensive

and time consuming, costing thousands of pounds and interrupting the normal commercial

. operations.

There has thus been much research over the past 20 years aimed at the development
of mathematical models that will predict the phase transformations that occur during
thermomechanical processing. Off-line calculations can then be performed to minimise the
number of actual mill trials required. There are many empirical and semi-empirical models
to predict microstructures or grain sizes, created by fitting equations to experimental data
and these work very successfully [1-6]. However, their applicability is restricted to the
range of steel compositions and process routes for which they were designed and cdlibrated,
and they cannot necessarily be extended to the design of new steels. To this end, many
researchers have created models based on the fundamental physical and metallurgical
principles of phase transformations, utilising thermodynamics and nucleation and growth
kinetic theories with the aim of developing a generally applicable model for a wide range

of steels. This is precisely the purpose of the present work.
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1.1 The Hot Rolling Process

The steel plate, strip and “sections” from which many products are manufactured are
produced by the hot-rolling process, Figure 1.1. In this process, a cast steel billet or ingot
is re-heated in a furnace to a temperature of around 1100-1250 °C (the exact temperature
varies with the steel composition), at which it is fully austenitic. It is then passed through a
series of rolling mill stands which reduce the billet to its final shape and cross-section whilst
still at high temperature in the austenitic state, and, importantly, refine the microstructure
of the austenite. This occurs by a process of deformation, recovery and recrystallisation
of the austenite grains (Figure 1.2). The rolling deformation elongates or ‘pancakes’ the
original grains and introduces a high density of dislocations. New grains are nucleated at
these high energy defects and grow to replace the deformed structure with a finer one.
Repeated deformation and recrystallisation can occur during the rolling schedule and the
resultant austenite can be either fully recrystallised, or, if the final rolling passes occur
below the recrystallisation stop temperature of the austenite, still deformed [7]. After
the steel exits from the finishing stands of the mill it enters the run-out table or cooling
banks, where it is sprayed with water jets or air-cooled. Interrupted cooling schedules can
be applied, whereby the cooling sprays are withheld in a particular temperature range for a
specified time interval before continued processing. It is the austenite microstructure and
the cooling schedule which determine the final room temperature microstructure of the
steel. This microstructure in turn defines the mechanical properties of the material, such
as yield stress, ultimate tensile strength (UTS) and fracture toughness. The combination
of microstructure and properties determines the suitability of different steels for different
applications. Thus, careful control of the hot-rolling process is essential to ensure the
correct combination of austenite deformation and cooling is applied at the appropriate

temperatures to achieve the desired final microstructure.

1.2 The Iron-Carbon Phase Diagram

The equilibrium phases present in the steel at each temperature as a function of compo-
sition can be represented by the phase diagram for the alloy. Figure 1.3 illustrates the
iron-rich section of the binary Fe-C phase diagram. In pure iron, at temperatures between
910 °C and 1390 °C, the iron is fully austenitic. As it is alloyed with increasing amounts
of carbon, the austenite is stabilised to lower temperatures, reaching a minimum at the
eutectoid composition, 0.78 wt.% carbon. This phase boundary is known as the Aes line.
Below the Aez temperature, ferrite (a) starts to form from the austenite (), the ferrite

fraction increasing as temperature decreases until all the austenite has transformed at the
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Figure 1.1: Schematic layout of a hot-rolling mill, showing the reheating furnace, rolling

stands and run-out table. The roughing stands impart large initial reductions in thickness.
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Figure 1.2: Illustration of austenite deformation and recrystallisation during hot-rolling.
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Ae; temperature (723 °C in the Fe-C system). The solubility of carbon in ferrite is very
low, with a maximum of 0.02 wt.% at 723 °C. At higher carbon levels, the excess carbon is
rejected from the ferrite into the austenite. Below Ae; any remaining austenite transforms
to pearlite, a lamellar mixture of ferrite and cementite (Fe3C). Thus, at room temperature
the equilibrium microstructure of a hypo-eutectoid steel (< 0.78 wt.% carbon) consists of
a mixture of ferrite and pearlite, the exact proportions dependent upon the carbon content

of the steel.

1000
aus%lenite

900 910 Ay
5% 800 — via — y+FoC
gl

700 0
§ Agj 723°C
= TR L

600 — errite + cementite

500 +— : ! — | ‘

0 002 0.5 078 1.0 15

Carbon (wt.%)

Figure 1.3: Schematic of the iron-rich section of the equilibrium iron-carbon phase diagram

(cementite is metastable with respect to graphite).

Steels are alloyed with many elements other than carbon in order to achieve the wide
range of properties demanded by different applications. Some examples include the im-
provement of hardenability by the addition of Mn, Cr and Mo which retard the trans-
formation of austeni’te and the enhancement of corrosion resistance with Cr, Ni and Cu.
Nb and V aid grain refinement and provide precipitation strengthening. All these so-
lutes, like carbon, also affect the free energies of the phases so that the multi-component
phase diagram will differ from the basic Fe-C diagram. The relative stabilities of austen-
ite and ferrite are affected and consequently the solutes either accelerate or retard the
rate at which austenite decomposes. Those which accelerate transformation (such as Co,
Al) are “ferrite stabilisers” whereas those which retard it (such as C, Mn) are “austenite

stabilisers”.
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1.3 Phase Transformations

The phase fields illustrated by the phase diagram are for equilibrium conditions only. The
cooling rates encountered during steel processing are usually too fast for true equilibrium
to be achieved, and thus several non-equilibrium phases can also form, which are often
desirable in certain steels. Two types of phase transformation are possible — reconstructive
and displacive. In reconstructive transformations, there is the diffusion of all atoms since
the crystal lattice changes by an uncoordinated movement of atoms (‘civilian’) to form
the product structure. Reconstructive transformations occur at temperatures close to the
Aes, where atomic mobility is sufficiently high for diffusion to occur readily. The diffusion
of the solute atoms during the transformation is generally the rate-controlling process.

Allotriomorphic ferrite and pearlite both form in this manner.

Displacive transformations involve a coordinated (‘military’) motion of atoms to gener-
ate the product phase crystal structure. They occur at lower temperatures where diffusion
is very slow and are favoured during rapid cooling when there is insufficient time for atoms
to diffuse. The transformation is actually a deformation, as no atomic bonds are broken,
and thus there is a strain energy which must be overcome for growth of the phase to occur.
Bainite and martensite form by this mechanism. Widmanstatten ferrite is also considered

to form displacively, but carbon diffusion is required for its growth.

These five phases are commonly observed in hot-rolled steels and different combinations
of them are preferred for different applications. Pearlite and allotriomorphic ferrite are ad-
equate for many situations, such as structural plates and sections, providing good strength
at low cost, whereas the higher strength bainite and martensite phases are required for
more demanding applications, such as creep-resistant steels for the power industry. High
strength, low alloy (HSLA) or microalloyed steels, used for plate and strip production,
comprise predominantly allotriomorphic ferrite which is controlled-rolled, a process which
is designed to produce a fine grain size and thus high strength, whilst the low carbon and

alloy content improves weldability and ductility.

1.4 Importance of Grain Size

The scale of the microstructure is important with respect to mechanical properties. A fine
ferrite grain size produces a higher yield strength, o, according to the Hall-Petch relation
(8, 9]: 1

oy = 0o+ kyds? (1.1)
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where ¢ is the friction stress required to move dislocations in the pure crystal lattice, ky
is a constant, and d is a measure of the ferrite grain size. The aim of thermomechanical
processing is to produce a fine ferrite grain size, via austenite grain refinement or fast
cooling. Ferrite generally nucleates at the austenite grain boundaries and thus a finer
austenite structure produces fine ferrite grains. However, there appears to be a limit as to
the smallest recrystallised austenite grain size that can be achieved in commercial practice
and thus to the ferrite grain size that can be obtained [10]. Further ferrite refinement
can be achieved by transformation from deformed austenite grains. The thickness of the
pancaked austenite grains then controls the ferrite grain size, which can be reduced down
to 2-3 um [7]. The residual deformation in the austenite also refines the ferrite structure by
increasing the nucleation rate. Faster cooling increases the amount of undercooling below
the Aes and hence the driving force for transformation. Thus, a knowledge of the kinetics
of the transformation during cooling, coupled with the thermodynamics, is essential for
an understanding of the how the hot-rolling process affects the final microstructure of the

steel.

1.5 Aim of This Work

1

In this thesis, a new mathematical transformation model has been developed for the pur-
pose of simulating the phase transformations which occur during cooling of hot-rolled
austenite. The model is quite general but was targetted at modern HSLA steel com-
positions, which typically contain 0.05-0.12 wt.% C, < 0.25 wt.% Si, 1.4-1.7 wt.% Mn,
plus other small additions including the microalloying elements Nb, V and Ti [11]. It
can also be applied to some more highly alloyed steels. A flowchart of the approach to
developing the model is provided in Figure 1.4. The thermodynamic and kinetic metallur-
gical theory underlying the transformation of austenite to allotriomorphic ferrite, pearlite,
Widmanstitten ferrite, bainite and martensite is reviewed and a number of existing trans-
formation models are discussed. The development of the new model is then described,
and the individual models for each of the phases are combined using recent theory which
enables the simultaneous, competitive formation of the phases to be considered. A series
of laboratory experiments to validate the model are described and the results discussed.
Then, the thorough validation and application of the model, both of the individual phases
and the combined program, is detailed. Comparisons are made with both new and pub-
lished experimental data. The adaptation of the model to account for the important
effects of residual deformation in the austenite after hot-rolling is discussed. Finally, the
successful application and the limitations of the model are highlighted and suggestions for

expansion and improvement are proposed.
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Figure 1.4: Flowchart illustrating the basic layout of the phase transformation model. The
dashed boxes refer to areas of research not addressed in the present work, but which could

provide input data to a phase transformation model.



Chapter 2

Review of Thermodynamics of

Solutions

The basic théory of the thermodynamics of solid solutions is reviewed briefly in this chap-
ter, in order to introduce the concepts of free energy, chemical potential and activity used

later in this thesis.

2.1 Free Energy and Solid Solutions

The Gibbs free energy, G, of a system is defined as [12]:
G=H-TS (2.1)

where H is the enthalpy, T the absolute temperature and S the entropy of the system.
During an allotropic transformation, the most stable phase at a particular temperature
will be the one with the lowest free energy. The driving force for a transformation from a

phase a to another phase 3 at a temperature T is:
AG = GP-G*=(HP - H*)-T(S" - §%)
= AH-TAS (2.2)
In a system containing more than one component, the free energy is also a function of
composition as well as variables such as temperature and pressure. Consider a binary
solution of A and B atoms, where one mole of homogeneous solid solution is created by
mixing 4 moles of A with zp moles of B, such that 24 +2p = 1. The molar free energy

of the system is determined from the energ/ies of the components plus the change in free

energy due to mixing of the atoms, AGm;z:

G =24G4+2GB + AGniz (2.3)
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where G4 and Gp are the molar free energies of pure A and pure B at the same temper-

ature and pressure. From equation 2.2 it follows that:
AG’mzx = AHpiz — TASmw (2°4)

AH,,;, is the enthalpy of mixing and represents the difference in internal energy of the
system before and after mixing of the components (ignoring any volume changes). ASmiz
is the difference in entropy — the degree of randomness of the atoms in the system —
before and after mixing assuming that other contributions to entropy can be neglected. In
the simplest case, AH,;z = 0, and the free energy change on mixing depends only on the
entropy of mixing. This is an ideal solution. If A and B atoms mix to form a substitutional
solid solution where all configurations of A and B are equally probable, then for one mole
of solution it can be shown that [12, 13]:

ASpmiz = —R(zalnza 4+ 2pln zB) (2.5)
where R is the universal gas constant. Therefore, the free energy of mixing becomes:
AGpiz = RT(zglnzs +2zpinzp) (2.6)

Figure 2.1 illustrates the variation in AGpi; with composition for an ideal solution. The

total free energy of the solution is then:

G=14G4+2Gp+ RT(zalnzs+2plnzp) (2.7)
0
Tl
g
g
A Xg - B

Figure 2.1: Free energy of mixing for an ideal solution.



3

Chapter 2 — Review of Thermodynamics of Solutions

In reality, AH,,;; is not zero as heat is often evolved or absorbed during mixing. The
zeroth approximation of the quasichemical model, (often known as the regular solution
model), takes AH,p; to be non-zero and due only to the bond energies between nearest
neighbour atoms. The three possible types of interatomic bonds in binary solutions are
A— A, B— B and A— B, having energies Fa4, EpB and E4B, respectively. The change

in enthalpy of mixing is given by:
AHpiz = paBE (2.8)
where pap is the number of A — B bonds and
E=Esp - 5(Eas+ Fs5) (2.9)

If E = 0 then we have an ideal solution where the atomic arrangement is completely

random. In such a solution it can be shown that,
paB = NAZZAZB (2.10)

where N, is Avogadro’s number and z is the number of bonds per atom. The enthalpy of
mixing is then:

AHpiz = NazEzpzp = Qupzp (2.11)
The free energy change on mixing for a regular solution is obtained by assuming that the

entropy of mixing is ideal:
AGmiz = Qzazp + RT(z4lnzs +zplnzp) (2.12)

Figure 2.2 illustrates the variation of AG i, with different compositions, values of Q and
temperature. When Q < 0, A — B bonds and ordering are favoured, whereas 2 > 0 is
due to more A — A and B — B bonds and clustering. The total free energy of the regular

solution is given by:

G=24Ga+ 128G+ Qazp+ RT(zalnza+ 2plnzp) (2.13)

The austenite (Fe-C) solid solution shows large deviations from an ideal configurational
entropy and thus the above equation is inappropriate. Instead, the first order approxima-
tion of the quasichemical theory can be used in which a random distribution of atoms is
no longer assumed. The free energy of the solution is determined from the pairwise inter-
action energies between nearest neighbour atoms, as before. However, the probability of
occupation of a proportion of nearest neighbour interstitial sites is reduced due to a finite
repulsive interaction between the carbon atoms. Certain atomic sites are more likely to be
occupied whilst others are excluded. McLellan and Dunn [14], in particular, have applied
this quasichemical model to carbon in austenite and successfully modelled the activity of

carbon in austenite as a function of carbon concentration.

10
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AHpix AHpix
‘ -T ASpix
- T ASems -
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AHpix
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Figure 2.2: Free energy of mixing for a regular solution, showing the effect of different
values of AH iy (after [12]).

2.2 Chemical Potential and Activity

The chemical potential, s4, of a component A in a phase is defined as [12]:

oG" )
=|— 2.14
pa (3nA T,P (214)

where G’ is the free energy of the whole system. p4 is the proportionality constant
relating a small quantity of A, dny moles, added to a large amount of a phase at constant
temperature and pressure, to the small increase in the totql free energy of the system,
d@', it generates. dn, must be sufficiently small that the composition of the phase is
not significantly altered, because p4 is composition dependent. In a binary solution, the

separate additions of small amounts of A and B can be summed to give:
dG' = padng + ppdnp (2.15)

The size of the system can be increased without altering its overall composition if A and
B atoms are added in proportions according to Tp+ B = 1, i.e such that dny : dnp =

24 : zg. If the size of the system is increased by exactly one mole then the free energy

11
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change will be the molar free energy, G. Therefore,
G =pgza+pz J mol ™1 (2.16)

Comparing equation 2.16 with the expression for the free energy of an ideal solution
(equation 2.7) produces the following equations for the chemical potentials in an ideal

solution, illustrated on the free energy—composition diagram in Figure 2.3:

s = Ga+RTInzy
up = Gp+RTInzp (2.17)

The chemical potential of each component at a particular composition can be obtained
from the free energy diagram by drawing a tangent to the free energy curve and deter-
mining its intersection with the component axes. Points e and f in Figure 2.3 correspond

to pa and up, respectively.

A=l

B=1
B=0 A=0

XB_"“">

Figure 2.3: Chemical potentials and free energy curve for a binary ideal solution.

It is necessary to use the activity of a component for non-ideal solutions. The activity
is defined such that the distances ce and df in Figure 2.3 are —RT'Inay and —RTlnap,
respectively, where a4 and ap are the activities of A and B atoms, and points ¢ and d

correspond to the free energies of pure A, G4, and pure B, Gp, respectively. Therefore,

pa = Ga+RTIlnay
up = G+ RTInap (2.18)

12
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The relationship between activity and mole fraction will vary with the composition of the

solution. For a regular solution it is given by [12]:

n (“—A> LIRS ©(2.19)

z4) RT
and Q
apy _ 3 2
In <$B> = RT(l zB) (2.20)

In an ideal solution, @ = 0,80 a4 = 24 and ap = zp.

2.3 Summary

The concepts of the free energy of a solid solution and the chemical potential and activity of
a component in that solution have been introduced. The free energy contains contributions
from the enthalpy and entropy of mixing of the solution which depend upon the atomic
configuration. Three solution models have been considered: ideal, where AH,,;; = 0 and
a completely random atomic arrangement is assumed; regular, where AHpip # 0 but the
atoms are still considered to be randomly arranged; and finally the first order quasichemical
model, where AH,,;, # 0 and a non-random configuration is accommodated. The latter

model can be applied to the solution of carbon in austenite.

13



Chapter 3

Reconstructive Transformations

3.1 The Allotriomorphic Ferrite Transformation

Allotriomorphic ferrite is an important phase in low alloy steels. It is the first phase to
form from austenite at temperatures below the Aes and thus it determines the amount and
composition of austenite remaining for subsequent transformation to other phases. Ferrite
allotriomorphs usually nucleate at the prior austenite grain boundaries [15], as these are
higher energy sites than the interiors of the grains. The allotriomorphs both lengthen
along the boundaries and thicken into the grain interiors to form equiaxed ferrite grains.

