
   
- 1 - 

PART II TECHNIQUES PROJECT 

 MODELLING OF THE CORROSION OF 

BINARY ALLOYS 
R.A. Jones 

 
Produced under the supervision of Dr T. Sourmail and Prof. H.K.D.H. Bhadeshia, FREng, FRS 

Modelling work carried out in the Dept of Materials Science and Metallurgy, Cambridge University 
 
 
 

Abstract 
 
Neural networks offer a powerful means to model complex relationships between large numbers of 

variables.  This allows for prediction of future results, as well as being able to illustrate the sensitivity 
of an output to influencing variables in a manner not possible experimentally.  Neural network analysis 
is appropriate to a wide range of phenomena including welding, creep and fatigue behaviours, and the 
estimation of transformation times and temperatures.  In this work a neural network method was 
employed to study how the rate of corrosion of Fe-based alloys was influenced by compositional and 
environmental factors as well as exposure time.  The dataset was generated from measurements 
provided by the National Institute for Materials Science in Japan.  Inclusion of sulphur in the alloy was 
seen to have the greatest impact, even though the concentrations were of the order of 0.001 wt% or 
less.  Exposure of the sample to sun and rain, the level of atmospheric pollution, and the presence of 
certain other alloying elements were also seen to have important roles, generally in good accordance 
with the literature. 

 
 

 

1. Introduction 
 
The atmosphere is the corrosive 

environment to which alloys are most 
frequently exposed, and thus environmental 
corrosion is of widespread importance.  Due to 
the complexity of the interdependent variables 
which determine corrosion reaction kinetics, it 
remains an area in which complete 
understanding is not held. 

Research at the National Institute for 
Materials Science in Japan yielded data on the 
atmospheric corrosion of binary alloys of iron.  
These data were analysed using a neural 
network method, in order to create a model for 
weight loss as a function of composition, 
exposure time and exposure conditions.   

 
 

2. Scientific background 
 
The book by Shreir et al. [1] was the main 

reference in researching this section. 

The corrosion of iron and steel has been the 
subject of study for more than a century.  Bare 
iron and steel are liable to rust in most 
environments, with the extent of corrosion 
depending on a number of factors including the 
composition and surface condition of the 
metal, the corrosive medium itself and the 
local conditions. 
 
 
2.1 Environmental effects 

 
Where materials are left to rust in air, the 

main environmental factors are considered to 
be the availability of moisture and the extent of 
pollution.  Other factors, such as temperature, 
must also be considered. 

Work has shown that corrosion only occurs 
above a critical relative humidity and that in 
pure air these rates are generally very low for 
all humidity levels.  However if pollutants, 
such as sulphur dioxide, are introduced the rate 
greatly increases, as does the variation of the 
rate with relative humidity.  This is shown in 
Figure 1. 
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Figure 1: Effect of relative humidity and atmospher ic pollution on the rusting of iron (image from 
Cahn et al.) 

 
The most important impurity in industrial 

atmospheres has been shown to be sulphur 
dioxide, although chlorides may also have an 
effect.  The SO2 in the atmosphere is derived 
from the aerial oxidation of H2S produced 
naturally and from the combustion of sulphur 
containing fuels.  In densely populated 
countries the sulphur pollution levels are 
strongly related to the domestic heating cycle. 
There is typically a direct relationship between 
SO2 in the atmosphere and the corrosion of 
exposed steel.  Walton et al. showed that the 
actual amount of sulphur dioxide in contact 
with the steel is more important than the 
concentration. 

The loss of iron as a sulphate accounts in 
only a small measure for the effects of sodium 
dioxide.  It is thought that once ferrous 
sulphate is formed it is able to promote further 
rusting. 

The predominant effects of temperature are 
thought to be largely indirect, having an effect 
on the relative humidity and the drying time of 
wet samples.  In this way variations in 
temperature are also important. 

 
 

2.2 Experimental set-up 
 
The orientation of corrosion samples has 

also been shown to be important.  It was found 
that on non-vertical samples the underside 
corrodes more quickly because it is shielded 
from the sun and takes longer to dry after 

rainfall.  Previous tests on specimens at 45º 
found an increase in corrosion of 10-20% 
compared to vertical specimens, with 54% of 
the corrosion being on the underside. 