Both the thermodynamics and kinetics of the ferrite transformation must be considered.

Figure 3.1: Micrograph of a low alloy steel, showing allotriomorphic ferrite (white phase)

decorating the prior austenite grain boundaries.

14
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3.1.1 Thermodynamics

The driving force for the transformation from austenite to ferrite is the reduction in the free
energy of the system obtained when the face-centred cubic (fcc) austenite lattice transforms
to the more stable body-centred cubic (bcc) ferrite structure. The free energy diagram in
Figure 3.2 shows that at a particular temperature, T, austenite of bulk composition T can
lower its overall free energy by forming ferrite of composition 27 leaving the austenite with
composition 27%. The austenite is enriched by the carbon partitioned as the ferrite grows.
As the temperature continues to decrease, under equilibrium conditions the austenite
composition will follow the Aes line until the eutectoid temperature is reached, when all
the remaining austenite transforms to pearlite. 27 is the mole fraction of carbon in ferrite

which is in equilibrium with austenite of composition z7<.

The equilibrium mole fractions of ferrite and austenite present at each temperature
between Aes and Aej can be determined from the phase diagram by the lever rule. The

mole fraction of ferrite is:
7 -7

Qa = m (3.1)
and the mole fraction of austenite is:
T — 2
2, = TV — oY (3.2)

The equilibrium between the two phases means that the tangent determining the chem-
ical potential of the components in each phase is common to both free energy curves.

Therefore, the chemical potentials of iron and carbon are the same in both phases:

KEe = MFe
pE = ue (3-3)
The driving force; AGY™Y'*+% can be determined by subtracting the free energy of the

original austenite phase, G, from that of the product phases, ferrite, G%, and enriched

austenite, GY', weighted by the mole fractions of each phase present:

AGT T = GV + GOQ, - G (3.4)
From equation 2.16, we can write:

G = Tug{zr+ (1 - Dup.{7}

' = @R} + (1 - )2}
G* = 2 {a™} + (1 - 2 (=) (3.5)

15
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Gibbs free energy, G

F=fe

Carbon, x

Figure 3.2: Free energy versus composition diagram at temperature T, and the corre-

sponding section of the Fe-C phase diagram.

where pug,{Z} represents the chemical potential of carbon in austenite evaluated at the
carbon concentration T, and similarly for the other chemical potentials. Substituting into
equation 3.4 and noting the equality of the chemical potentials for ferrite in equilibrium

with austenite (from the common tangent construction), it can be shown that [20]:
AGTH = F(uf {27} - 3 {E}) + (1 - T) (uF (o7} - wf{7}) (3-6)
Expanding ¢ = G + RT In a as in equation 2.18 produces the result:

AG'™"+* = ZRTIn a_gy{iﬁ_}_ +(1-%)RTn M (3.7)
al{Z} ap. {%}

where a, {27} is the activity of carbon in austenite evaluated at the concentration 7%,
and likewise for the other activity terms. Values for the equilibrium phase boundary com-
positions and activites therefore must be determined to enable calculation of the free en-
ergy change for the y — o transformation. The y/v+a and a/a+7 phase boundaries need
to be evaluated both at equilibrium in their normal temperature regimes and extrapolated
below the eutectoid temperature into regions where the phases are in metastable equilib-
rium. The latter enables continued modelling of the phases as temperature decreases, into
the displacive transformation regime. Experimental data are available for the equilibrium
boundary compositions in Fe-C alloys, but appear to be inaccessible below the eutec-

toid, so accurate extrapolation is essential. Many models represent the thermodynamic
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functions with empirical equations, but these cannot be extrapolated into the lower tem-
perature regime with much confidence. Commercial packages, such as MTDATA [16] and
Thermocalc [17], contain large, rigorously evaluated databases from which the equilibrium
thermodynamic values can be extracted. These can be coupled with phase transformation
models, as is the case with the DICTRA package [18]. An alternative approach is to cal-
culate the necessary thermodynamic parameters within the phase transformation model,
using published theory. Models for the thermodynamic behaviour of interstitial solid so-
lutions (such as Fe-C) include the regular solution model and the quasichemical model, as
introduced in the previous chapter. The latter attempts to model deviations from an ideal
entropy of mixing (non-random atomic arrangement), unlike regular solution models, and

can be applied to interstitial solutions with more confidence [19].

Aaronson, Domian and Pound applied three solid solution models to the v — o trans-
formation for Fe-C solutions [20]. They found that the first-order quasichemical model
of Lacher, Fowler and Guggenheim [21, 22] produced usable equations with which to cal-
culate the activities of carbon and iron in both ferrite and austenite, and thus the free
energy change for the transformation. Such a model must be extended to at least ternary
systems including a substitutional element, X, to be of practical value for real steels. An
approach due to Zener [23] was combined with the Fe-C model to allow for Fe-C-X alloys
[24]. Zener proposed that the free energy change for the ¥ — o transformation in pure

Yo

iron could be divided into a magnetic and non-magnetic component, AG)»* and AG)
respectively. Thus,

AGE® = AGI™ + AGL > (3.8)
He considered that an alloying element would affect these two components separately and
assumed that the free energy versus temperature curves for pure iron and Fe-X alloys dif-
fered only by a displacement of the curves parallel to the temperature axis. The magnitude
and direction of this displacement for many common alloying elements was determined
[23, 24] and thus the effect of substitutional elements on the free energy change could be

incorporated.

3.1.1.1 Driving Force for Ferrite Nucleation

Once the free energy change for the overall austenite to ferrite transformation has been
determined, the driving force specifically for nucleation must be considered. In a binary
solution, it can be obtained from the free energy—composition diagram using the double
tangent construction due to Hillert as illustrated in Figure 3.3. It is assumed that the
formation of the ferrite nucleus produces an infinitessimally small change in the bulk

austenite composition, as the nucleus volume is very small. In the limit, as this small
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change tends to zero, the austenite composition tends toward the bulk composition, Z. A
tangent is drawn to the austenite curve at 7 and a second tangent is then constructed
to the ferrite curve to determine the driving force for nucleation, AGy,, at the nucleus
composition z,,. The most likely nucleus composition will be that which maximises the
free energy change, and this can be shown to occur when the two tangents are parallel [25].
The differences in the chemical potentials of iron in ferrite at the nucleus composition and
in austenite at the bulk composition, u%,{2m} — #F.{Z}, and of carbon in ferrite at the
nucleus composition and in austenite at the bulk composition, ug{zm} — pe{Z}, can be

seen from the diagram to be equal.

The nucleus composition and the driving force can be obtained by simultaneous, nu-

merical solution of the following two equations [25]:

1a o il =2} _ prp ao{x}
AGE™ + BT In 25 =2y — RTIn (£ =0 (3.9)
_ ao{xm}
AGy = RTn St (3.10)

where AG’A’—W is the free energy change accompanying the v — « transformation in pure
iron, and a$, {1 — z} refers to the activity of iron in ferrite evaluated at the concentration

(1 — z), and likewise for the other activity terms.

Wy oy @

Gibbs free energy, G

Carbon, x

Figure 3.3: Free energy versus composition diagram illustrating the use of the parallel

tangent construction to determine the driving force for nucleation, AG,,
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3.1.2 Modes of Equilibrium

In homogeneous phases, equilibrium exists when the chemical potential of each compo-
nent is the same in all phases [12]. During diffusional transformations, however, complete
homogeneity throughout an entire phase is unlikely, so equilibrium may then occur locally
at the interface between two phases. The compositions of the phases at the interface are
such as to enable equality of the chemical potentials to be achieved if the transformation
is diffusion-controlled. Several modes of local equilibrium have been identified, accord-
ing to the degree of supersaturation of the parent phase with solute. Partitioning local
equilibrium, or PLE [26, 27}, occurs at small supersaturations, when the bulk austenite
composition is close to the v/ + & phase boundary. The activity of the carbon is almost
constant in the austenite and thus the driving force for carbon diffusion is close to zero.
There is long-range diffusion of the substitutional solute ahead of the interface (Figure
3.4). At large supersaturations, negligible partitioning local equilibrium (NPLE), occurs
[28]. The iron plus substitutional solute composition of the ferrite is practically equal
to that of the bulk austenite, so little partitioning of substitutional solute can occur. A

‘spike’ of substitutional solute concentration occurs at the interface.

Finally, paraequilibrium, a term first used by Hultgren [29], describes a constrained
mode of equilibrium where the slower-diffusing substitutional elements are completely
unable to partition between the phases but the interstitial carbon partitions to an extent
which allows its chemical potential to become identical in both phases. It is a metastable
mode of transformation, in which ferrite growth is carbon-diffusion controlled. The ratio
of Fe to X atoms remains constant across the interface. A paraequilibrium v/vy + «
phase boundary, Aej, can be defined, below which growth without substitutional solute
partitioning may occur. Between the Aes and Aej curves, however, it is a thermodynamic
necessity that growth occurs with partitioning [24]. The compositions z3* and z77 in
Figure 3.4 represent *the carbon concentrations of the austenite and ferrite respectively,

during paraequilibrium transformation.
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2o PARAEQUILIBRIUM
p :
o iy
: X
CARBON SUBSTITUTIONAL

Figure 3.4: Schematic illustration of the variation in carbon and substitutional solute

composition across the transformation interface for different modes of equilibrium (after

Bhadeshia {30]).
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3.1.3 Growth Kinetics
3.1.3.1 Diffusivity of Carbon in Austenile

The growth of ferrite in dilute steels is considered generally to be controlled by the dif-
fusion of carbon, as it is partitioned ahead of the moving transformation interface into
the untransformed austenite. An expression describing the rate at which carbon diffuses
in austenite is thus required. Carbon diffusivity is known to be strongly concentration
dependent, and Kaufman, Radcliffe and Cohen [31] developed the following equation:

D¢ = %exp{—?»()wy}exp{——g—;;} (3.11)

where Qp is a function of z., the mole fraction of carbon in austenite. However, this
equation is based on an empirical representation of diffusivity as a function of mole fraction
and temperature, and as such is not really suitable for extension to lower temperatures or

higher carbon contents than intended.

The theoretical approach of Siller and McLellan [32] considered both the kinetic and
thermodynamic behaviour of carbon in austenite in Fe-C alloys. It accounts for the con-
centration dependence of the activity of carbon in austenite and the existence of a finite
repulsive interaction between nearest neighbour carbon atoms in octahedral sites, which
reduces the probability of occupation for adjoining sites. The diffusivity is divided into

concentration dependent and independent terms and is written as:

D{z,T} = D'¢(6) (3.12)

where R

kBT [ A" _AF
D' = 3 (3%”) exp{ kBT} (3.13)
and
,

£(6) =al |1+ ze(1+6) ca+0%e 31a
0)=ac 1- (14 90+ 2(1+ %) (1 exp{— 5 })? +0) 61

where kg and h are the Boltzmann and Planck constant, respectively, A is the spacing of
the {002} austenite planes, 7y, is an activity coefficient, AF is an activation free energy,
z, is the coordination number for octahedral interstices (12) and 6 is the ratio of the
number of carbon atoms to the total number of solvent atoms. Bhadeshia [33] subsequently
extended this approach, accounting for the influence of substitutional elements via the
carbon-carbon interaction energy in austenite, w., and the activity and determined values
of AF/kp = 21230 K and In(y,,/\?) = 31.84, respectively. A recent investigation [34]
applied this theory to ternary Fe-C-X alloys, where the substitutional solute X has been
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shown to have a significant effect on carbon diffusivity. It was concluded that the diffusivity

was well predicted by the theory, the only discrepancy occurring for Fe-C-Cr alloys.

3.1.3.2 Ferrite Growth Rate Constant

Ferrite has been found to grow at a parabolic rate, its growth slowing down with increasing
time as the carbon rejected ahead of the interface has further to diffuse. It often forms

allotriomorphs growing with an aspect ratio for lengthening to thickening of 3:1 [35, 36].

The growth velocity can be evaluated by consideration of the carbon diffusion profile
at the transformation interface, Figure 3.5. In a binary Fe-C alloy, the interface compo-
sitions at a particular temperature (of carbon in austenite, z7%, and in ferrite, %7, in
equilibrium) are fixed by the tie-line on the phase diagram. Carbon partitioned from the
ferrite diffuses down the concentration gradient built up ahead of the interface until the
bulk alloy composition, Z, is achieved in the austenite away from the interface. The diffu--
sion flux of carbon atoms across a unit area of the interface in unit time can be obtained

from Fick’s first law as:

d
Jo = —Dod—z (3.15)

At the same time, the quantity of carbon partitioned per unit time is given by (27— 27y,
where v; = %, the velocity of the interface. This is equal to the flux, and thus the interface

velocity is [37]:
dz D¢ dz,

E N (m'ya - xa'y) dz Z=z%
A simple treatment is to approximate the distribution of carbon as a straight line, such
that:

(3.16)

de, 17°-T
dz L
The shaded areas ‘A’ and ‘B’ in the diagram are equal, due to conservation of solute, and

(3.17)

thus it can be shown that:
dz _ D¢ (27 —7)?

dt (27 — £27) 22(F — z*7) (3.18)

Integrating with respect to time and substituting z = alt%, the one-dimensional parabolic

rate constant, oy, can be obtained as [38]:
1
D™ - %)
(7 — 2°7)(7 ~ 272

In reality, the concentration gradient of carbon away from the interface is not constant.

(3.19)

o =

 beer . . . o s .
It is"represented tjgGeously by an error function solution to the diffusion equation:

Ty =T+ (7% — T)erf {2—(5&—)—%—} (3.20)
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Differentiating this equation provides %1 for substitution into equation 3.16, from which

the following expression for the one-dimensional parabolic rate constant can be derived

[37, 39]:
2
O[l z 011
Q, =/ erfc { ———— ¢ exp {———} (3.21)
v (wé) {2(Dot)% } 4Dc

. Ya_ p . o
where the supersaturation Q, = —Ja—-&v and erfc is the error function complement. Values

of oy can be found by iterative solution of this equation.

Figure 3.5: Schematic diagram of the carbon diffusion profile at the vy /o interface, which
is moving at a rate % in the direction indicated. The shaded areas show the solute

partitioned from the ferrite into the austenite.

For multicomponent steels, the calculation of the growth rate is complicated by the
diffusion of both interstitial and substitutional elements. The diffusivity of the interstitial
carbon is typically many orders of magnitude greater than that of the substitutional
elements, so to choose a suitable tie-line at the interface either the concentration gradient
of the carbon must be reduced, or that of the substitutional element must be increased
[39]. This corresponds to the PLE and NPLE modes of growth, respectively (Figure 3.4).
Alternatively, paraequilibrium can be assumed, whereby the substitutional elements do not
partition and are hypothetically combined with the Fe atoms into a “super-element”. The
growth can then be treated as for the binary Fe-C, but the interface compositions differ
from the Fe-C equilibrium due to the effect of the substitutionals on the v/« transformation

thermodynamics.

The operational equilibrium mode during ferrite growth will depend on the steel com-

position and temperature. Reynolds and co-workers [40] found that the early stages of
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growth of ferrite allotriomorphs in Fe-C-X alloys appeared to take place under paraequi-
librium conditions. Aaronson et al. [41] compared experimental allotriomorph thickening
Kinetics with local equilibrium and paraequilibrium models. They found that paraequi-
librium better accounted for the kinetics, but could still not accurately reproduce the
experimental data. ADP [24] investigated the effect of different alloying elements on the
position of the v/v+ a curve under NPLE. They found that the width of the reglon where
partitioning does occur between the partition and no-partition curves varied with alloying
element, with manganese and nickel producing the widest band. This was consistent with
their experiments on Fe-C-X alloys, where only Mn and Ni were observed to partition
close to the Aes temperature during the early stages of transformation. The same conclu-
sions were reached by Enomoto in a more recent review of literature data on alloy element

partitioning in nine Fe-C-X systems [42].

3.1.4 Nucleation Kinetics
3.1.4.1 Classical Nucleation Theory

The classical theory of nucleation was first formulated by Volmer and Weber in 1926,
and was subsequently extended by many researchers, but primarily Becker and Doring in
1935. The theory considers random fluctuations in a metastable assembly of atoms and
was initially formulated for the condensation of a pure vapour into a liquid. Fluctuations
in density and concentration lead to small volumes of the initial phase acquiring new
atomic arrangements, thus a local phase transformation has occurred. These are termed
heterophase fluctuations. A very thorough review of this work is provided by Christian
[43].

For a pure system, the overall driving force for the nucleation to occur is provided by the
difference in the free energies of the initial and final states of the assembly, but intermediate
metastable states may occur. The volume free energy of the nucleus and that of the initial
phase it is replacing must be considered, along with the energies of the new surfaces created
between the two phases. If the nucleus is constrained by the phase in which it nucleates
then there will be an additional strain energy component to the overall free energy. In
homogeneous nucleation of a new phase e in a solid matrix v, assuming a spherical nucleus

of radius r, the net free energy change is:

AG = —%tr:”AG + ?r:*AG + 4n7r20., (3.22)

where 0., is the interfacial energy per unit area between the two phases, AG, is the

magnitude of the chemical driving force per unit volume for formation of o from and
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AG, is the strain energy per unit volume. The critical free energy barrier to nucleation
that must be supplied by thermal fluctuations, G*, occurs at a critical radius r* when the

free energy change AG is a maximum. Thus:

d(AG) _

—— = —4nr?(AG, — AG,) + 87710, = 0 (3.23)
r
Therefore, )
Orvar
e oo ———— 3.24
" T AG, - AG,) - 32

and the critical free energy barrier is:

16703,

G = 380, —AG,)?

(3.25)

Figure 3.6 illustrates the competing energy terms as a function of nucleus radius.

AG 4nr? Oyo,

G*
*

AG

- 3nr3 (AGy AGy)

Figure 3.6: The free energy change associated with the homogeneous nucleation of a
spherical nucleus of radius r. The critical radius and free energy barrier for nucleation are

r* and G*, respectively.

Below the critical radius, the free energy can be reduced by dissolution of the nucleus,
whilst nuclei larger than r* can reduce their free energy by growth, the volume free energy
change more than compensating for the increased surface energy. Volmer and Weber made
the assumption that a stationary distribution of nuclei exists of size 7 < r*. The number of
critical size nuclei present, 7., is the probability of such a nucleus being formed multiplied

by the total number of atoms in the initial (vapour) phase, N:

ne = N exp {— kGT} (3.26)
B .
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n. is a statistical distribution function for nuclei of critical size. The rate of nucleation is
then n, multiplied by the probability of a vapour atom condensing onto a critical nucleus

in unit time (a collision frequency). The nucleation rate per unit volume, I, is thus:

I, = vn, exp {-— kGT} (3.27)
B

where v is the collision frequency and n, is the number of atoms per unit volume.

There is a problem with Volmer and Weber’s steady state distribution in that they assumed
that once a nucleus exceeded r* in size it would grow rapidly and could be removed from
the assembly. The number of critical nuclei would then drop abruptly to zero once r > r*.
This scenario is unrealistic, as critical nuclei can grow or shrink with equal probability, so
Becker and Déring suggested that the distribution function should decrease gradually to
zero once r > r*. This resulted in multiplication of the pre-exponential factor in equation
(3.27) by a parameter Z, known as the Zeldovich factor, where:

1
1/ G* \z
Z=5 (37rkBT) (3.28)

This result for the nucleation rate per unit volume has formed the basis of almost all
subsequent work, the main differences between developments of the Becker-Doring the-
ory being the choice of the pre-exponential factor. For the nucleation of a solid phase,
the kinetics of gaseous collisions used in the above approach are no longer applicable,
so the frequency term for collisions between atoms and critical nuclei must be modified
accordingly. It can be considered as the product of an atomic vibration frequency and
an exponential term containing the activation energy for the transfer of atoms across the
nucleus/matrix interface, Q. From reaction rate theory [44], the vibration frequency is

ksT/h. Therefore, the rate at which an atom in contact with a nucleus will transfer into

it is: ‘k 0
T
Texp {—m} (329)
and thus: L G +Q)
_ kT _G"+Q)
I, = - nUZexp{ o T } (3.30)

3.1.4.2 Heterogeneous Nucleation Sites

The basic theory described above considers nucleation as a homogeneous process, occurring
with equal probability in all regions of the assembly. In reality, nucleation will be favoured
on inhomogeneities within the material, such as defects, grain boundaries and impurities.
These are high energy sites due to the surface area created between them and the matrix,

and nucleation of more coherent particles in their place can lead to a reduction in free
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energy. In the case of ferrite nucleating from austenite, prior austenite grain boundaries
are the favoured sites. If the effects of strain energy are unimportant or neglected, (Lee et
al. [45] demonstrated that strain energy would only influence the critical nucleus shape if
it was a large fraction of the volume free energy change for nucleation), then the driving
force for nucleation at a particular site will depend on the reduction in free energy due to
removal of the high energy grain boundary surface. Destruction of this surface provides
the energy for formation of the new nucleus surface and volume. There are three types
of grain boundary site to consider: grain faces, edges and corners (Figure 3.7). For each
type of site, the two most important factors are the density of sites and the probability of
nucleation at that site (in other words, how energetically favourable it would be to form a
nucleus). The first theoretical treatment of this was due to Cahn in 1956 [46], who utilised
the geometrical calculations of Clemm and Fisher [47]. Cahn justified a nucleation rate
per unit volume of the form: |
*

I, = @Z—Tnupj exp {———————(K%SB; Q)} (3.31)
where p; is a density of sites factor, representing the number of sites of a particular type
available for nucleation, and K. g is a “shape factor” for the sites of different dimensionality,
j. j = 3 for homogeneous nucleation, 2 for faces, 1 for edges and 0 for corners. p; is’
approximately equal to (§/d,)3~7, where § is the effective grain boundary thickness and
d. is the austenite grain size. (Cahn assumes the grains to be tetrakaidecahedra, with d,,
being defined specifically as the distance between the square faces in (100) planes). The

number of atoms per unit volume on the three types of sites can be expressed as [48]:

where the superscripts f, e and ¢ indicate faces, edges and corners, respectively. This
will obviously always give a greater number of face sites than edges and then corners, as
would be expected from consideration of an ideal equiaxed grain shape and also reflects the
decrease in the number of possible sites per unit volume as austenite grain size increases

(and thus boundary area per unit volume decreases).

The shape factor is a function of the ratio of the free energy required to form a grain
boundary nucleus to that needed for homogeneous nucleation. Sites of lower dimensionality

lead to smaller ratios (Figure 3.8), so that corner sites are more favourable than edges,
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which are more favourable than faces. Corners are the junctions of four grain boundaries,
'so there will be the greatest reduction in the free energy if this region of boundary is

removed. Homogeneous nucleation is the least energetically favourable process.

e TR

\

corners

Figure 3.7: Schematic diagram of an austenite grain, showing the three types of nucleation

site (after Tamura [49]).
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Figure 3.8: Ratio of free energy needed to form a heterogeneous, grain boundary nucleus
to that required for homogeneous nucleation, for different nucleation sites, plotted as a

function of the ratio of the interfacial energies, cosf,, = %{-{7; [46, 43].
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3.1.4.8 Heterogeneous Nucleation Shape Factors

The shape factors for the three types of site, as derived by Clemm and Fisher and later
verified by Christian, are determined as follows. For nucleation on a boundary, the area of
boundary between two 7 grains eliminated by the a nucleus is ar? where r is the radius of
curvature of the nucleus surfaces. The new surface area formed between grains of v and «
is br? and the volume of the new nucleus is cr® where a, b and ¢ are functions of the grain
boundary energies and shape. G* now becomes:

4600 — 04)°

N T ETNeT)

(3.32)

where 0., is the interfacial energy between two y grains. The values of a, b and ¢ need to

be determined for each type of boundary site.

At faces or two-grain junctions, an isotropic nucleus in an isotropic matrix will have
the shape of a symmetrical lens, the dihedral angle, 6,4, being determined by the static

equilibrium of the interfacial energies (Figure 3.9):
Oy = 2076, €08 by (3.33)

All the interfacial energies are assumed to be isotropic. Clemm and Fisher found that:

a = w(1—cos?byq)
b = 4m(l—cosbyy)
2r 3
c = ?(2 — 30804 + €0s” b,)

The ratio of the activation energy of a critical nucleus on a grain face, G%, to that for
homogeneous nucleation is then:

G% 1

—éé = K{ = 5(2 ~ 308 0yq + €08 y0) (3.34)

where Kg is the shape factor for face nucleation.

At edges or three-grain junctions, the nucleus is bounded by three spherical surfaces,
and the dihedral angle is determined as before at the edge between two v — & surfaces and

a v — 7 surface. The ratio of the edge and homogeneous activation energies is:

G—Z = K$ = 2= cos™! { €08 b :
G 4 [3(1 — cos?8,4)]2

} (1-cos?0,4) — 08 0,a (3 —4 cos? B,) 7 (3.35)

At corners or four-grain junctions, the nucleus may have the shape of a spherical

tetrahedron, and the equations for a, b and ¢ become yet more complex [47]. The ratio of
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Figure 3.9: Formation of an o nucleus on a7y grain boundary face, illustrating the inter-

facial energies and the dihedral angle, 8,4 (after Clemm and Fisher [47]).

the corner and homogeneous activation free energies becomes:

G LK P q : 2 ( 2 qz)

Ze - K¢ = |2sin7! 1-cos?l,,) ~q|l1—cos“Oyp——] ——=

G* 274 [ {2(1—0032 by0) }( ) [ ! 4 V8
(3.36)

e

where

1
2 2cosé
q= % (g — 2cos? 0701) . -ﬂgﬂ— (3.37)

The shape factor in the exponential part of the nucleation rate equation is balanced
by the density of sites term, p;, which clearly reflects the greater number of face sites,
followed by edges and then corners. Cahn used the ratio of these two opposing factors
to investigate which type of sites would contribute most to the overall nucleation rate for

particular values of K%.
_ In(d,/9)
K= G*/kpT (3:38)

He found that corners have the highest nucleation rate when Rx < K35 — K§, edges when
K5—- K5 < Rg < Kg — K§, faces when K{—K; < Rk < 1—K§e and finally homogeneous
nucleation dominates when Rg > 1— Kg . Figure 3.10 shows a plot of these regions and it
can be seen that the type of nucleation site which dominates is strongly dependent on the
ratio 2cosfyy = Oyy/0ya. If cO88yy is too small, then certain types of site will nucleate
too slowly to ever be observed and nucleation on a site of higher dimension will dominate.

So the choice of a value for 8., (or the ratio of the interfacial energies) is important.

Precise evaluation of the shape and sites factors is practically impossible, but estimates
have been made by several researchers. Reed and Bhadeshia modified Cahn’s equation for
I, to describe the rate of nucleation per unit grain boundary area, I, [50]. They replaced
the terms n, and p; with a term Nj, representing the number of sites per unit area of
boundary actively supporting nucleation. Nj is defined as the total possible number of

sites per unit area, 1/6% (with the interatomic spacing § taken as 2.5 A), which assumes
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Figure 3.10: Illustration of the types of site which make the greatest contribution to the
initial nucleation rate as a function of the ratio of the interfacial energies for each type of
site (after Cahn [46]).

that every atom on the boundary is a potential site, modified by a factor which allows for
_ “poisoning” of sites, K { This represents the fraction of these which are actually active.

Therefore:

. kgT K! (KiG* + Q)
j o MBL 1 S S’ L 22
I} = T exp{ e (3.39)
“where K. % is the shape factor described previously and the superscript j denotes grain face,
edge or corner sites (f, e or ¢, respectively). The overall nucleation rate is given by the

sum of the individual rates at each site:
L=I/++I (3.40)

Reed and Bhadeshia used these equations in a model to predict TTT diagram C-curves.
To determine the unknown parameters @, K{ and K% , they fitted their equations to a
standard set of experimental TTT curves [51], investigating both equilibrium and parae-
quilibrium models for nucleation and growth. They concluded that paraequilibrium must,
be the operating mode, as the equilibrium results produced physically unrealistic values
for the shape factors and less accurately predicted the shape of the TTT curves, partic-
ularly around the C-curve nose. The interfacial energy per unit area, oo Was taken as
0.2 J m~2. A value for Q, the activation energy for atoms crossing the austenite/ferrite
nucleus interface, of 350 kJ mol~! was determined. Table 3.1 shows their values for the

site and shape factors.
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Site Site factor, K { Shape factor, K%
Face 6.9 x 1078 2.6 x 1073
Edge 1.3x 1078 1.0 x 1073
- Corner 1.2 x 10710 3.3x 1073

Table 3.1: Values of site and shape factors for nucleation rate equation [50].

3.1.5 Ferrite Grain Size

One of the most important steel parameters resulting from the hot-rolling process and
subsequent phase transformations is the size of the allotriomorphic ferrite grains. In fact,
refinement of the grain size is the rationale for much of the processing in the first place, as
the grain size has a major influence on the mechanical properties of the final steel product.
The Hall-Petch equation (1.1) relates the yield strength of the material to the inverse
square root of the grain size — thus finer grains produce a large increase in strenéth. Grain
sizes of only a few micrometres are often desirable and so any models attempting to predict
this parameter must be accurate, as small variations at these sizes will lead to relatively
large discrepancies in yield strength prediction. There are many empirical equations to
compute grain size, as a function of cooling rate, austenite grain size and strain (the latter
is important for transformations from deformed austenite) [4, 5, 6, 52, 53]. Although these
can make reasonably accurate predictions there can also be large variations in results from
different equations for the same conditions [4]. The main problem with such equations
is that they don’t properly account for steel composition. Tile fitting constants are only
truly valid over the particular range of steels for which they were derived and cannot be
relied upon to produce accurate results for other compositions. They are also limited
to continuous cooling conditions, whereas modern steel processing routes often employ
interrupted cooling schedules. Thus, a more theoretical approach is required, using the
nucleation and growth theories described in this chapter which can take full account of

the composition and cooling profile via thermodynamic parameters.

' Ferrite grains nucleate at prior austenite grain boundaries and subsequently grow into
the grains under carbon diffusion control. The final ferrite grain size will therefore be
dependent on the austenite grain size, nuclei density (nucleation rate) and growth kinetics.
Assuming that each ferrite grain occupies an equal volume, the nominal ferrite grain size

(diameter) can be expressed as [54]:

do = (3]2%)% (3.41)

where N, is the total number of ferrite particles per unit volume. The problem is thus

32



ki

Chapter 3 — Reconstructive Transformations

reduced to correct determination of N,. When homogeneous nucleation occurs, then the
number of nuclei formed per unit volume in a time interval dt can be calculated from
the nucleation rate per unit volume, I,. The total number of nuclei can then be found
by integraﬁon over the total transformation. Allowance must be made for “phantom

nucleation” occurring in regions already transformed. Thus [49],
o0
N, = / L1 - Xo) dt (3.42)
0

where X, is the volume fraction of transformed ferrite. In the case of heterogeneous
nucleation, the number of nuclei per unit area of austenite grain boundary, N;, can be
similarly determined, by substituting the boundary nucleation rate per unit area and the
area fraction of transformed ferrite at the boundary for I, and X, respectively in the
above equation. This can be converted into N, by multiplication with the austenite grain

boundary area per unit volume, Sy:
N, = N,S, - (3.43)

Hence, the ferrite grain size around the austenite grain boundary can be calculated. How-
“ever, this assumes that all grains are of equal size, which is clearly not the case in practice.
The above method makes no allowance for a distribution of ferrite grain sizes. Indeed,
the Avrami extended volume analysis commonly used to determine overall transformation
kinetics (Section 3.2.1) does not allow the progress of individual particles to be followed, it
only computes the transformation behaviour of the whole system. Abbruzzese [55] devel-
oped further an existing statistical distribution model for ferrite grain development. The
grains are divided into classes according to the size of their radii. The number of new
grains in the first class in each time interval is determined from the nucleation rate per
unit volume. A flow of grains between adjacent classes is permitted as new grains nucleate
and existing ones grow. It is assumed that the array of grains is completely random, and
that the surroundings of each grain are homogeneous [56]. The mean radius and frequency
of each class is determined, which reduces the number of differential equations required.
Application of the continuity equation enables the evolution of the grain size distribution
with time to be calculated numerically. This method was incorporated by Anelli and

co-workers into their transformation model [57].

A key assumption in all of the ferrite grain size calculations discussed above is that one
ferrite nucleus grows to form one grain in the final microstructure. However, recent ex-
perimental work by Priestner and Hodgson, particularly in deformed austenite, suggested
that the number of ferrite nuclei actually decreases as transformation proceeds, due to
coalescence between adjacent grains [58]. The driving force for a ferrite grain to continue
growing into untransformed austenite is normally higher than that for consumption of

other ferrite grains, so the reason for these observations is still unclear.
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3.2 Overall Transformation Kinetics

3.2.1 Introduction

The basic theory that is currently used to describe the overall kinetics of a phase trans-
formation was formalised in the 1930s and 40s by Johnson and Mehl [59] and Avrami
[60, 61, 62]. The starting points are the nucleation concepts introduced in Section 3.1.4,
of heterophase fluctuations in the existing phase leading to regions (nuclei) of a new phase
forming. The distribution of these nuclei possesses a critical size, r*. Those nuclei of size
r < r* are mote likely to shrink and redissolve whereas those with r > r* will continue
growing to form particles or grains of the new phase. Avrami considered the new phase to
be nucleated by “germ nuclei” which already existed in the old phase as a function of its
prior treatment (e.g. inclusions, defects, grain boundary junctions). Activation of some
proportion of these nuclei beyond the critical size led to the formation of “growth nuclei”,
or grains of the new phase, and a decrease in the number density of “germ nuclei”. Avrami
also introduced the idea of a characteristic time scale for the transformation process, which
enables the kinetics to be described independently of temperature and concentration and
thus general solutions to a range of reaction kinetics problems can be found. He considered
that the variation of the nucleation rate per pbtential nucleus per unit time and the aver-
age growth rate per unit time with external factors such as temperature and concentration
was similar. Thus, the nucleation rate and the growth rate are approximately proportional
over a range of temperatures and concentrations known as the isokinetic range. This al-
lows easier solutiqn of expressions for the number density of transformed particles and the

volume fraction of transformed material, as will be demonstrated later.

To avoid complex statistical considerations, it is assumed that the centres of the new
grains are distributed completely randomly within the volume of material. Avrami also
notes [61] that a random distribution should be “applicable with a good approximation”
to situations where the nuclei tend to segregate to boundaries in the structure of the old

phase, such as solid-solid phase changes in metals.