The mass of the sample can have some 
effect because it will determine the rate at 
which the surface temperature adjusts to 
fluctuations in the ambient temperature. 

 
 

2.3 Compositional effects 
 
The mechanical properties of low-carbon 

steels are regularly improved by adding small 
amounts of other elements such as chromium, 
manganese, nickel and silicon.  These ‘ low-
alloy steels’  are often found to rust several 
times more slowly than unalloyed mild steels.  
Indeed some low-alloy steels are specifically 
designed to resist corrosion and are called 
‘weathering steels’ .  The elements most 
commonly added for this purpose are 
chromium, nickel and copper. 

The improvement in corrosion resistance 
depends on the amount and nature of the 
alloying elements and on the nature of the 
corrosive environment.  The distinguishing 
feature of the behaviour of the slow-rusting 
low-alloy steels is the formation of a protective 
layer. 

Work has shown that the effects of the 
alloying elements are not additive, but with 
this in mind may be summarised as: 
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1. Copper additions up to 0.4wt% give a 
marked improvement, but further addition 
makes little difference. 

2. Phosphorous, particularly combined with 
copper, may be highly beneficial, but levels 
above 0.10wt% adversely affect the 
mechanical properties. 

3. Chromium, in fractional percentages, has 
a significant and apparently beneficial 
influence on corrosion rates. 

4. Nickel also reduces corrosion rates, but 
to a lesser than the elements mentioned above. 

 
 

3. Technique 
 
Neural network modelling is a method of 

regression analysis in which a non-linear 
function is fitted to experimental data.  Neural 
networks are able to discover complex 
relationships between input variables and the 
output which could not be deduced with 
traditional linear models.  They are extremely 
useful in circumstances where the complexity 
of the problem is overwhelming from a 
fundamental perspective. 

The structure of the network consists of 
many inputs (the experimental variables) and a 
single output with a layer of hidden units 
between (Figure 2).  The input and output 
variables are normalised in the range ±0.5 as 
follows: 
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The hidden units are formed from 

hyperbolic tangent (tanh) functions of 
weighted combinations of the inputs, and the 
output is a weighted combination of the hidden 
units.  This is described by the equation: 

 
)2()2( θ+=�

i
iij hwy , where 

�
�
�

�
�
�
�

�
+= � )1()1(tanh θ

j
jiji xwh . 

For an output y, inputs xj, hidden units, hi, 
weights w and biases θ. 

The complexity of the function is thus 
related to the number of hidden units, and it 
can be seen that the resultant networks can 
model a function of great complexity. 

In this work a method developed by 
MacKay [4] is used.  The method is based on 

Bayesian probability theory and involves the 
algorithm inferring a probability density of 
weights rather than identifying the best set of 
weights.  When making predictions this 
facilitates a process called marginalizing, 
whereby the variety of solutions corresponding 
to the sets of weights and their associated 
likelihoods can be considered and represented 
by error bars.  This idea also leads to the use of 
the log predictive error when evaluating the 
performances of models, which places less 
penalisation on incorrect predictions if they are 
accompanied by large error bars. 

A potential difficulty in neural network 
analysis is the possibility of overfitting the 
data.  The problem is avoided by dividing the 
database into a training set and a testing set.  
The network is formed based on the training 
set and then tested.  As the complexity of the 
model increases to produce curves fitting the 
training set more closely the model should also 
improve in describing the testing set.  As 
overfitting begins to occur the model becomes 
less able to predict the testing set, because it is 
generating an overly complex function in 
trying to match the training set data too 
closely.  This is illustrated in Figure 3. 

Finally it is often found that combining 
networks which model a problem can lead to 
more accurate predictions.  Thus it is normal to 
form a ‘committee’  of models.  The non-
weighted average value of the models’  
predictions is used.  Once the best committee 
of models has been chosen the models are 
retrained on the full data set. 

The committee can then be used to predict 
an output for a set of inputs, as well as the 
sensitivity of the output to each input variable. 

 
 

 
 

Figure 2: The structure of the network 
(image from Yescas et al.)
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Figure 3:  (A) when a model has over fitted the training data ( � ) the er ror  on the test data (×) is 
larger  than for  an optimum model which fits the trend but not the noise (B) behaviour  of er ror  
on training and testing sets as a function of complexity is illustrated (image from Sourmail et al.) 