3.2.2 Basic Theory
3.2.2.1 Homogeneous Nucleation

Consider a single new phase, @, nucleating randomly in an existing phase, 7, at a constant
nucleation rate per unit volume, I,, and growing isotropically at a constant rate Gy to

form spherical particles. The radius of a particle, nucleated at a time 7, at a later time ¢
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can be written as:
ro = Ga(t —7) - (3.44)

and thus the volume of the particle is,

vo = { FEE-T (E>7) (3.45)
( 0, (t<r)

The number of particles formed in the time interval from t =7 tot =7+ dris
N,=L,Vdr (3.46)

where V represents the total volume of the assembly. Thus, the total contribution to the
transformed volume of o for all particles nucleated in the time interval between 7 and
T + dr can be expressed as:

4
-3

The change in volume of @, dV{, in equation 3.47 is designated the change in extended

dVe = vaN, G3(t - 1)L,V dr (3.47)

volume of a. At the early stages of transformation, whilst the individual nuclei are well-
spaced (Figure 3.11a), the above theory adequately describes the transformation kinetics.
However, once the growing particles start to impinge (Figure 3.11b) then allowances for
this must be made. Avrami [60] introduced the concept of an “extended volume” to
describe the volume of the particles had their growth not been impeded by impingement
upon other particles. Particles are permitted to overlap and grow through each other.
New nuclei forming in regions already transformed to a, dubbed “phantom nuclei”, are

also included in the extended volume calculation.

The actual change in volume, dV,, can be determined from the change in extended
volume by allowing for the probability that some transformation has occurred in previously
transformed material:

dv, = 4—;’-(;3(1: -7,V (1 - %) dr (3.48)

where V, is the volume of matrix already transformed to . From 3.47 and 3.48 it follows
that:

dv, = (1 - %) qve (3.49)
Separating the variables and integrating, we get:
Vo
Ve=—Vn (1 - 7) | (3.50)
therefore
—1In (1 - Yﬂ) _ 4 /t LG3(t —1)%dr (3.51)
V 3 Jo
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@ (b)

Figure 3.11: Schematic illustration of growing particles of a single phase « transform-
ing from a parent phase v, (a) early stages, before impingement, and (b) after particle

impingement.

Over the total time of transformation, for all particles nucleated after all incubation times

7, the extent of reaction, &4, can be determined as:

¢
€y = & =1—exp {—fl—r—/ IaGi(t - 7')3 d‘T‘} (3.52)
|4 3 0 :

For I, and G, constant with respect to time, this expression can be readily evaluated,

thus enabling the progress of the phase transformation with time to be followed.

3.2.2.2 Heterogeneous Nucleation

The above theory can be extended to heterogeneous transformations, such as the nucle-
ation of ferrite at austenite grain boundaries. Consider spherical particles of a forming as
above. To determine the volume of o formed due to nucleation and growth from a grain
boundary, we considet a series of planes parallel to the boundary and spaced a distance dy
apart. If the radius of a particle exceeds the distance y of a plane from the boundary, then
the area of intersection of that particle with the plane is determined (Figure 3.12). The
total of such areas of intersection on one plane for all particles growing from the boundary

is the extended area of transformation on that plane.

If the area of intersection is 772 = 7 [G2(t — )2 — y?], then the change in extended
area of & on one plane due to particles emanating from one boundary in the time interval

from 7 to T 4+ d7 can be expressed as:

dO¢, = 1041, [G2(t — )% — y?]dr (3.53)
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Figure 3.12: Schematic illustration of spherical particles growing from a grain boundary

and intersecting a parallel plane a distance y from the boundary.

for ro > y, otherwise dO% = 0. Op is the total area of the plane and I, is the nucleation
rate of o per unit area of boundary. Assuming that I is constant, substituting ¢ = &,
and integrating over all incubation times, from 7 =0 to 7 ==, the total extended area of

. . ¢~ Y%,
o on one plane is obtained:

05 = ZOapGet* (1 - 3¢ - 26°) (3.54)

If it is assumed that there is no interference from particles emanating from other grain
~ boundaries, then the total volume of « originating from one boundary, V4, can be calcu-
lated by integrating the extended area over all the planes y from zero to (positive) infinity
(¢ =0 to ¢ =1).! Thus,

Vas = O4Gat [ /0 - exp {—g- apGLE3(1— 3¢ — 2¢3)} dqs] (3.55)

If the total area of all the grain boundaries is Op, then by substituting this for Oy
in the equation above we get the total extended volume transformed from all boundaries
_ extended because no allowance has been made for the overlap of regions emanating
from different boundaries, so-called “hard impingement”. If V' is the total volume of the

assembly as before and S, the grain boundary surface area per unit volume, then:

V; o Va,bS/u '
=" (3.56)
From equation 3.50:
Vo 1 {_Yéf_} (3.57)
72 PV ’

1This assumes that the particle only grows from one side of the bounda.ry. In some instances (such as
allotriomorphic ferrite), the particle can grow from both sides, thus the integration over y is performed

from negative to positive infinity, which effectively introduces a factor of 2 before Op in equation 3.55.
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The extent of reaction, &, is therefore:
o = YVE =1-exp {—-SUGat [/01 1 —exp {—%Ia,bGitB(l - 3¢° - 2¢3)} dqb]} (3.58)
The volume fraction of a single phase forming spherical particles, with constant nucle-
ation and linear growth rates, homogeneously or heterogeneously within a matrix phase
can now be calculated. In practice, particles can have many different morphologies and
modes of growth. The shape of the particle, be it a sphere, plate, disc, ellipsoid, etc.,
affects the geometrical factor in the exponential term in equation 3.58. The mode of
growth alters the exponents of the growth rate and time . Consider for example the
parabolic growth of disc-shaped rpau*ticles of a with aspect ratio (radius to thickness) 7a,
nucleated at a time T on a grain boundary, and growing such that the thickness g, of a

disc perpendicular to the boundary at a later time ¢ is given by:
go = Galt - 1) (3.59)

and its radius r, parallel to the boundary is:

D=

e = NaGolt —T) (3.60)

The contribution to the extended area of o on the plane at y due to particles nucleated

between T and T + dr is then:
0%, = 104 Lo y2G2(t — 7) dr | (3.61)
"~ Substituti = d di befi tain:
ubstituting ¢ E#:,%{ and proceeding as before, we now obtain

1
o =1—exp {—SUGat'lz' [/ 1—exp {—g wpEGEEA (1 — d)“)} d¢]} (3.62)
0 ,
Note the differences in the factor of 7, and the exponents of ¢ and ¢ compared with

equation 3.58.

3.3 The Pearlite Transformation

Pearlite is a lamellar structure of ferrite and cementite (FegC), which forms below the
eutectoid temperature (723 °C in plain carbon steels). The austenite transforms by a
reconstructive mechanism, in which carbon and substitutional alloying elements redis-
tribute between the ferrite and cementite. Pearlite nodules can nucleate on austenite
grain boundaries, allotriomorphic ferrite grains or on cementite particles, depending upon
the steel composition. In low alloy steels, nucleation on y/a boundaries predominates
as allotriomorphic ferrite is usually the first phase to develop on cooling before pearlite,

whereas in eutectoid steels pearlite nucleates on the austenite grain boundaries.
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3.3.1 Thermodynamics of the Pearlite Transformation

The pearlite transformation can start once the eutectoid temperature, T, has been reached
(Aey on the Fe-C phase diagram, Figure 1.3). This temperature can be raised or lowered
by ferrite stabilising (Cr, Mo, Si) or austenite stabilising (Ni) elements, respectively. A
second criterion for the start of transformation during non-equilibrium cooling is that the
carbon content of the austenite exceeds that required for cementite formation, . This
latter value can be deduced using the Hultgren extrapolation of the austenite/cementite
(v/6) phase boundary (Acm) to the required temperature [63, 64]. Unlike ferrite, pearlite
never forms by a paraequilibrium mechanism, so local equilibrium must be maintained.
It is suggested that if PLE predominates, then the alloying elements partition into the
cementite and therefore the diffusivity of X in austenite is the rate-controlling step. On
the other hand, austenite stabilisers with a low solubility in cementite encourage NPLE,
and carbon diffusion in austenite is rate-controlling [65]. An important pearlite parameter
is the spacing of the lamellae, S, because this has a direct effect on the strength of the
steel, larger spacing leading to lower yield strength and UTS [38]. The lamellar spacing
is inversely proportional to the degree of undercooling below T, a large undercooling
thus producing a finer pearlite. The spacing is related to a balance between the free
energy for the transformation, the increase in surface energy due to the creation of new

ferrite/cementite interfaces and perhaps the stability of the moving interface.

' 3.3.2 Kinetics of the Pearlite Transformation

The pearlite/austenite interface is incoherent, the pearlitic ferrite and cementite having
no orientation relationship with the austenite grain into which they are growing. There
is a well-defined orientation relationship between the ferrite and cementite crystals within
a pearlite nodule, however [65]. For growth to occur, carbon and substitutional elements
may redistribute ahead of the transformation interface by volume diffusion in austenite
or by diffusion along the transformation interface. The Zener-Hillert growth model [66,
67] assumes that the austenite has periodic compositional variations along the interface,
corresponding to the ferrite and FesC lamellae. The following expression for the growth

rate of pearlite controlled by volume diffusion of carbon in austenite ahead of the interface

ar=2¢ 5 (s - #F) l(l_i) (369
P79 |88 (28 - o) 8 S

where DY is the volume diffusion coefficient of carbon in austenite, g is a geometric factor

was deduced:

(equal to 0.72 in a eutectoid steel), S, is the critical interlamellar spacing at which the

growth rate becomes zero, S and Sy are the thicknesses of the ferrite and cementite
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lamellae, and ;' and wo are the carbon concentrations in austenite in local equilibrium

with FesC at the v/a interface and the /8 interface, respectively.

The growth rate in the case where boundary diffusion of a substitutional element Xis
the rate-controlling step is [68]:

Gh = 12KD%$ [ﬁ%‘s—egx—) ;2 ( - %)] (3.64)
where: K is the boundary segregation coefficient of X (the ratio between the alloying
element concentration in austenite near the boundary to that in the boundary), D is the
boundary diffusion coefficient of X, § is the width of the boundary, " and Ty X are the
concentrations of X in austenite at the v/c and /8 interfaces, respectively, and Zx is the

average substitutional alloying element concentration in the alloy.

The values of S and S, can be estimated empirically [64] and it is assumed that S adopts
a value consistent with the maximum growth rate [67], such that § = 28, with Se = %‘lﬁﬁ%
040 is the ferrite/cementite interfacial energy, AH is the change in enthalpy between parent

and product phases and AT is the undercooling below the eutectoid temperature, T..

The nucleation rate of pearlite can be treated using the classical theory of heterophase
fluctuations as described in Section 3.1.4. The density of available nucleation sites will
depend upon the amount of prior austenite grain boundary and also the v/ interface
area. This can be evaluated from the fraction of allotriomorphic ferrite transformed and
the extended area covered by the ferrite grains per unit volume [57, 69, 70]. The shape
of a pearlite nodule can be idealised as a hemisphere, the flat face coincident with the
grain boundary, the incoherent curved interface growing into the austenite grain [38].
Other morphologies such as spheres have been considered [70]. Umemoto also included
the additional restriction on nucleation that the v/a interface must be moving sufficiently
slowly for cementite to nucleate upon it. This is equivalent to the incubation time for
cementite nucleation being shorter than the time taken for the interface to move a distance

equal to the radius of the critical nucleus [70].

The overall kinetics of the pearlite transformation can once again be treated using the
Johnson-Mehl-Avrami analysis for homogeneous and heterogeneous nucleation discussed in
Section 3.2.1. Pearlite transforms by a typical nucleation and growth process, the nodules
nucleating at preferential sites in the austenite and then growing until impingement. Cahn
and Hagel [71] pointed out that grain corners were the most effective sites, which nucleated
rapidly leading to early site saturation. The rest of the transformation would then be
controlled by the radial growth of the pearlite nodules. Assuming a constant growth

velocity and saturation of corner sites, the fraction of austenite transformed is:

& =1-exp {—%—rnngﬁ} (3.65)
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where n¢ is the number of grain corner sites per unit volume. Note that once rapid site

saturation has occurred, the nucleation rate no longer plays a part in the transformation.

3.4 Summary

The theory of reconstructive phase transformations as applicable to allotriomorphic ferrite
and pearlite has been reviewed. The origins of the driving forces for the austenite to ferrite
transformation and for ferrite nucleation have been outlined. Methods for determination of
the diffusivity of carbon in austenite and the growth rate constant of allotriomorphic ferrite
have been described. In multicomponent steels, the kinetics can be simplified by assuming
that growth occurs under paraequilibrium conditions, where there is no redistribution of

the substitutional solutes.

The classical nucleation theory of heterophase fluctuations and the derivation of the
nucleation rate equation have been explained. The theory can be adapted to cater for
the variety of austenite grain boundary sites at which allotriomorphic ferrite nucleates by
modification of the matrix/nucleus interfacial energy and the density of active sites. The
ferrite grain size can be calculated by following the evolution of ferrite nuclei throughout

the transformation.

Pearlite can form below the eutectoid temperature once the composition of the austen-
ite reaches the cementite phase boundary. It grows under local equilibrium conditions with
either volume diffusion of carbon or boundary diffusion of a substitutional element as the
rate-controlling step. Classical nucleation theory is again applicable, with both v/ and

~/a interfaces providing potential nucleation sites.

The Johnson-Mehl-Avrami theory of overall transformation kinetics has been described
in detail, for both homogeneous and heterogeneous nucleation with linear and parabolic
growth rates. This theory is a key component of the transformation model which has been

developed in this work and will be expanded further in Chapter 7.
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As the degree of undercooling, AT = Aeg — T, below the Aes temperature increases,
different transformation products can form from the austenite. The driving force for the
transformation increases with AT, and so the formation of phases with larger strain ener-
gies or non-equilibrium compositions can be accommodated. Diffusion of solute elements
becomes sluggish at lower temperatures and therefore displacive transformations predom-
inate. Widmanstitten ferrite, bainite and martensite can all be classified as displacive

transformation products.

4.1 Widmanstatten Ferrite and Bainite Transformations

4.1.1 Widmanstatten Ferrite

Widmanstétten ferrite (o) is a phase formed by the transformation of austenite below the
Aes temperature. It often forms simultaneously and competitively with allotriomorphic
ferrite and pearlite.. However, Widmanstatten ferrite can also occur at temperatures
where the reconstructive transformations are sluggish due to the very low mobility of
atoms. It nucleates heterogeneously, either directly from the austenite grain boundaries,
(primary Widmanstétten ferrite), or on the austenite/allotriomorphic ferrite interfaces
(secondary Widmanstatten ferrite). When examined optically, it takes the form of long,
thin pointed plates, often emanating in parallel packets from the grain boundaries (Figure
4.1a), or as plates growing from alternate sides of the boundary (Figure 4.1b). The growth
of Widmanstétten ferrite leads to an invariant-plane strain (IPS) shape change with a
large shear component. This indicates that the substitutidnal lattice is displaced during
transformation. However, in order to minimise strain energy, pairs of plates grow together

in a mutually accommodating formation [72]. The interstitial carbon atoms are able to
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diffuse during growth without affecting the shape change. The elastically accommodated
strain energy accompanying growth is relatively small (compared with that for bainite
or martensite), consistent’ with the low undercooling below the Aes at which a,, can
form. The strain energy has been evaluated as about 50 J mol~! [72]. This has the
effect of raising the ferrite free energy curve and thus lowering the temperature below
which Widmanstdtten ferrite growth can in principle occur, Ae§ (Figure 4.2). As the
only diffusion during transformation is that of carbon ahead of the advancing plate tip,
the Widmanstatten ferrite transformation is said to occur by a paraequilibrium mode in

which the lattice change if achieved by a deformation.

4.1.2 Bainite

Bainite consists of a non-lamellar aggregate of ferrite and carbides and generally forms
at temperatures lower than Widmanstatten ferrite. It is usually classified into two forms.
Upper bainite forms at relatively high temperatures and consists of fine, bainitic ferrite
laths surrounded by carbide particles, the latter having formed from the carbon-enriched
residual austenite surroundiqg the laths. Lower bainite forms at lower temperatures where

a fine dispersion of carbides can also precipitate directly within the ferrite laths.

The decomposition of austenite to bainite can be considered to occur by a displacive
mechanism, giving rise once again to an IPS shape change in the transformed region [30].
The stored strain energy due to this shape deformation, which is a single IPS, is larger
than for Widmanstétten ferrite, and has been evaluated as 400 J mol~! [72]. Umemoto
et al. using their own thermodynamic program re-calculated the stored energy values as
300 and 600 J mol~!, respectively, for Widmanstiitten ferrite and bainite [70]. Bainite
transformation usually initiates at the prior austenite grain boundaries, where sheaves of
bainitic ferrite nucleate and grow into the austenite grains. Each sheaf consists of clusters
of parallel platelets called sub-units (Figure 4.3) which grow very rapidly once nucleated
and, it is suggested, without diffusion [74]. Any excess carbon in the bainitic ferrite is

partitioned soon after the growth is arrested, into the residual austenite between the plates.

The driving force for the diffusionless growth of bainite can be determined from the
difference in the free energies of austenite and ferrite of the same composition, AG" %,
at a particular temperature. The locus of points on the Fe-C phase diagram at which
AGY7?** = 0 and thus the composition at which bainite growth must cease describes the
T, line. Allowing for the stored energy shifts this line to lower temperatures and it is
labelled T) (Figure 4.4). The diffusionless growth of bainitic ferrite becomes impossible
when the carbon concentration of the residual austenite reaches the T composition. The

maximum volume fraction of bainite that can form at a particular temperature, determined
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40 pm

Figure 4.1: Optical micrographs showing the morphology of Widmanstitten ferrite, (a)
paralle] wedge-shaped plates emanating from one side of the austenite grain boundary, (b)

plates growing from alternate sides of the boundary.
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Figure 4.2: Free energy curves and corresponding phase boundaries for allotriomorphic

ferrite (solid line) and Widmanstatten ferrite (dashed line) showing the effect of the

50 J mol~! stored energy.

from the phase diagram is:

T — T ‘
o = o (4.1)
t1 -
Sub-unit
2
t3
t4

Austenite Grain Boundary

Figure 4.3: Schematic illustration of a bainite sheaf showing the repeated nucleation of

sub-units at increasing times, ¢; to t4 (after Bhadeshia [30]).
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Gibbs free energy, G

Temperature

Figure 4.4: Calculated phase boundaries illustrating the T, and T} curves and the driving

force for diffusionless transformation, AGY"™2,

4.1.3 Displacive Nucleation
4.1.3.1 Nucleation Thermodynamics

The maximum driving force, AG,,, available for the formation of a Widmanstétten ferrite
or bainite nucleus is the same as for an allotriomorphic ferrite nucleus, Section 3.1.1.1,
and can be evaluated using the parallel tangent construction. A criterion must then be
found to determine exactly when this driving force is sufficient for nucleation to begin.
A time-temperature-transformation (TTT) diagram can be considered to consist of two
overlapping C-curves — the upper curve representing reconstructive transformation and
the lower one displacive reactions [25]. This lower curve has a characteristic flat top,
representing the highest temperature, T}y, at which displacive transformation of austenite
to ferrite is possible in a particular steel. Thus, T} could correspond to either the Wid-
manstatten ferrite or bainite start temperature. The transformation start temperature
is usually defined as the highest temperature at which a phase is observed to form at a
detectable rate [30]. Bhadeshia calculated AG,, as a function of steel composition at T}
for a wide range of different steels for which the “bainite” start temperature had been
carefully determined [73]. It was found that a plot of AG,, against T}, produced a straight
line [72]. This curve was designated the universal nucleation function, Gy, and has the
form:

Gn =3.637T — 1537 Jmol™? (4.2)
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It was also noted that if the driving force was calculated assuming no partitioning of
carbon then for some compositions the driving force was positive, indicating that there
must be redistribution of carbon during nucleation. Ali [75] further tested this theory
on a standard set of TTT curves [51] and other published data [76, 77]. Regardless of
whether T}, corresponded to the start of Widmanstatten ferrite or bainite formation, the
same linear dependence of AG,, on temperature was found. Thus, it was considered that
the nucleation mechanism of Widmanstatten ferrite and bainite is identical, subsequent
growth conditions determining into which phase a potential nucleus develops. The first
criterion that must be satisfied for a displacive transformation to occur is thus that the
driving force for nucleation must exceed that required to obtain a detectable degree of

transformation (point A on Figure 4.5):
AG, < Gn (4.3)

If Widmanstétten ferrite is to form, then the driving force available for its growth must be

sufficient to overcome the stored energy of 50 J mol~!. The second criterion is, therefore:
AGTH < 50 Jmol ™! (4.4)

where AGY™7'*% is the chemical free energy change for transformation from austenite to a
mixture of austenite and ferrite (point B). Alternatively, bainite will form instead if there
is sufficient free energy available for the diffusionless formation of ferrite from austenite of
the same composition, AG"™%, below the T temperature, allowing for the 400 J mol™!

stored energy. The second criterion then becomes (point C):

AG?* < —400 Jmol™! (4.5)
The temperature at which the two criteria are first satisfied defines the the Widmanstatten-
start temperature, W, or the bainite-start temperature, By, respectively, Figure 4.5.
4.1.3.2 Nucleation Mechanism

The universal nucleation function Gy is directly proportional to temperature, and this fact
can be used to shed some light on a possible mechanism for displacive transformation [30].

Equation 3.27 shows that the nucleation rate per unit volume varies with temperature as:

I, x I/exp{—k(;T} (4.6)
Rearrangement gives:
-G* x kT (4.7)
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-50 J/mol
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Free Energy, G

B, Ws
Temperature

Figure 4.5: Schematic illustration of the driving forces for nucleation and growth of Wid-

manstatten ferrite and bainite, and how they define W, and B,.

where
k= kpln{l,/v} (4.8)

In the derivation of the Gy function, T, corresponds to a temperature where the same
detectable nucleation rate is obtained for all steels. It follows that  is a constant for all
steels and is negative, as the nucleation rate must be less than the attempt frequency v,
thus:

Gn x KT (4.9)

Therefore:
G* x Gn (4.10)

In classical nucleation theory there is an inverse square relationship between the activation
energy and driving force for nucleation:

1

G* x e

(4.11)

It can be clearly seen that this is not consistent with the nucleation of Widmanstatten
ferrite and bainite described above. An alternative approach is provided by martensitic
nucleation theory [78, 30], in which pre-existing embryos in the austenite become activated
and develop into the new phase. In martensite, the embryos are considered to be a closely
spaced group of stacking faults formed by the dissociation of other defects already present

in the austenite. The nucleation event occurs when these defects become unstable and
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dissociate, causing stacking faults on the close-packed planes and eventually forming a
region of product phase. The nucleation kinetics are controlled by the movement of the
embryo/matrix interface, which requires the passage of dislocations. The matrix opposes
the dislocation motion by a frictional force, but the stacking fault energy (which normally
opposes dissociation) becomes negative at the transformation temperatures concerned and
thus actually drives the transformation by pushing the dislocations against the lattice

resistance.

The free energy of the fault plane per unit area, G, is given by [30]:
Gr =nppa(AGchem + AG,) + QG,Ya{np} (4.12)

where AGcpem is the chemical free energy difference between the parent and product
phases, AG, is the strain energy and 0., is the embryo/matrix interfacial energy per unit
area, a function of np, the number of close-packed planes involved in the faulting process.
p4 is the density of atoms in the close-packed planes in moles per unit area. The force
acting per unit length of the array of np dislocations bounding a fault embryo is np7,b,
where b is the Burgers vector and 7, is the magnitude of the frictional shear stress in the
lattice resisting the dislocation movement. The friction opposes the faulting, and thus the

limiting condition at which a defect becomes unstable and “nucleation” occurs is:
Gp = —npt,b (4.13)

From the theory of thermally activated plastic deformation, in the absence of an applied
shear stress, the activation energy for a dislocation to glide from one equilibrium position
to another is given by G% [30]. The application of a shear stress 7, reduces this barrier to
G*:

G* =G} — (1, — 1) V" (4.14)
where v* is an “activation volume” and 7, is the athermal resistance to dislocation motion.

Combining equations (4.12) and (4.13) and substituting for 7, into equation (4.14), the

activation energy can be expressed as a function of the chemical driving force:

* * pA 20 <] * pA’U*
G*=Gi+ [ru + (—5—) AG, + (n;b)] v* + ( > ) AG chem (4.15)

It follows that G* is directly proportional to the chemical driving force, in contrast to
the classical nucleation theory of heterophase fluctuations. This suggests that the mecha-
nism for Widmanstétten ferrite and bainite nucleation is displacive and similar to that of
martensite, rather than reconstructive like allotriomorphic ferrite, although it still requires

the partitioning of carbon.
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4.1.4 Displacive Nucleation Rate

The classical equation for the nucleation rate per unit volume,

I, =K, exp{—gT} (4.16)

can be modified in view of the linear dependence of G* on driving force, AG,, to give the

displacive nucleation rate per unit volume:

Iab-——Klexp{—— 7T
where K; are empirical constants [79]. This original model of Bhadeshia was corrected and
extended by Rees and Bhadeshia [80] to be consistent with the assumption made when
deriving Gy that all steels have identical nucleation rates at W:

_ K, AGy,
I, = K, exp{ BT (1 + %, )} (4.18)

where K is a constant expressing the density of nucleation sites as a function of austenite

grain size,
K, =(TK)™! (4.19)

T is the mean lineal intercept austenite grain size, K} is an empirical constant (see Table
4.1), Ky = 2065 J mol~! and K4 = 2540 J mol~!. AG,, was calculated allowing for the
change in carbon concentration of the austenite as transformation proceeds, by varying it
between its initial value, AG?,, and final value as a function of the extent of transformation,

Eozb: .
AG, = AGS, — Eay (AG,‘,’n — GN) (4.20)

The sub-unit model first proposed by Oblak and Hehemann [81] suggested that bainite
sheaves grow by repeated nucleation of small sub-units with sympathetic nucleation of
new sub-units occurring at the tips of existing ones. Transmission electron microscopy
evidence for this was presented by Bhadeshia and Edmonds [82]. Each sub-unit grows
rapidly to its maximum size, but the overall growth rate of the sheaf is slower, restricted
by the incubation time between nucleation of successive sub-units. The size of each sub-
unit is thought to be restricted by dislocation jamming at the interface [82]. As the
sub-units can nucleate on previously formed bainite plates as well as the austenite grain
boundaries, the nucleation rate of bainite is enhaﬁced by a function of the extent of reaction
(1+ B84,€s,), Where 6, is the maximum bainite volume fraction as defined earlier and 3

is the autocatalysis factor [80], a function of the carbon content of the alloy:

B=n(l- A7) (4.21)
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K{ Kz )\1 )‘2
6.78 x 10710 2,065 x 10* 139.00 25.46

Table 4.1: Optimised values of constants in original bainite model.

and A; and Ay are empirical constants (see Table 4.1). Thus, the autocatalytic nucleation
is inhibited by the carbon build-up as the austenite enriches, and is less significant in
higher carbon steels than in lower carbon steels. Autocatalysis is common in martensitic
transformations where extra defects are required to explain the rapid transformation rates
[83].

4.1.5 Growth Kinetics

The growth of Widmanstétten ferrite plates is controlled by carbon diffusion in the austen-
ite ahead of the plate tip. If the extent of the carbon diffusion field ahead of the parti-
cle/matrix interface increases with particle size then the particle will grow at a parabolic
rate, the growth rate decreasing with time as the distance over which the solute must
diffuse increases (e.g. allotriombrphic ferrite). However, the diffusion controlled length-
ening of plate or needle-shaped particles such as Widmanstétten ferrite can occur at a
constant rate, because solute can be rejected to the sides of the particle and thus the plate
tip is always growing into unenriched austenite. Trivedi [84] proposed a shape-preserving
solution for the diffusion-controlled growth of plates, assuming their shape was that of a
parabolic cylinder. The steady-state plate lengthening rate, Vz, at a temperature 7' is

obtained by solving:

fi = (xp)t exp{pperte(pt} |1+ (iw) fls2{p}] (4.22)
where _
T, —T

h= (4.23)

and the Péclet number, p, is given by:

_ Viry

_ LM 4.24
P=75 (4.24)

In these equations, r, is the plate tip radius, r,, the critical radius at which growth
ceases (see below), S is a function of p numerically evaluated by Trivedi to correct for the
change in composition with curvature along the interface, @, is the mole fraction of carbon
in austenite at the plate tip, T is the mean carbon mole fraction of the bulk austenite away
from the tip and z*" is the carbon concentration of ferrite in equilibrium with austenite

of composition 7%, The diffusion coefficient of carbon in austenite, D{z, T}, is strongly
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carbon concentration dependent, and will vary between the plate tip and the bulk austenite
compositions. Thus, a weiéhted average diffusivity value, D, is used [85]:

D= / : —Diw’—T}dm (4.25)

r Ty

The model of Siller and McLellan [32], can be used to calculate D{z,T}. z, can differ
significantly from 27 due to the Gibbs-Thompgson capillarity effect [37]. Capillarity allows
for the change in equilibrium concentration at the interface due to the curvature of the
interface — as curvature increases, @, decreases, until at a critical plate tip radius z, = &
and plate growth ceases. For finite r,,

z, =27 [1 + (—I:—>] (4.26)

Tw

where I is the capillarity constant:

e (a‘vaVo’]‘> [ (1 - 27) ] 1
“\"RT (zov — z79) [1 + dd(llna::"‘) ]

Here, 0,4 is the interfacial energy per unit area (0.2 J m~2), a7, is the activity of carbon

(4.27)

in austenite and VJ* is the molar volume of ferrite. Vi, passes through a maximum as
ry increases. At small radii, the excess carbon can diffuse away from the plate rapidly,
but there is also a larger surface/volume ratio which means higher energy in creating the
plate surface. At larger radii, the energy will be reduced but diffusion will be less rapid.
The Trivedi model provides a relationship between plate tip radius and growth velocity,
but without assigning a specific velocity to an alloy composition. To fix a value for Vj,
Zener’s assumption that the plate will tend to adopt a tip radius such that its velocity is
maximised is used. Thus, the “maximum” radius can be determined by differentiation,
and V[**? obtained by substitution of this value back into the equations. There is no
experimental justification for this assumption, but it provides an upper bound on the

growth rate.

Experimentally measured Widmanstatten ferrite growth rates have been compared
with those calculated using the above theory, allowing for a stored energy of 50 J mol~!
[72, 75]. It was found that the measured rates were generally an order of magnitude higher
than the calculated values, even when using Zener’s maximum growth rate hypothesis.
Applying the same theory to experimental bainite growth rates determined by a large
number of researchers and incorporating a higher stored energy of 400 J mol~! revealed
much larger discrepancies between experiment and theory [75, 86]. It was evident that
the growth of bainite sheaves always exceeded that calculated on the basis of carbon-
diffusion controlled transformation. This provided further indication that the bainite
transformation is diffusionless, with the excess carbon being rejected from the ferrite after .

the transformation is complete.
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4.1.6 Overall Transformation Kinetics
4.1.6.1 Widmanstdtten Ferrite

The overall kinetics of the Widmanst&tten ferrite transformation can be modelled using
the classical Johnson-Mehl-Avrami analysis as described in Section 3.2.1. An alternative
model, targeted at weld microstructures, was created by Bhadeshia et al. [87]. The
austenite grains were approximated as hexagonal prisms, with a layer of allotriomorphic
ferrite initially formed around the boundaries. The half-thickness, ¢, of this layer was

found by integration:

t ] 1
q= / —ont~z dt (4.28)
=0 2

where ¢ is the time since the start of the transformation, ¢; is an incubation period after
which Widmanstéitten ferrite formation becomes feasible and «; is the rate constant for
parabolic thickening of allotriomorphs under carbon diffusion-controlled growth. The re-
sulting ferrite volume fractions were a factor of two smaller than experimental results and

so a corrected half-thickness, ¢/, was determined to allow for this.

Widmanstétten ferrite was assumed to nucleate at allotriomorphic ferrite/austenite
boundaries and grow into the austenite grains as packets of thin, lath-like triangular
prisms. Its formation is encouraged by large austenite grains, which reduce the likelihood
of impingement‘of the grain boundary ferrite allotriomorphs, providing more room for
the Widmanstitten ferrite to grow. The amount of v/a boundary area per unit length
of austenite grain was 3(L — 4¢’C1), where C} is a geometrical factor. The fraction of
this area which can actually nucleate was designated C; and was a constant for all steels.
The plate volume was considered proportional to the length in the direction of growth, the
other two dimensions being fixed by sideways impingement between adjacent plates within
a packet. The high plate lengthening rate, as discussed in the preceding section, justifies
the assumption made that Widmanstétten ferrite forms approximately isothermally, even
under continuous cooling conditions, because the transformation reaches completion in
a fraction of a second. The model assumed that allotriomorphic ferrite growth ceased
at a temperature 7T} to give way to Widmanstitten ferrite, and does not deal with the
simultaneous formation of both phases, which is what happens in reality. The volume of

a plate nucleated at a time T at a later time ¢ was:
Vr = C3VL(t -_T = tl) (429)

Assuming that there was no interference between plates growing from other areas of the

v/a boundary, then the volume fraction of Widmanstétten ferrite formed from 7 = 0 to
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7 =1 was:

_3Cy(T - 4¢'Cy) [t
(8L%/4Cy)  Jr=0

where I, 3 is the nucleation rate per unit area of 7/« interface, and Cj is a constant.

C3VL(t - t1 - T)Iw,b dr (430)

4.1.6.2 Bainile

The standard Johnson-Mehl-Avrami approach to transformation kinetics has been applied
to the bainite reaction with limited success, even when empirically fitting the equation
to experimental results [30]. There is also the problem that the bainite reaction usually
comprises the simultaneous formation of the bainitic ferrite and carbides. The two re-
actions have different transformation mechanisms and until recently there has been no
method for modelling such behaviour. Bhadeshia [79] proposed a model for the overall
transformation kinetics of upper bainite, aimed at steels where the carbide (cementite)
precipitation reaction is retarded due to alloying with elements such as silicon. The model
uses the universal nucleation function and displacive nucleation rate equation derived ear-
lier in this chapter to determine the thermodynamics and kinetics of the transformation.
Enrichment of austenite with carbon is permitted and the transformation is stopped at the
T! boundary. The autocatalytic sub-unit model is utilised, each sub-unit having a fixed
volume u, taken as 0.2 x 10.0 X 10.0 um?® [88]. The number of bainite sub-units nucleated

per unit volume in a time dt is given by:
Noy = (14 Ba,8a;) 1o, dt (4.31)

where &,, is the normalised volume fraction of bainite (with &,, = X—;’f where V,,, is the
actual volume of bainite formed) and 6,, is the maximum volume fraction of bainite that
can form (equation 4.1). Converting extended volume into actual volume, the increment
in bainite volume fraction between times ¢ and ¢ + d¢ can be expressed as [80]:

UKl

7 (1= &a) (1 + B0, €a,) Loy dt (4.32)

dfab =

The equation was rewritten to calculate time ¢ as a function of the normalised volume
- fraction, and optimised over a set of experimental data [79] to determine the unknown

constants K1, K3, A\; and A [80]. Their values are given in Table 4.1.