 
4. Source data 

 
The database for the work was generated 

using data provided by the National Institute 
for Materials Science (NIMS) in Japan (NIMS 
Corrosion Data Sheet No. 0 and No. 1A, 
2002).  The data were collected by monitoring 
the corrosion weight loss of samples of alloy in 
an outdoor environment over a number of 
years.  The testing is ongoing with results for 
other alloys and longer time durations planned. 

In our data, identical tests were performed 
at three sites on thirteen alloys in sheltered 
(covered) and open conditions.  Measurements 
were taken at five lengths of time.  Assuming a 
full data set this allows for up to 390 data 
points. 

The test specimens used were of the 
dimensions 50×150×5 mm and were subjected 
to grinding and degreasing prior to testing.  
The materials themselves are commercial 
alloys and melted alloys of known 
manufacturing history. 

The samples were placed on outdoor test 
frames.  Exposed frames were angled at 45º to 
horizontal and sheltered frames were covered 
by umbrella roofs to shield them from rainfall 
and solar radiation and were horizontal. 

As well as the weight loss of the samples, 
weather data1 were also recorded (as year 
averages).  
 
1. Point of note: humidity readings were taken as a relative 
humidity.  This is defined as the percentage ratio of the 
water vapour pressure in the atmosphere compared with 
that which would saturate the atmosphere at the same 
temperature. 

 
 

5. Computing methodology 
 
A database consisting of composition, 

weather and time variables was created.  
Composition and time were straightforward to 

input.  A { ln(time)}  variable was also added.  
This is a normal practice in this type of study 
since a relationship with { ln(time)}  in a 
corrosion problem would be sensibly 
anticipated and thus including it explicitly as 
an input can help the network to simply deduce 
this relationship.  To avoid biasing the model, 
and as there may be other unknown effects of 
time, both variables were included. 

Initially the weather variables were simply 
the average temperature, chloride deposition 
and humidity for the three sites from the year 
2000, and a binary yes/no for sheltered 
condition.  This made all three sites useable in 
terms of complete data, giving datasets for all 
367 recorded outputs, but made the effects of 
the weather variables impossible to separate.  
A method whereby the variables were time 
averaged over the period of exposure was then 
employed (so for instance a two-year exposure 
beginning towards the end of 1998 had the 
average temperature given by the equation: 

( )200019991998 34
8

1
TTTT ++= ). 

In this manner the network was given the 
opportunity to isolate the weathering variables, 
but the number of data points was reduced to 
243 as the tabulated weather information was 
incomplete for the Tsukuba site and so the 
model could only be given data from two sites 
to work on.  In this instance the weathering 
variables chosen were the average temperature, 
humidity, chloride deposition rate (per day), 
sulphur dioxide deposition rate (per day), solar 
radiation rate (per year) and rate of 
precipitation (per year).  The latter two 
variables were set to zero for the covered 
samples. 

In these models the sulphur content of the 
alloy was identified as the input variable of 
greatest significance.  The trained committee 
was used in a predictor program to illustrate 
how variations in input variables would be 
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Exposure time (yrs) 0.5 1.0 1.5 2.0 3.0 

Corrosion loss (mg cm-2) 43.688 58.471 171.741 67.876 112.653 

 
Table 1: Corrosion loss data for  Fe-3wt%Cr at M iyakoj ima in sheltered conditions 

 
expected to affect the output.  It was noticed 
that if the inputs were set to combinations of 
values unlike those in the dataset negative 
corrosive losses could be predicted. 

Following the work of Yescas et al. [6], 
the output variable, { weight loss} , was 
replaced with { ln[-ln(weight loss)]} .  This 
avoids the problem of predicting negative 
outputs.  The model was re-run and re-
examined for predictions.  The most surprising 
result was the prediction that increasing SO2 
deposition rate would decrease the corrosion 
rate.  This contradicted a wealth of strong 
evidence in the literature, and also the neural 
network analysis of Cai et al. [7]. 

Upon re-examination of the source data, it 
was noted that a large number of data entries 
appeared highly anomalous.  This was most 
obvious comparing results for five samples of 
the same alloy, in the same location and 
exposure, for different lengths of time.  
Although most of these sets showed an 
increase in the amount of corrosion with time, 
many did not, with there often being one 
particular reading spectacularly bucking the 

trend.  An example of such a dataset is shown 
in Table 1.  