The predictions of the model for the evolutibn of bainite volume fraction with time
were successfully tested against three different experimental steels — 0.22 C 2.03 Si 3.0 Mn
wt.%, 0.39 C 2.05 Si 4.08 Ni wt.% and a 300M steel — isothermally transformed at a series

of different temperatures [80].
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4.2 The Martensite Transformation

Martensite can be a very hard phase often formed by rapid quenching of austenite to room
temperature. It éommonly consists of a supersaturated solid solution of carbon in ferritic
iron. The ferrite forms with the same composition as the austenite by a diffusionless shear
mechanism, with not even the carbon atoms able to partition. The carbon trapped in
the interstices distorts the ferrite lattice, leading to strains which harden the material.
Optically, martensite has a lath-like or lenticular morphology. In the low alloy steels of
interest in this work, it generally forms at fast cooling rates where there is insufficient time

for diffusional transformation and other displacive transformations are suppressed.

4.2.1 Thermodynamics of the Martensite Transformation

The martensite transformation during continuous cooling is athermal, depending only
upon temperature rather than the time at that temperature. It starts at a well-defined
M, temperature and continues whilst temperature decreases until the martensite finish
temperature, M;. The well-known Andrews formula [89], verified by many workers over

the years, can be used to calqulate M, as a function of the alloy content of the steel:
M,(°C)) = 539 — 423C — 30.4Mn — 17.7Ni — 12.1Cr — 7.5Mo  wt.% (4.33)

A less empirical approach requires the calculation of the free energy change for the for-
mation of ferrite of the same composition as austenite, AG*™*". Hsu and Hongbing [90]

determined M, from:
AGY™ = —1394 — 5880% + 0.42M, (4.34)

Bhadeshia [91] derived an expression for the driving force for the martensitic transforma-
tion based on the Lacher, Fowler and Guggenheim formalisms as applied by Aaronson et
al. [20] with corrections by Shiflet et al. [92]. The M, can then be evaluated by balanc-
ing this driving force against the available chemical free energy change accompanying the
transformation at the M, temperature, AGXZ“,, and solving for the absolute temperature,
T, Figure 4.6.

4.2.2 Kinetics of the Martensite Transformation

Martensite can grow at speeds approaching the speed of sound in steels and is not strongly
thermally activated [12]. Nucleation begins at M, and its mechanism is still the subject
of much research. If the classical nucleation theory of random fluctuations is applied, the

activation energy barrier for nucleation would be too large to be feasible [95]. The theory
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Figure 4.6: Schematic illustration of how the M, temperature can be determined.

of pre-existing embryos discussed in Section 4.1.3.2 has been postulated instead [78], in
which an array of defects already present in the lattice becomes unstable and dissociates

to form regions of the new phase.

" A general equation to describe the extent of the overall austenite-martensite transfor-
mation in plain carbon steels was derived by Koistinen and Marburger [96]. They measured
the volume fraction of retained austenite, V., in a series of steels quenched at various tem-
peratures, T}, below M, and found that the results could be fitted to a straight line. The
rest of the steel was considered to have transformed to martensite, volume fraction V.

Thus:
Vy=1-Vpy =exp{-0.011(M, - T,)} (4.35)

for Ms; > T, > —80°C. The simple form of the equation implies that factors such as steel
composition and austenite state affect the fraction of martensite only through their effect
on My, the actual amount of martensite depending only on the degree of undercooling
below M,. Magee [83] presented a theoretical justification of this equation, in which it
is assumed that the number of new martensite plates, N, that form per unit volume of

austenite is proportional to the driving force AGY™":
dN,, = —C3 d(AG"™?) (4.36)

where C; is a constant. If V is the average volume of a newly formed plate, it can be
shown that: ,
_ N+

1-Vp, =exp {VCzi(—A——dC—TY—J—,———l(Ms - Tq)} (4.37)

assuming that the rate of change of driving force with temperature is constant. The above

relationship has a similar form to equation (4.35). Khan and Bhadeshia [97] re-evaluated
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the Koistinen and Marburger equation with new experimental data. They found a good
fit apart from at the early stages of reaction where the data deviated from linearity. It
was suggested that this was due to the neglection of autocatalysis effects by the theory,
the number of pre-existing defects in austenite not being large enough to account for the
very rapid transformation kinetics of martensite. The additional defects required were
attributed to autocatalysis, in which the martensite plates induce new embryos into the
austenite which can then also transform. On this basis, Khan and Bhadeshia derived a
new relation between martensite fraction and undercooling:

_In(1-Vy)

Vin

where Cg is a constant. A slightly better correlation was found with the experimental

=1+ CsV(M; —T,) (4.38)
data than when using equation (4.35).

4.3 Summary

The application of displacive transformation theory to the decomposition of austenite to

Widmanstatten ferrite, bainite and martensite has been reviewed.

The criteria for nucleation of Widmanstéatten ferrite and bainite are considered to be
the same, and utilise a universal function to determine the driving force for a detectable
degree of transformation. The energy subsequently available for growth of a nucleus
determines into which phase it develops. The growth of both phases involves an IPS
shape change and thus a stored strain engrgy. The activation energy barrier for displacive
nucleation has been found to have a linear dependence on the chemical driving force,
in contrast to the classical theory of nucleation. A different nucleation rate equation is

therefore utilised for displacive transformations.

A theory for the carbon diffusion-controlled growth of Widmanstéatten ferrite plates has
been described, which enables rapid lengthening rates as carbon is rejected to the sides of
the plates. The bainite transformation is considered to be diffusionless, the carbon being
partitioned from the sub-units after transformation is complete. Bainite growth ceases
when the T composition is reached. The driving force for the diffusionless transformation

is that of austenite to ferrite of the same composition.

Existing models for the overall transformation kinetics of Widmanstéatten ferrite and
bainite have been described. The Widmanstatten ferrite model assumes that allotriomor-
phic ferrite formation ceases at W,. The bainite model includes an autocatalytic nucle-
ation mechanism for the sub-units which make up the bainite sheaves. The extent of

the martensite transformation can be simply determined from the degree of undercooling
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below M,. Therefore, there are suitable theories on which to base transformation models

for the displa,cive phases.
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Chapter 5

Existing Phase Transformation
Models

The large advances in computing technology over the past 20 years have had a significant
impact on modelling work, enabling rapid solution of iterative equations and making
possible the development of powerful models. Many researchers have created models
based on the fundamental physical and metallurgical principles of phase transformations,
utilising some of the thermodynamic and kinetic theories described in preceding chapters,
with the aim of developing a generally applicable model for a wide range of steels. Some of
these models are so-called “complete” models, often encompassing the thermomechanical
processing and recrystallisation of austenite prior to cooling, as well as the transformation
products — allotriomorphic ferrite, pearlite, Widmanstatten ferrite, bainite and martensite.
Such models can form a basis for property prediction such as Jominy hardenability [99] or
yield strength. Other workers have concentrated on detailed analyses of transformation to |
particular phases, such as allotriomorphic ferrite [69, 98] or pearlite [99], or have produced
models to predict time-temperature-transformation (TTT) diagrams [2, 25, 100, 102]. As
this thesis is concerned primarily with the computation of the whole microstructure after
hot-rolling of austenite, an overview of some of the “complete” physical models in the

literature is provided in this chapter.

5.1 “Complete Models”

Several researchers, notably in Japan, have developed models encompassing all the pos-
sible phase transformations from austenite during cooling, often coupled with models for
thermomechanical procesS’ing in the austenite field. The structure of these models typically
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follows tha,t outlined in Flgu A Maany' f.the models are concerned with transforma-

tion during isothermal hwolci n@ at tempe‘a, 'tl)ures below the Aes temperature, as well as
continuous cooling and some have been extended to predict mechanical properties, stch

ag hardness and tensile strength.

Umemoto et al. [70] developed a methodology to simulate the phase transformations
from work-hardened austenite, considering both continuous cooling and isothermal trans-
formation. The Scheil analysis was used to approximate continuous cooling as the sum of
short isothermal holding times at successive temperatures, and the extended and overall
volume fraction of each phase was computed at every temperature, using Cahn’s theory
of boundary nucleation kinetics [46]. Models for allotriomorphic ferrite, Widmanstétten
ferrite, pearlite, bainite and martensite were incorporated. The Hillert-Staffanson regular
solution model was used to calculate the thermodynamics for 10 elements under paraequi-
librium conditions. Classical nucleation theory was applied for allotriomorphic ferrite and
pearlite, followed by parabolic and linear growth, respectively. The displacive nucleation
thermodynamic criteria used to determine the start of Widmanstatten ferrite and bainite

transformation were slightly different from those of Bhadeshia in Chapter 4, based on

different thermodynamic data. The universal nucleation function was evaluated as:
Gn = 4204 — 5.96(T — 273) Jmol™! . (5.1)

and the stored energies for growth of Widmanstétten ferrite and bainite were 300 and
600 J rhol'l, respectively. Growth kinetics were derived from Trivedi’s solution for
diffusion-controlled growth of plates [84]. Martensite transformation followed Koistinen
and Marburger’s equation [96]. The program was designed primarily for thermomechani-
cally processed high strength, low alloy steels and allowed for the effect of the deformation
on austenite transformation kinetics and ferrite nucleation sites. The free energy of the
work-hardened austenite was evaluated by adding the strain en,érgy associated with the
dislocations to the energy of the undeformed austenite. The strain energy per unit volume

was:

m:ub Ry
W=V"p 4K1nb

where V. is the molar volume of austenite, p the dislocation density, 4 the shear modulus,

(5.2)

b the magnitude of the Burgers vector of the dislocation, R4 the dislocation spacing and

K a constant.

Saito and Shiga [104] similarly produced a simulation for microstructural evolution
during thermomechanical processing of Nb-containing HSLA plates. They considered
the evolution of the austenite grain structure during deformation and recrySta;lliSation,
austemte grain boundary precipitation and dissolution of carbomtndes (usmg a classi-
cal nucleation model), followed by transformation to allotmomorphlc ferrlte, pearhte and
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bainite. The quasichemical model was used to evaluate the thermodynamics under parae-
quilibr’iurﬁ‘ éonditions.” Parabolic growt‘h{bf@lxlotriomorphic ferrite and volume diffusion-
controlled pearlite growth kinetics were appli'éd. Bainite transformation initiated once the
400 J mol~! stored energy for growth was exceeded, but the rest of the bainite model just
used similar equa,tioné to those for pearlite. Overall transformation kinetics were mod-
elled with the Johnson-Mehl-Avrami (JMA) theory. The program can predict continuous

cooling transformation (CCT) diagrams and ferrite grain size.

The model of Anelli and co-workers [57] allows a stepped cooling/holding profile to
be considered as well as linear cooling. It predicts the phase transformations of thermo-
mechanically processed steels from the austenite region, focussing on accelerated cooling
schedules in a plate mill and low C-Mn or Nb microalloyed steels. The elements considered
were C, Si, Mn, Ni, Mo and Nb. The effect of austenite deformation was considered as an
increase in the dislocation density per unit area, p, and thus strain energy per unit volume,
W, where W = —74p and 7y is the energy per unit length of the dislocation line. Both dy-
namic and static recovery were allowed for in a limited way, but not recrystallisation. The
cooling schedule was divided into small time increments and the volume fractions of all
five phases were determined as a function of time and temperature in each interval using
standard transformation kinetics theory. Classical nucleation theory with a coherent “pill-
box” shaped nucleus was applied for allotriomorphic ferrite transformation. A statistical
distribution model due to Abbruzzese [55] was invoked to follow the nucleation and growth
of ferrite nuclei, thus a ferrite grain size distribution could be obtained throughout the
transformation. Pearlite transformation started when the enriched austenite composition
exceeded the austenite/cementite phase boundary, and growth proceeded under boundary
diffusion control. Widmanstétten ferrite and bainite formed when the appropriate dis-
placive nucleation criteria were satisfied (as in Umemoto’s model) and grew according to
Trivedi’s solution for diffusion controlled growth of plates. Widmanstétten ferrite was nu-
cleated according to elassical heterogeneous kinetic theory whereas bainite was assumed to
nucleate homogeneously within the austenite grains. Koistinen and Marburger’s equation
was again applied for martensite transformation. The model was successfully validated

with both laboratory and industrial data.

Lee and co-workers [105] deveioped a mathematical model for transformation in Nb
microalloyed steels, considering Fe, C, Mn and Nb They used the Hillert-Staffanson two
sub-lattice model [106] to determine phase boundaries and free energies under local and
paraequilibrium conditions. Stored energies of 300 and 600 J mo,l“‘1 determined by Nanba
et al. [107] were used to determine W, and By, respectively. Classical nﬁ'eleatioﬁ theory
was applied for ferrite and a coherent pillbox nucleus was assumed for ferrite, pearl‘ite and
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bainite, Precipitation- of gpherical NbC nuclei was also included. The austenite grains
were taken‘to be spheres and grain edge,nﬁcleation was assumed to dominate. The overall
transformation kinetics were calculated using the JMA theory. Allotriofhorphic ferrite
ellipsoids of aspect ratio 3:1 grew at a parabolic rate controlled by bulk diffusion of car-
bon in austenite. Under local equilibrium, Mn boundary diffusion was rate controlling
during nucleation, whereas under paraequilibrium bulk carbon diffusion was preferred.
Widmanstitten ferrite and bainite formed as ellipsoids with an aspect ratio of 10:1, under
carbon boundary diffusion control during both nucleation and growth. The bainite thick-
ehing kinetics were taken to be 5 times faster than those of Widmanstétten ferrite. Pearlite
was assumed to form under paraequilibrium, with carbon boundary diffusion control dur-
ing nucleation and bulk carbon diffusion control during growth. Calculated TTT and
CCT curves were compared successfully with dilatometric results for C-Mn and C-Mn-Nb

steels.

Suehiro et al. [108] produced a model for hot rolling of low carbon Si-Mn steels, the
effects of composition on the thermodynamic parameters being included by the methods
of Uhrenius. Classical nucleation was assumed for allotriomorphic ferrite with the Zener-
Hillert theory used for ferrite and bainite growth. Pearlite growth was volume diffusion

controlled. The transformation was divided into two stages, in which different overall

" transformation kinetics equations applied. In the early stages, a nucleation and growth

model was used, whilst at later stages site saturation was assumed. The model still relied
on an experimentally determined B, temperature and required empirical parameters in
the kinetic equations, and thus is restricted to the low carbon steels for which it was

designed. It was linked with models for hot deformation and strength prediction.

Denis et al. modelled transformations during cooling to allotriomorphic ferrite, pearlite,
bainite and martensite [109]. Overall kinetics for the first three phases were based on the
JMA theory, with the Koistinen and Marburger relation used for martensite. Phase bound-
ary compositions were determined from the equilibrium phase diagram and the Hultgren
extrapolation. Scheil’s analysis was used to convert a series of small isothermal time steps

into continuous cooling. A correction was made to account for non-additivity at the tran-

" sition from pearlite to bainite transformation. The model was coupled with a similar one

for transformation to austenite during heating.

5.2 Limitations of Existing Models

The “complete” models discussed calculate the transformation of austenite to at least

allotriomorphic ferrite, pearlite and bainite. Their thermodynamics are based on variants
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of the ~regular solution model. Several models considered some of the effects :of deformed
austenite on the driving force for subsequent transformation. Paraequilibrium was the
chosen growth mode in all cases. Alldtriomorphic ferrite was modelled usiﬁg classical
nucleation theory and parabolic, carbon diffusion-controlled growth. Pearlite growth was
generally considered to be carbon volume diffusion-controlled. The universal nucleation
function and displacive nucleation criteria were used to determine W, and B,, although
the values of the stored energies and the approach for the subsequent growth kinetics
of bainite varied between models. The JMA overall transformation kinetics theory was
consistently adopted for all phases except martensite, where Koistinen and Marburger’s

theory was preferred.

A complete metallurgical model for transformation after hot rolling must consider all
the phases that can form, which is not the case in several of the models described. A
large number of different alloying elements are used in modern steels, so as many of these
as possible should be included in the thermodynamic parameters of a model to enable
application to a wide range of steels. Many existing programs focus only on certain
elements such as C, Mn, Si and Nb, thus restricting their usage. The multiple effects
of the austenite deformation on subsequent transformation must also be fully considered,
as the driving forces for growth and nucleation, and the number of nucleation sites are
all affected. Empirical equations, particularly for transformation-start temperatures, are
still often used, but these could be replaced by considering the fundamental theory of the
- transformation. Ideally, the number of empirical parameters should be minimised to make

the model generally applicable.