It was proposed that these large amounts of 
‘noise’  in the input data might be confusing the 
analysis and causing the unusual predictions 
being observed.  The approach adopted was to 
remove such data from the database and see 
how this affected the development of the 
model.  Any sets of data found which recorded 
a reduction in corrosion with time between any 
two successive samples were removed entirely 
from the database (so for instance the five data 
points given in Table 1 were removed).  The 
neural network analysis was then performed on 
the remaining 158 data entries.  Although it 
had fewer data points to train and test with, the 
analysis provided by the model was now much 
more sensible. 

The maximum and minimum values of 
inputs in this data set are given in Table 2.  
Figure 4 gives an idea of the distribution of 
each input against corrosion weight loss. 

One notable feature of Table 2 is that all of 
the data for the three significantly silicon-
containing alloys were removed as being 
‘noisy’ . 

 

Input variable Min. Max. Mean 
Standard 
deviation 

C (wt %) 0.0010 0.0060 0.0020 0.0018 
Si (wt %) 0.000 0.000 0.000 0.000 
Mn (wt %) 0.00 0.12 0.0531 0.0491 
P (wt %) 0.0003 0.0010 0.0006 0.0002 
S (wt %) 0.0001 0.0011 0.0004 0.0004 
Cu (wt %) 0.00 0.43 0.0517 0.1403 
Cr (wt %) 0.00 5.03 0.8437 1.6211 
Ni (wt %) 0.00 9.06 2.2811 3.1137 
Ave. T (ºC) 14.96 23.95 19.08 4.28 
Ave. humidity (%) 77.83 80.13 78.81 0.86 
Ave. precipitation rate 
(mm year-1) 

0 2317 994 957 

Ave. solar radiation rate  
(MJ m-2 year-1) 

0 5397 2687 2488 

Ave. chloride deposition 
rate (mg (NaCl) m-2 d-1) 

0.2865 0.4660 0.3661 0.0743 

Ave. SO2 deposition rate 
(mg (SO2) m

-2 d-1) 
0.0200 0.0615 0.0387 0.0162 

Time (years) 0.5 3.0 1.5728 0.8481 
 

Table 2: Var ious inputs in the dataset 
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Figure 4: Distr ibution of the different inputs plotted against weight loss for  the final dataset used 
in the analysis 

 
6. Software Implementation 
and Results 

 
A large number of networks were trained 

with up to 20 hidden units.  As expected the 
perceived level of noise generally decreased 

with an increasing number of hidden units 
(Figure 5a).  A selection of committees were 
built as discussed above, with a committee of 
two models being found to give the lowest 
combined test error (Figure 5c). 
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The perceived significances of these two 
models are shown in Figure 6.  They represent 
the extent to which a particular input explains 
the variation in the output.  Thus, the 
significances are not necessarily an indication 
of the sensitivity of the output to an input and 
are best considered alongside prediction data. 
Figures 7, 8 and 9 show the predicted effect of 

adjusting the input variables individually on a 
given ‘base’  set of input variables.  This base 
set was one chosen from the dataset and is 
shown in Table 3.  The plot showing the 
variation with time shows the effect of 
adjusting the { time}  and { ln(time)}  input 
variables simultaneously. 

 

 
 

Figure 5: (a) Perceived level of noise, (b) log predictive error , (c) combined test er ror  for  number  
of models in committee, per formance of the best single model on predicting the training (d) and 

testing (e) sets of data 

(a) (b) 

(c) 
(d) 

(e) 
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Figure 6: Perceived significances for  the two networks constituting the final committee model 

 
 
 
 
 
 

Input variable Value 
C 0.0010 wt % 
Si 0.000 wt % 
Mn 0.01 wt % 
P 0.0005 wt % 
S 0.0002 wt % 
Cu 0.00 wt % 
Cr 0.00 wt % 
Ni 3.02 wt % 
Ave. T 23.73 ºC 
Ave. humidity 80.13 % 
Ave. 
precipitation rate 

2209.49 mm year-1 

Ave. solar 
radiation rate 

5340.46 MJ m-2 year-1 

Ave. chloride 
deposition rate 

0.424 mg (NaCl) m-2 d-1 

Ave. SO2 
deposition rate 

0.022 mg (SO2) m
-2 d-1 

Time 2.0 years 
 

Table 3: ‘base’  dataset used for  
predictions 

 
 
 
 
 

 
6.1 Predicted effect of altering time on 
corrosive weight loss 

 
Figure 7 shows a plot of the predicted 

effect of exposure time on the corrosive weight 
loss.  The time variation was made to the 
‘base’  set of variables listed in Table 3. 