A key issue in all of these models is deciding when transformation of one phase stops
and another begins. This is usually considered to occur at the transformation-start tem-
perature of the new phase, as the overall transformation kinetics theory is only valid for
formation of one phase at a time. The transformations are thus forced to occur sequen-
tially, whereas in reality simultaneous transformation is possible and has been observed.
Even if the thermodynamic criteria for the formation of a new phase are satisfied this does
not necessarily require that the previous phase immediately ceases growing. Consideration
of how to solve this problem was a major component of the new transformation model

developed in this research.
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The Transformation Model

The overall aim of this research was to produce a computer-based model of the phase
transformations which occur in low alloy steels on cooling from the austenite phase field,
and thus to predict the final room temperature microstructure of the steel. Ideally, the
model should contain as few empirical parameters as possible, instead using fundamental
métallurgical theory so as to be applicable to a wide range of steel compositions. The
starting point was a series of existing theories and models for different phases, which were
to be extended, combined and validated to produce a coherent transformation model. The
approach for each phase is described in turn in this chapter. Validation of the individual

and combined models is discussed in a later chapter.

6.1 Allotriomorphic Ferrite

The foundation of the work was a calculation of the allotriomorphic ferrite transformation
at a constant cooling rate from austenite of specified composition and grain structure
[69]. Allotriomorphic ferrite will be the first phase to form on cooling below the Aes
temperature, and thus it is expected to significantly affect subsequent transformations to
other phases. It is also the dominant phase in the low carbon, low alloy steels with which

this work is particularly concerned.

The effects of 11 elements are included - C, Si, Mn, Ni, Mo, Cr, V, Co, Cu, Al and W,
for the purpose of (a) calculating the austenite/ferrite paraequilibrium phase diagram, (b)
the associated free energy changes for both reconstructive and diffusionless transformations
and (c) the effect of substitutional solutes on the diffusivity of carbon in austenite. The

basic method is according to Zener and has been described in Section 3.1.1.

The austenite grains were assumed to be equiaxed and of uniform size, defined by the
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grain size, d.,, which is a mean lineal intercept measured at random on random planes of
section. The necessary thermodynamic and kinetic parameters were calculated at fixed
temperature steps below the Aef (the paraequilibrium Aes temperature) until transfor-
mation was completed or stopped. A flowchart of the model is provided in Figure 6.1,

outlining the main operations.

The thermodynamic quantities, such as the driving force for transformation and the
paraequilibrium phase boundaries, were evaluated using the quasichemical theory as pre-
sented by Aaronson, Domian and Pound [20, 24] and Shiflet, Bradley and Aaronson [92],
allowing for the effect of the alloying elements via the free energy terms according to Zener
[23]. The driving force for formation of a ferrite nucleus was determined by the parallel
tangent construction described in Section 3.1.1.1, the optimum ferrite nucleus composition
being assumed to occur at the maximum free energy change. The paraequilibrium mode
means that only the diffusion of carbon has to be considered as the substitutional elements
do not partition; they simply affect the relative stabilities of the phases concerned. The
carbon diffusivity in austenite was evaluated by the method of Siller and McLellan [32],
which considers nearest neighbour interactions and the concentration dependence of the
diffusivity. Parabolic growth of ferrite allotriomorphs was assumed, and the rate constant

for one-dimensional thickening, oy, was found by numerical solution of equation 3.21.

Classical nucleation theory as described in Section 3.1.4 was used to describe the het-
erogeneous nucleation rate on the austenite grain boundaries, I,;. Separate equations
for nucleation on each of the three types of grain boundary site were used, with different
values inserted for the site density and interfacial energy shape factors at face, edge and
corner sites. The volume fraction of allotriomorphic ferrite formed at each temperature
was determined with the Johnson-Mehl-Avrami theory for overall heterogeneous transfor-
mation kinetics (Section 3.2.2.2). The extent of isothermal reaction £, at a time ¢ is given
by:-

€x=1—¢exp {—Svaltilv.' [/1 1 —exp {—%Ia,bngoﬁtz(l - ¢4)} d¢] } (6.1)

where 7, is the aspect ratio of the disc-shaped allotriomorphs, taken as 3 [35, 36], ¢ = "L{
and y is the distance to an arbitrary plane parallel to the boundary with which mtersectlon
of the discs is considered. &, is normalised with respect to the equilibrium volume of
allotriomorphic ferrite VQ,, where V is the total volume and €2, the equilibrium ferrite

fraction determined by the lever rule from the phase diagram (equation 3.1).

Hard impingement due to overlap of particles growing along the grain boundary and
from adjacent boundaries is accounted for in this theory. However, soft impingement due
to the partitioning of carbon is only approximated by assuming that the carbon is always

uniformly distributed in the untransformed austenite. The mean carbon content of the
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Figure 6.1: Flowchart outlining the operation of the new transformation model.
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enriched austenite, 7', at each temperature is given by a mass balance equation:
., T—=zYV,
TTi-V,
where V, is the volume of ferrite formed, 2*” is the carbon content of the ferrite and 7 is

(6.2)

the mean carbon content of the alloy as a whole. In reality the carbon distribution in the
austenite would obviously not be uniform but the problem cannot be rigorously treated
unless the microstructure is determined from ¢t = 0, with the location of every particle
fixed in space. Once the boundary is saturated (e.g. after 90% of the boundary area is
decorated with ferrite) then the number density of ferrite grains ceases to change. This
limiting number density can then be used to estimate the mean ferrite grain size (equation

3.41) if it is assumed that each grain occupies an equal volume.

In the initial model, the total volume of ferrite present at each temperature step during
continuous cooling at a constant rate was determined using the additivity principle [113].
The cooling curve was divided into a series of small, equal, isothermal time steps, d¢t. The
transformed volume V3 at a particular temperature, Ty, was determined by calculation
of the volume that would have formed if all the transformation had actually occurred by
isothermal holding at T3. The holding time, t,, is the equivalent amount of time that must
be spent at T3 to transform the total volume present at the previous temperature plus the
small time step, dt. Thus, the volume of allotriomorphic ferrite predicted by the model was
dependent on the accuracy of the Scheil approximation as well as the underlying theory
of transformation kinetics. The work described in Chapter 7 avoids this approximation

by numerically calculating only the increment in extended and real volume at each step.

6.2 Widmanstatten Ferrite

The formation of Widmanstétten ferrite from austenite was modelled using the theory
introduced in Chapter 4. The Widmanstatten ferrite start temperature, W,, was deter-
mined from the driving force for the transformation, allowing for the 50 J mol~! stored
energy for growth, and the universal nucleation function, G, using the criteria embodied
in equations 4.3 and 4.4. Below this temperature, displacive nucleation of Widmanstétten
ferrite plates can occur at a rate described by equation 4.17. Subsequent growth into
the austenite grains was modelled with Trivedi’s theory for diffusion-controlled growth of
parabolic cylinders assuming that the plates grow with a tip radius which maximises the

lengthening rate [84].
The original model due to Bhadeshia, Svensson and Gretoft [87] was specifically for

weld deposits where the austenite grains are columnar in shape. It also did not deal prop-

erly with the initiation of the Widmanstéatten ferrite transformation, which was considered
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to occur when the “C”-curves on the TTT diagram for the reconstructive and displacive
transformations intersected. The present treatment avoids many of these difficulties. Con-
sider a Widmanstatten ferrite plate, nucleated on an austenite boundary at a time 7 and
growing at a constant rate G,,. At a later time, ¢, the height of the plate above the bound-
ary will be ¢, = G(t — 7) and its width r,, = 9,¢, where 7, is the plate aspect ratio,
taken as 0.05. The area of intersection of the plate with a plane parallel to the boundary
is then A, = 7,G%(t — 7)%. Following the heterogeneous nucleation theory described in
Section 3.2.2.2, the change in extended area on one plane due to plates emanating from

one boundary in the time interval from 7 to 7 + d7 is:
dO:,, = 1uOplupGE(t — )2 dr (6.3)

where Oy is the total boundary area and I, is the Widmanstétten ferrite nucleation
rate per unit area of grain boundary. Noting that only particles for which ¢, > y can
contribute to the area and hence 7 < t — 7, integrating over all times from 7 = 0 to
T=1— C'% and substituting ¢, = Eﬁ’ where y is the perpendicular distance of the plane
from the boundary, we obtain the total extended area of a,, on one plane:

1
05 = 3MuOsLupGot’(1 - ¢;) (6.4)

Proceeeding as for allotriomorphic ferrite and integrating over all planes y from zero to

infinity, the extent of the Widmanstétten ferrite reaction, &,,,, is found to be:
1 1
€a, =1 —exp {——SUth [/ 1—exp {—gnwOwa,bGZ,t‘r"(l - qﬁf’u)} dqﬁw] } (6.5)
0

Widmanstatten ferrite can form competitively with allotriomorphic ferrite and its ki-
netics are strongly influenced by the amount of prior allotriomorphic ferrite transformed.
The carbon partitioned during allotriomorphic ferrite formation affects the growth and
nucleation rates of Widmanstatten ferrite. Hence, the models for the two phases were

tested together.

6.3 Pearlite

In the model, pearlite was allowed to form once the carbon content of the enriched austenite
fell within the area of the phase diagram defined by the Hultgren extrapolation of the
austenite/cementite and austenite/ferrite phase boundaries, Figure 6.2. The compositions
2", the carbon content of the austenite in equilibrium with cementite, and z®, the
carbon content of austenite in equilibrium with ferrite, on the diagram define the limits

of this region at the temperature T. The phase boundaries and growth kinetics were
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determined using an existing model due to Takahashi and Bhadeshia [64]. The interface
compositions were calculated assuming local equilibrium using a dilute solution method
due to Kirkaldy and co-workers, based on the equality of the chemical potentials of Fe, C

and a substitutional element X in ferrite, austenite and M3C carbides [1, 118].
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500 : - -
0 05 1o = 15
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Figure 6.2: Hultgren extrapolation of the austenite/cementite and austenite/ferrite phase

boundaries in the Fe-C phase diagram, indicating the region where pearlite formation is
possible (after [63]).

Pearlite does not form under paraequilibrium conditions, unlike ferrite, and so diffusion
of the substitutional elements must be considered. The model can allow for the diffusion of
a single substitutional element. The equation for the boundary diffusion-controlled growth

rate, as explained in Section 3.3.2, is given by:

. S2(z1 - 2¥) 1 S,
b _ - b X X/ — =L
Gb = 12KDks l-——-sa o (1 s> (6.6)
The factor K D%§ was derived by expressing it in the form [119]:
KD46 = Cx{X}exp {-Q—%—‘f{l} (6.7)

where C{X} and Qx{X} are empirically determined constants for each alloying element
X. The interlamellar spacing S and critical interlamellar spacing for zero growth rate S,
were estimated empirically [64] and it was assumed that S adopts a value consistent with
the maximum growth rate such that S = 25, with S, = %’ﬁ% 0«4 is the ferrite/cementite

interfacial energy, AH is the change in enthalpy between parent and product phases
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and AT is the undercooling below the eutectoid temperature, T,. The ratio between
the ferrite and cementite lamella spacings, S, and Sy, was assumed to be 7. Figure
6.3 illustrates these lamellae within a pearlite colony. Takahashi found good agreement

between calculated and experimental lamellar spacings and growth rates [64].
D,

- growth direction

............ i of lamellae

S I Sq1 ferrite <« x% Y

D,

Figure 6.3: Illustration of a pearlite colony, showing the interlamellar spacings and com-

positions used in the growth model.

The nucleation rate of the pearlite was treated classically, using the same equations
as for allotriomorphic ferrite, and considering face, edge and corner nucleation sites with
the same values of site density and shape factors. The overall transformation kinetics of
pearlite were again described by the JMA theory, adapted for hemispherical particles of
radius r, nucleating at the grain boundaries at a rate I, and growing with a constant
rate Gp. The equations are the same as for spherical particles (Section 3.2.2.2), apart
from the factor of two which accounts for the g}rowth of spheres on both sides of the grain
boundary. Both spheres and hemispheres intersect a plane at y parallel to the boundary
in a disc of area A, = 7[G%(t — 7)?—y?]. The change in extended area on one plane due to

hemispheres emanating from one boundary in the time interval from 7 to 7+ d7 is then:
dO, = 1041, ,b[GZ(t - 1) —y?ldr (6.8)

where Oy is the total boundary area and I,; is the pearlite nucleation rate per unit
boundary area. Integrating over all times from 7 =0to 7 =enaand substituting ¢, = @%,

we obtain the total extended area of pearlite on one plane: %
s :
Op = 30sI3Gt* (1 - 36 - 26 (6.9)

Proceeding as before and integrating over all planes y from zero to infinity, we find that

the extent of reaction is:

& =1-exp {—SUGpt [ /0 1 1 —exp {—%Obl BGE (1 - 392 — 2¢§)} dqsp] } (6.10)
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In the steels of interest in this work, pearlite usually grows from the enriched austenite
after allotriomorphic ferrite and Widmanstatten ferrite have formed. Thus, the pearlite

model needed to be validated in conjunction with the other two phases.

6.4 Bainite

The model for the decomposition of austenite to bainite was based on that of Bhadeshia [79]
as modified by Rees [80] and described in Chapter 4. The bainite-start temperature, B;,
was determined from the driving force for the transformation, allowing for the 400 J mol~!
stored energy, and the universal nucleation function, Gy, as per the criteria in equations

4.3 and 4.5. Below this temperature, bainite sub-units can nucleate at a rate per unit

Iab_Klexp{—ﬁ (1+ X, )} (6.11)

This is the same nucleation rate as for Widmanstatten ferrite, but for bainite it was

volume of:

enhanced by the factor (1 + 864,£q,) to accommodate autocatalytic nucleation of sub-
units. In this original model, the sub-units were considered to be effectively nucleating
randomly, rather than heterogeneously on the austenite grain boundaries. The driving
force AG,, was recomputed at each stage of the transformation to incorporate the effects
of carbon enrichment of the austenite. Bainite grows at a rate much faster than expected
from carbon diffusion-controlled lengthening [86]. Furthermore, the lengthening of ‘each
sub-unit is arrested by the breakdown of coherency as the shape deformation causes plastic
strain in the adjacent austenite. Thus, the growth of a sheaf can be considered to occur
at a rate controlled by the nucleation of sub-units, each of which grows very rapidly
to transform a fixed volume of austenite, » [88]. The model therefore does not require
a bainite growth rate. Further refinement of the model led to the incorporation of a
temperature dependent bainite sub-unit width, based on the experimental measurements
of Chang on steels coﬁtaining between 0.095-0.5 wt.% C isothermally transformed between
250 and 500 °C [121]. The sub-unit volume then became:
(T — 528)
150

!

' =uX (6.12)

A lower limit of v’ = 0.3u was fixed at 300 °C toensure realistic sub-unit sizes below this
temperature. The overall transformation kinetics were derived from Rees and Bhadeshia’s
model. The increment in the normalised bainite volume fraction between times ¢ and ¢+ d¢

in the present work was expressed as:

u'K
Aoy = —5—

Xp

(1= Ea) Loy (1 + BBy Eay) (6.13)
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where 6,, is the maximum bainite fraction determined from the phase diagram. The T,
line was calculated within the model and bainite transformation was halted when the

austenite carbon content reached this composition.

6.5 Martensite

The martensite transformation was modelled very simply, using the well-established theory
of Koistinen and Marburger [96] to compute the volume fraction as a function of under-
cooling below the M. The start temperature was determined by solution of the equation
for the driving force for the y — o/ transformation [93]. Once the martensite trans-
formation was initiated transformation to all other phases ceased. This is a reasonable

approximation given the rapid rate at which martensite forms.

6.6 Combination of Phase Models

In the early work [87], transformations were modelled unrealistically as occurring in se-
quence with only one phase forming at any given time. The allotriomorphic ferrite calcu-
lations were started once the two-phase o + v field was entered at the Ae; temperature;
for pearlite, when 7' > 2%, whilst Widmanstétten ferrite, bainite and martensite were
initiated below the calculated W,, B, and M, temperatures, respectively. As emphasised
earlier, these were treated as sequential transformations occurring in isolation. For exam-
ple, allotriomorphic ferrite nucleation and growth ceased once W, was reached. In reality,
allotriomorphic ferrite formation can often continue below W;, and the transformations
are simultaneous rather than sequential. In the next chapter, recent theory which enables

this competitive formation of the phases to be more accurately modelled is described.
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Simultaneous Transformation

Kinetics

In many situations, phase transformations do not occur singly, or one at a time in se-
quence. The decomposition of austenite in steels can involve the competitive formation of
at least five different phases. For example, overlapping ferrite and pearlite reactions have
been observed by differential scanning calorimetry and verified by metallography [122)].
Standard Avrami theory as described in Chapter 3 can be invoked to model each phase
in turn, the “switching over” from the calculation of one phase to another occurring at
predefined points (temperatures, compositions). However, if the complete decomposition
of austenite is to be comprehensively and successfully modelled then it would be desirable
to allow simultaneous, competitive reactions to occur. A recent adaptation of the JMA

theory [123, 124] enables us to do precisely this.