Given the data rejection criterion set in 
Section 5, the prediction that the weight loss 
increases with time was assured, however it is 
noted that the rate of corrosion appears to 
decrease after about one year.  This fits with a 
theory of the initial oxide formed offering 
some protection to the underlying material and 
slowing the corrosion rate. 

 
 

 
 

Figure 7: Predicted var iation of weight loss 
with time 
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Figure 8: Predicted var iation in weight loss with environmental var iables 
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Figure 9: Predicted var iation in weight loss with compositional var iables 
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6.2 Predicted effect of adjusting the weather 
input variables on corrosive weight loss 

 
Figure 8 shows the results of sensitivity 

analyses conducted on the trained committee 
whereby the effect of the weather variables on 
the resultant weight loss was determined.  The 
alterations were again made to the ‘base’  set of 
variables listed in Table 3. 

The prediction of the model is that rising 
temperature has an effect to slightly increase 
corrosion, whereas rising humidity will 
slightly reduce it. 

These effects could be seen as unexpected 
– like most reactions the kinetics of corrosion 
(i.e. the rates of reaction) increase with 
temperature, but the increase of temperature is 
also likely to hasten the evaporation of surface 
moisture.  According to the literature 
increasing humidity should increase corrosion 
(see also Figure 1).  The low significances and 
large error bars leave some doubt about the 
legitimacy of these trends.  The use of annual 
averages for weather variables in this type of 
study has been questioned elsewhere, in the 
literature as well as in the similar work of Cai 
et al. [7].  These sources suggest that the 
variation in these inputs is of greater 
importance.  It is also possible that the model 
might have difficulty separating the effects of 
these two variables, since even with the time-
averaging method they tend to change in 
tandem. 

Although the significances of the pollutant 
variables (particularly SO2) may not have been 
as great as anticipated, the sensitivity analyses 
highlight their effects.  In particular we see the 
effect of sulphide deposition (between the 
max. and min. values from the database) as 
being an order of magnitude greater than that 
of chloride deposition and of comparable size 
to the highly significant sulphur content (for 
equivalent ranges). 

When assessing the predictions for varying 
rainfall and solar radiation we bear in mind 
that the variable not being altered is fixed to an 
‘open condition’  value, thus we are not 
surprised by the very high corrosion rates 
estimated for zero solar radiation (since there 
will be very long drying times) or the very low 
weight loss for intermediate and low rainfall 
(the solar radiation is still high and so the time 
of wetness will fall greatly).  These two 
variables were identified as having high 
significances in Figure 6.  The trends predicted 
are for rainfall to worsen corrosion and for 
exposure to solar radiation to reduce it, which 
is consistent with the notion that corrosion 

rates are influenced most directly by the time 
of wetness. 
 
 
6.3 Predicted effect of altering alloy 
composition on corrosive weight loss 

 
Figure 9 shows plots of the predicted 

variation in corrosive weight loss upon altering 
compositional variables (balanced with iron) in 
the ‘base’  set of variables listed in Table 3. 

Of all the input variables, sulphur was 
identified as having the greatest significance in 
one of the two models forming the committee, 
and is very close to having the greatest 
significance in the other (Figure 6).  Our 
sensitivity studies also predict a very large 
effect – increasing sulphur content worsening 
corrosion – with relatively small error bars.  
The sulphur in these alloys is an impurity, 
rather than a deliberate addition, but we see 
that an increased presence of as little as 
0.0001 wt% can have a voracious effect on 
corrosion.  This is discussed further in Section 
6.4. 

Of the other elements carbon addition is 
seen to cause worsening corrosion whereas 
manganese, phosphorous, copper, chromium 
and nickel additions all improve corrosion 
resistance.  In Section 2 we identified the 
inclusion of manganese, phosphorous, copper 
and chromium in ‘ low-alloy’  and ‘weathering’  
steels for this very reason.  The class of 
‘stainless’  steels are characterised by the 
inclusion of at least 10 wt% chromium.  The 
effect of nickel addition is also in agreement 
with the literature. 
 
 
6.4 The role of sulphur on corrosive weight 
loss 

 
In Section 6.3 sulphur was identified as 

having a powerful influence on corrosive 
weight loss.  The role of sulphur included in 
the bulk alloy has been well studied and 
recorded in the literature.  The accepted 
mechanism is one whereby sulphur is able to 
accumulate at the interface between the metal 
and the passive oxide layer.  The interfacial 
enrichment is caused by selective dissolution 
of elements diffusing through the passive film.  
Sulphur is not transported due to its low 
solubility in the oxide and its negative charge, 
and consequently it remains at the metal/oxide 
boundary.  Above a critical concentration of 
sulphur at the interface, shown to be one 
monolayer, the passive film breaks down and  
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Figure 10: Breakdown mechanism of the passive oxide film induced by the enr ichment of sulphur  
at the metal-passive film inter face (image from Cahn et al.) 

 
pits grow, with the presence of sulphur 
preventing repassivation.  This breakdown 
mechanism is illustrated in Figure 10. 
 
 

7. Summary and Conclusion 
 
The application of neural network methods 

can provide a means to create accurate, 
quantitative models of problems in a wide 
range of areas.  The strengths of the technique 
become apparent when the problem is of great 
complexity and involves a large number of 
interdependent influencing factors.  The 
trained network may be used to predict future 
results, and may also be interrogated to yield 
valuable sensitivity analyses. 

The difficulty in the technique, which was 
highlighted in this report, is often the need for 
a large number of entirely quantitative data to 
work with.  With a sufficiently large dataset, 
the network can be highly effective at 
following trends accurately whilst ignoring 
noise in the data.  However such large numbers 
of datasets (from several hundred to several 
thousand) are difficult to obtain, particularly as 
the method requires that there must be no 
empty fields in the database.  Very often there 
is a compromise between the desire to include 
a large number of variables (leading to fewer 
‘ full’  data entries) and the need to establish a 
large dataset (whereby neglect of an important 
variable can lead to more noise rather than 
less).  

Neural network techniques are appropriate 
to a wide range of phenomena including 
welding, creep and fatigue behaviours, 
transformation times and temperatures and 
mechanical properties as well as corrosion 
rates.  Thus the usefulness of this tool is 
apparent in both industry and academia. 

In this work a neural network method was 
employed to study how the corrosion of binary 
alloys was influenced by compositional and 
environmental factors as well as exposure 
time.  The main difficulties experienced were 
related to the relatively small dataset which 
was used.  The similar work of Cai et al. [7], 
which studied only environmental input 
variables, used a database of around 400 
entries.  In this work a database of 367 entries 
was available, which became reduced to 243 
when it became apparent that the weather 
variables needed to be time averaged to make 
their effects separable, rather than simply 
fixing one value for each variable per site for 
all exposure times. 

Initially the network was seen to produce 
unusual predictions.  In order to ‘help’  the 
network cope with the large amounts of noise 
in the input data, some highly anomalous 
series of data were removed from the database 
by hand.  The network created with the 
remaining 158 data entries provided much 
more confident predictions, which were 
generally in good accordance with the 
literature.  The removal criterion for data 
ensured the prediction that corrosion increased 
with time, but should not have biased the 
predictions made for the other 12 variables. 

In the committees produced for 367, 243 
and 158 data entries, inclusion of sulphur in 
the alloy was always seen to have the greatest 
impact, even though the inclusions were of the 
order of 0.001 wt% or less. 

Exposure of the sample to solar radiation 
and rainfall, the levels of atmospheric 
pollution, and the inclusion of certain other 
alloying elements were also seen to have 
important roles. 

There is scope for further work which 
would broaden these sensitivity analyses using 
a different base dataset.  The set chosen might 
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be one in a sheltered condition or using a 
different composition.  In this manner it would 
be possible to see more clearly the interactions 
between variables – for instance it is expected 
that with increasing carbon content, addition of 
chromium is less effective in influencing 
corrosion behaviour. 

In order to better assess the flexibility of 
the model, it would be advantageous to test it 
on further datasets lying outside the ranges of 
the training data. The paper by Cai et al. 
includes a wealth of references providing 
atmospheric corrosion data for a particular 
composition.  These include studies conducted 
in more than 30 countries, and thus a variety of 
climates. 
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