7.1 Basic Theory

Consider first the decomposition of a parent phase v to two phases o and 3, with nucleation
and growth rates I, Is and G4, Gg "respectively. Assuming spherical particles and constant
nucleation and growth rates with the particles forming at random locations as before, it
follows from equation 3.47 that the change in extended volume of g,between 7 and 7+ dr
is given by: . for partides meclinted
| Ve = %’—’Gg(t — YLV dr (7.1)
where V is the total volume of the system. By analogy, the change in extended volume of

(B over the same time interval is:

. 4m ‘
dvg = —?’—G%(t - 1)V dr (7.2)

73



Chapter 7 — Simultaneous Transformation Kinetics

To convert the extended volumes into actual volumes, we once again allow for the prob-

ability that some transformation has occurred in previously transformed material. Thus
the actual change in volume of each phase due o particks ancloated W tue  infeval

e rdy s
dv, = %’Gg(t — YLV (1 _ % _ %) dr (7.9)
aVs = TGt~ 7)TsV (1 - -“’-}- - ‘—‘/ji) dr (7.4)
Therefore,
dv, = (1 _ % - %) dve (7.5)
dvj = ( _ % —YV@) avg (7.6)

Comparing with equation 3.49, we can see that unlike the case for one phase, these
equations cannot in general be integrated directly to obtain the total volume and extent of
reaction for each phase. This is because V,, and Vj are unspecified functions of one another
and thus the variables cannot be separated. Therefore, the integration over all incubation
times 7 has to be performed numerically. The values of dV, and dVj are evaluated using
a pair of nested loops, the inner loop allowing increments in the incubation time, 7, the
outer one changes in transformation time, ¢. V,, and Vp are initially set to zero and are
then updated at the end of each outer loop. The change in the extended volume of & (and
likewise () in the i-th time interval after the start of the transformation is calculated in
two stages. Firstly, consider the change in volume due to new particles nucleated in the
current time interval, At:

_ir

avei== G3 (A3 LV dr (7.7)

Then, consider the change in volume contributed by the growth in the current time interval
of particles nucleated in all previous time intervals, j = 1 to j = 7 — 1. The rate of change
of volume of a spherical particle of volume v, = 4G5 (t — ) is:
dvy
dt

For an infinitessimally small time interval, d¢, dv, = 47G3 (¢t — 7)2 dt. However, in a finite

= 47G3 (t — 7)? (7.8)

time interval, At, we must integrate to find the small change in volume Awv,. In the time

interval from t = 0 to t = At, for an incubation time 7:

A’Ua’l At
/ dvy = / 4nG3(t — 7)% dt
0 0

Avgy = [%Gi(t - 7')3] ™
= T+
= %’—’Gg [(a1)? - 3atr(At - 7)] (7.9)

o
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In the time interval from (i — 1)At to iAt, for an incubation time jAT,

[7AV
Ave; = / anG3(t — jAT) dt
(i-1)At
1AL
= [Feae-iary]
3 (i-1)At

- ‘%”Gg [t = jATY? — (i - DAL - jATY]
= Avy; = %’EGE; [(A8)°(3i% - i+ 1) - 3(At)%jAr(2i — 1) + 3At(jAT)?] (7.10)

This reduces to equation 7.9 when ¢ = 1. For At = AT, we get:
Avg = %”Gg(m)ﬁl +3(—j)(i=j— 1] (7.11)

Thus, the change in extended volume of o between t = (¢ — 1)At and t = At due to the
growth of previously nucleated particles at a constant time step is:
i—1
dVe, = LVAT ZAva,i
J=0
= —g—GZIaV(At)“ Y1433 - 5) (i -5 —1)] (7.12)

J=0

The change in actual volume of &, dV,,; is calculated at the end of each time interval,
when the total change in extended volume due to nucleation of new particles and growth of
existing ones in that time interval is multiplied by((l - &(}—‘—1 - Yéﬁ'—‘i), the total untrans-
formed volume remaining at the end of the previous time interval. Combining equations
7.7 and 7.12, gives:

_ __Va,i—-l_Vﬁ,i-l) am g S o
dVa,,_(l i I EL AL 1+J§)[1+3(z Ni-j-1)]

(7.13)
The total volume of allotriomorphic ferrite present in the ¢-th time interval can be deter-

mined by addition of the change in the current time interval to the previous total:
Voi=Voi-1+dVa; (7.14)

Analogous calculations can be performed for the B phase.

Some example calculations which illustrate the fundamental theory are presented in
Figure 7.1, showing the evolution of phase volume fraction with transformation time for
isothermal transformation of two phases with constant nucleation and growth rates. When

the nucleation and growth rates of o and § are set to be identical, the resulting curves
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are exactly superimposed and the final volume fraction of each phase is 0.5 (Figure 7.1a).
If the nucleation rate of o is set to be twice that of § then, for identical growth rates,
the final fraction of o is twice that of § as would be expected (Figure 7.1b). Finally, an
example where the nucleation rates of both phases are identical but the growth rate of a
is twice that of § is given (Figure 7.1c). The final volume fraction of « is 8 times that of

B because the growth rate is cubed in the volume fraction equation.

1.00

1.00

(=

~

[
]

0.75

Volume fraction

o

W

S

i

Volume fraction

o
(¥,
S
1

0.25 - 0.25 -
0.00 - 0.00
0 25 50 75 100 0
Time (s)
(a) ()
1.00
0.75 -

Volume fraction
[o]
W
(]
i

Figure 7.1: Example calculations for the simultaneous transformation kinetics of two
phases, o and 3, with (a) identical nucleation and growth rates, Iy = Iy = 1x10* m~3 571
Ga=Gg=1x10"%m 77 (b) identical growth rates but nucleation rate of o twice that

of 8, In =2 x.10'* m~3 s~ and (c) identical nucleation rates but growth rate of a twice

that of 8, Go = 2 X 1078 m s 3.
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7.2 Heterogeneous Nucleation

Just as the original single phase JMA theory could be extended to heterogeneous nu-
cleation, so can the simultaneous transformation version. The change in extended area
in each time interval is again composed of the contributions from the nucleation of new
particles and the growth of previous nuclei. However, in this case, three nested loops are
required for the calculation. The outer loop again allows changes in the overall transfor-
mation time, t. The second loop considers the set of planes, y;y, (Where the subscript iy
denotes the specific plane under consideration), parallel to the plane containing the grain
boundary, with which the intersections of particles growing from the boundary are calcu-
lated, whilst the innermost loop iterates for each incubation time, 7. Therefore, in each
new time interval, the total extended volume is found by integrating, over all the planes,
the transformed area on each plane due to new nuclei plus the growth of all particles

nucleated in each previous time interval.

7.2.1 Linear Growth

Consider a disc-shaped particle, nucleated at time 7 and growing at a constant rate G,.

Its,height above the boundary, at a later time ¢ dre-:
radius G2, and W

e=0a = Ga(t — 7). (7.15)

The rate of change of height with time is %9- = (4. Therefore, the small change in g,

over the small time interval At from ¢t = (¢ — 1) At to t = iAt is:

Aq::,i ‘ 1At
/ dge = / G. dt
0 (i-1)At

Adei = Gofit— (i — 1)Af] = G, At (7.16)

The area of intersection with a plane at yi, for ga; > Yiy, is Ag = TG%(t — 7)2. The
change in area on the plane due to discs reaching it for the first time in the current time

interval, i.e. for g -1 < Yy, for At = Ar, is:

dOt ;.. = 1G20u1, 5(AL)® (7.17)

R R

The rate of change of area of intersection with time is 4a = 2rGZ%(¢ — 7). Proceeding as
for equation 7.10, in the time interval from (i — 1)At to ¢At, at an incubation time jAT,
the small change in intersected area for particles which have previously reached the plane

at ysy is:
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Ada iAt
/ dA, = / orG2(t — jAT)? dt
0 (i-1)At

1At

AAy; [ﬂ'Gz (t - jAT) ]

(i~1)At
= G2 (it - jAT)? - (- 1)At - jAT)]
= 7G2[(2i — 1)(At)? — 25 ATAL] (7.18)
If At = At then:
AA,; = G (AY)?[2(i — 5) - 1] (7.19)

The change in extended area on the iy-th plane in the time interval from ¢ = (¢ — 1) At to
t = 1At, due to particles nucleated at all incubation times from 7 =0 to 7 = (¢ — 1)Ar,

with reference to equation 3.53 is thus:

i—1
dO% ;i = Oslap ALY AAqg
j=1
i—-1
= 1G04y Aty (2i — 1)(At)? - 2jATAL
j=1
i—1
= 7G20uL.p(AL)3 Y 2(i—j) -1 (7.20)

j=1
for At = Ar, where Oy is the total area of the plane and I, is the nucleation rate of o

per unit area of boundary. Therefore, the total change in extended area on the iy-th plane

due to new particles and the growth of existing ones, for g, ; > yiy, is:

dO% ; iy = TG0y Lo p(At)? 1+Z2z—— —1] (7.21)

=1

This change in extended area on a particular plane is converted into the actual change
in area by allowing for the probability that some transformation has occurred in previously
transformed material, taking into account the prior amount of all the other phases on this

plane.

dOuiqy = (1- Qotin - Coi=tin) g0y (122

The total actual area of & on the plane is then:
Ou,iiy = Oa,i~1,iy + d00,i iy (7.23)

Similar computations are performed on each plane for the other phases. After the calcu-

lations for all the planes have been completed, the total extended volume of & at the time
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¢At can be determined by numerical integration of Oy With respect to y;,. The change
in extended volume in the current time interval is found by subtracting the total extended

volume at the end of the previous time interval from the new total:

AVai=Vai— Vai-1 (7.24)

k)

and thus the actual change in volume is:

AV, = (1 - % - Y@f/—‘l) dve; (7.25)

The total actual volume of « at the end of the current time interval is given by:
Va,i = Va,i—1 + dVa,i (726)

and similarly for the other phases. This whole process is then iterated for subsequent time

intervals until the transformation is stopped or completed.

7.2.2 Parabolic Growth

Now consider particles growing parabolically rather than linearly with time, such as al-
lotriomorphic ferrite grains from austenite. For a disc-shaped particle of aspect ratio (for
lengthening to thickening) 7, the radius of a particle nucleated at 7 at a later time ¢ is
given by:

Fo = aGalt — 7)2 (7.27)

The height is expressed by the same equation but with 7, = 1:

o =Galt-7)7 (7.28)
The rate of change of height is:
an _ 1 _1
W = §Ga(t - T) 2 (729)

The small change in height, Ag, in the small time interval from (i — 1)At to ¢At of a

particle nucleated at jAT is given by:

/Aqa,,' p tAt lG 1 p
o = Ga(t—7)72dt
0 ! /(i—l)At 2 ( : )

Agai = Go|(iAt—jAT)E = ((i—1)At - jAT)E] " (7.30)
The area of intersection with a plane at y;, for a disc of height greater than y;, is:

Ay =72 = miGi(t - 7) (7.31)
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The rate of change of area is:
dA,

dt
Thus, in the small time step ¢ = (¢ — 1)At to t = ¢At, for particles nucleated at T = jAT,

=mniG? (7.32)

, int
AA,; = [ﬂngGg(t—]Ar)](i_l)At

m2G2 At (7.33)

Unlike the case for linear growth, AA,; is independent of both 7 and j when At is
constant. (When At is not constant, A4, ; = T2G2 [t; — ti—1]). Therefore, the total

change in extended area on the ¢y-th plane in the i-th time interval is:

dogz,i,iy = ObIa,b AtAAa,i
Opla ynG2(AL)? (7.34)

The total area transformed on each plane and the overall volume of o formed are then

determined as for linear growth.

7.3 Application to the Transformation of Austenite

In the new transformation model, allotriomorphic ferrite, Widmanstatten ferrite and
pearlite were modelled with the simultaneous transformation theory as explained above,
replacing the single phase JMA kinetics theory discussed for each phase in Chapter 6. Fig-
ure 7.2 illustrates the particle dimensions for these three phases. The theory for the bainite
transformation is similar, but due to differences in its growth mechanism further modifi-
cations were necessary. The contributions to the overall transformation from each phase
- were combined at the extended area and extended volume stages of the transformation.
The martensite transformation was calculated simply as a function of the undercooling
below the martensite start temperature. In the low-alloy steels that are of particular in-
terest here, it is the last phase to form and transformation of the other phases can be
considered to cease once the M, is reached. Thus, a simultaneous kinetics approach was

not required for martensite.

7.3.1 Allotriomorphic Ferrite

The allotriomorphs were modelled as discs, growing parallel to the boundary plane, with
an aspect ratio for lengthening to thickening of 3:1 [35, 36]. The equations in Section 7.2.2
therefore apply, with G, replaced by «;, the one-dimensional parabolic rate thickening

constant, and 7, = 3. Allotriomorphic ferrite grows from both sides of the grain boundaries
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% /

grain

_ boundary

allotriomorphic ~ Widmanstatten pearlite y=0
ferrite ferrite

Figure 7.2: Illustration of the particle shapes and dimensions for allotriomorphic ferrite,

Widmanstatten ferrite and pearlite used in the transformation model.

so the result of the integration of Og; ;, over y;,, was doubled when calculating the extended

volume.

7.3.2 Widmanstatten Ferrite

Widmanstatten ferrite was modelled as plates growing at a constant rate from the austenite
grain boundaries. The equations of Section 7.2.1 were adapted for the plate morphology.
Consider a plate of aspect ratio 7,, (where 7, is typically 0.05), its height given by
qw = Gy (t — 7) and its width by ru; = Twqy. The area of intersection of one plate with a
plane parallel to the boundary is A, = g = M,G2 (¢t — 7)%. By analogy with equation
7.19 this gives:

A = 1uG2(AY2( - §) - 1] (7.35)

for the small change in A4, between ¢ = (i — 1)At and t = ¢At for particles nucleated at
7 = jAr, when At = At. The change in extended area on the iy-th plane in the i-th tifne
interval due to particles nucleated in all previous time intervals is then:
i-1
O3, ; iy = MG OpLup(AY)® Y 2(i— §) - 1 (7.36)
j=1

The rest of the equations follow as before.

81



Chapter 7 — Simultaneous Transformation Kinetics

7.3.3 Pearlite

As in the original model, the pearlite grains were taken to be hemispheres with a linear

growth rate, which intersect the plane at y;, in discs of area:
Ap = m(ry — i) = m(G(t — 7)° -y}, (7.37)
Proceeding as in 7.2.1, we find that:
AAy; = TGA(AL)?2(i ~ §) - 1] (7.38)

which is the same as for discs (equation 7.19), and the rest of the equations follow accord-

ingly.

7.3.4 Bainite

The existing bainite overall kinetics model was adapted for simultaneous transformations.
The change in the actual volume of bainite in each time step, dV,,, was calculated as
before but with the factor (1 —&,,) replaced by (1 —¢&), where £ represents the total extent
of transformation to all phases not just bainite, i.e. £ = &, + &ay +&p + €o,, Where the
&, represent the absolute fraction of each phase n. This is to allow for the fact that a lot .
of the austenite will have been consumed by the time bainite begins to form. Thus from
equation 4.32,

dVoy, = 00, d8q, = K1 (1 — €)(1 4 $04,8a,) Loy, dt (7.39)

Bainite, in common with the other phases, often nucleates heterogeneously at the
austenite grain boundaries. The original model only considered random nucleation of bai-
nite sheaves within the volume, so a new model for boundary nucleation was developed.
The inverse grain size dependence of the bainite nucleation rate (equation 4.18) is con-
sistent with boundary nucleation (smaller grain size leads to a larger available boundary
area per unit volume and thus a higher nucleation rate). The theory had to be modified
to calculate an extended area of transformation from which to determine the extended
volume. The bainite sub-units were assumed to be plates, of width 0.2 um modified by
the temperature dependence (T" — 528)/150 (where T is the absolute temperature) [121],

and length 10 pm. The number of sub-units nucleated in each time interval was given by:

Ny, = 1,04 dt  (7.40)

where Oy is the total boundary area. It was assumed that each sub-unit attained its full size
almost instantaneously, due to the high growth rate of bainite. The bainite sheaves were

built up by successive autocatalytic nucleation of sub-units and their length was increased
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in each time interval if the bainite nucleation and growth criteria were satisfied. Therefore,
there was no need for the autocatalysis factor in the nucleation rate equation (8 = 0) -
the nucleation rate only concerned new sheaves starting on the boundary, whilst existing
sheaves were automatically allowed to continue growing by addition of a new sub-unit to
every existing sub-unit in each time interval. The height of the sheaves was compared
with the distances y;, of a series of parallel planes from the grain boundary. When the
sheaf height first exceeded y;, then the area of its intersection with the plane was added
to the total extended area previously transformed on that plane. The cross-sectional area

of each sub-unit was taken as the width times length,

T — 528)

Ay, =0.2x107° ( 5o X 10:0x 107% m? (7.41)

and did not increase with time. Thus, the total increase in extended area of bainite on

one plane in the time interval from ¢ = (i — 1) At to ¢ = 1At was:
1
dO%, = AayNayj (7.42)
—

where the summation over j allows fér growth of sheaves nucleated in all previous time
intervals. The total change in extended volume in one time interval was determined by
integrating dOj, over all y;;. This was then converted to the real volume as for the
other phases, allowing for the probability that some of the transformation had occurred

in previously transformed material, and thus multiplying by (1 — £).

7.4 Summary

- A recent adaptation of the Johnson-Mehl-Avrami overall transformation kinetics theory
which enables the simultaneous transformation of multiple phases has been described.
Equations for both homogeneous and heterogeneous nucleation and their application to
transformations from austenite have been explained. Allotriomorphic ferrite was modelled
by the parabolic growth of #1s¢s | Widmanstéatten ferrite by linear growth of plates and
pearlite by linear growth of hemispherical particles. The bainite sub-unit model was
adapted to fit into the simultaneous framework and modified for boundary nucleation.

Validation of these models will be considered in ‘& following chapter.

The above equations were derived assuming isothermal transformation kinetics. Un-
der non-isothermal conditions, where the growth and nucleation rates differ at each time
interval, the current radius or height of the particles must be used to determine the change

in area and volume in each interval, rather than G, and ¢ — 7 directly.
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