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Abstract

In previous work, we created neural network models for estimating the mechanical
properties and toughness of alloys that are designed for the welding of high-strength low-
alloy steels of the type intended for the construction of ships.  The yield and ultimate
strengths, the elongation and reduction-in-area, the Charpy toughness and dynamic tear
properties were usefully modelled as a function of the chemical composition and the
cooling rate. Ductility and toughness are complex properties; the purpose of the work
presented here was to see if they could be modelled better by including the strength as an
input.

Introduction

In previous work [1,2], the strength, ductility and fracture toughness of a
series of experimental welding alloys were modelled using a neural network
method [3-7] within a Bayesian framework. The models were based on a set
of experimental data originating from a research programme with the aim of
creating new welding consumables for joining high-strength low-alloy steels
(HSLA) for ship construction [8].

There are many “rules of thumb” in physical metallurgy. For example as the
strength of the steel is increased, the ductility (both elongation and
reduction-in-area) as well as the fracture toughness (as measured by either
the Charpy or dynamic tear test) often decrease. Of course, this is not always
the case and explains why direct relationships between strength and ductility



or toughness are rare.  It is for this reason that we decided to utilize the
neural network method to determine if better predictions of the ductility and
fracture toughness could be made if either the yield or ultimate strength was
included as an input variable along with the chemical composition and the
cooling rate.

Data Base

The set of experimental data is summarised in Table 1 [1,2]. The
independent variables are the chemical composition of the as-deposited weld
metal, the cooling rate at 538˚C, the measured yield or ultimate strength.
The dependent variables are the elongation, reduction-in-area, the measured
Charpy V-notch values at –18 or –51˚C, or the dynamic tear test values at –1
or –29˚C.  The cooling rate was determined from the welding parameters
(voltage, current, welding speed), preheat, and thickness of the plate [9,10].
Table 1 gives the minimum, maximum, mean, and standard deviation each
of the variables.

The dynamic tear test results are generated on welds which did not contain
titanium.  A detailed description of both the data set and the neural network
employed is found in the prior study [1,2].

One aspect of avoiding over fitting in the development of a neural network
requires that the data set be divided into a training and a test set. There are
also other features described in  [3-7] that implement automatic relevance
determination. The model is at first produced using only the training data
set. It is then used to see how it generalises on the unseen test data. By
monitoring both the training and test errors, it is possible to select the single
best model.

It is, however, possible that a committee of models can make a more reliable
prediction than an individual model [6-7]. To do this, the best models are
ranked using the values of the test errors. Committees are then formed by
combining the predictions of the best L models, where L = 1, 2, …… The
size of the committee is given by the value of L. A plot of the test error of
the committee versus its size L gives a minimum which defines the optimum
size of the committee.



Table 1: The input and output variables. The concentrations are in wt% except for oxygen
and nitrogen which are in parts per million by weight. The cooling rate is expressed in
°C/s.

Variable Minimum Maximum Mean Std. Dev.
   C 0.001 0.06 0.0307 0.0098
   Mn 1.05 3.44 1.4361 0.1915

   Si 0.05 0.4 0.2618 0.0555
   Cr 0 0.21 0.0664 0.0530
   Ni 1.66 5.63 3.1324 0.7800
   Mo 0 1.23 0.5048 0.1452
   Cu 0 0.48 0.1018 0.0766
   S 0.001 0.012 0.0034 0.0019

   P 0.001 0.015 0.0041 0.0026
   Al 0.001 0.082 0.0066 0.0060
   Ti 0.0008 0.3 0.0089 0.0181
   Nb 0 0.069 0.0016 0.0041
   V 0 0.031 0.0032 0.0042
   B 0 0.01 0.0011 0.0021

   O 109 627 216.7565 58.6969
   N 6 135 29.8164 25.2642
Cooling rate, ˚C/s 1.32 76.17 27.1079 23.0104
YS, MPa 482 910 672.935 102.658
UTS, MPa 589 971 742.708 86.503
Elongation, % 3.5 29.2 20.8411 5.2370

Reduction-in-
Area, %

7 84 94.6325 17.9575

CVN@-18˚C, J 8 358 181.9955 57.0641

CVN@-51˚C, J 3.8 242 143.6876 64.3903

DT@-1˚C, J 128 2606 1322.4916 538.1394

DT@-29˚C, J 80         2380 950.2694 583.3663

For each property, therefore, a committee of models was used to make
predictions. Once the optimum committee is selected, it was retrained on the
entire data set without changing the complexity of each model, with the
exception of the inevitable, although relatively small, adjustments to the
weights. Normally the error bars that are plotted represent the fitting error,
the magnitude of which depends on the position in the input space.  The
additional error sn is not usually plotted, but it is constant and can be taken
as the highest value of sn for any member of the committee of models, as
listed in Table 2.



Table 2: The number of models in each committee, and the corresponding largest value
of sn.

Property Models sn

UTS 6 0.061
YSUTS 14 0.047
EL 9 0.128
YSEL 8 0.127
UTSEL 18 0.130
RA 25 0.139
YSRA 4 0.117
UTSRA 19 0.140
CVN@-18˚C 1 0.055
YS CVN@-18˚C 80 0.109
UTS CVN@-18˚C 7 0.063
CVN@-51˚C 6 0.081
YS CVN@-51˚C 2 0.081
UTS CVN@-51˚C 11 0.080
DT@-1˚C 6 0.091
YS DT@-1˚C 2 0.098
UTS DT@-1˚C 10 0.233
DT@-29˚C 77 0.222
YSDT@-29˚C 3 0.136
UTSDT@-29˚C 6 0.139

Results and Discussion

Ultimate Strength
The ultimate tensile strength was predicted by adding the yield strength to
the input variables.  The data set consisted of 188 points.  The results are
shown in Fig, 1, where Fig.1a represents the predictions based on
composition and cooling rate, and Fig. 1b is the predictions based on
composition, cooling rate and yield strength. As might be expected, a better
correlation is obtained when the yield strength is added as a dependent
variable.  It is useful to understand the significance of each input in



influencing the UTS. The significance sw, which is plotted in Fig. 1c, is a
measure to the extent to which an input variable can be correlated with
variations in the output.  In that sense it is rather similar to a partial
correlation coefficient in linear regression analysis.  It is therefore worth
emphasizing that whereas sw gives an indication of the correlation, it does
not imply how sensitive the output is to the input – that information is in the
weights. It is evident from Fig. 1c that the yield strength is an important
parameter determining the UTS.

Elongation
There are three cases to consider: Fig. 2a is based on composition and
cooling rate only; Fig. 2b is based on composition, cooling rate, and yield
strength; Fig. 2c is based on composition, cooling rate, and ultimate strength.
The number of data is 188 in all cases and the number of models in the
committee is 9 in Fig 2a, and 8 for Fig. 2b and 18 for Fig. 2c.

 The addition of the yield strength improves the predictability of the
elongation (Fig. 2b), consistent with the observation in Fig. 2d that the yield
strength is recognised to be a significant variable. On the other hand, the
addition of the ultimate strength degrades the predictions. A possible reason
why the inclusion of UTS does not help improve the estimation of
elongation is that much of the elongation consists of uniform strain, whereas
the ultimate tensile strength manifests at a point where necking begins. This
is also seen in Fig. 2e, where the model perceived significance (sw ) of the
UTS is seen to be negligible.

Reduction-in-Area
The reduction of area has also been modelled in three ways: Fig. 3a is based
on composition and cooling rate only; Fig. 3b is based on composition,
cooling rate, and yield strength; Fig. 3c is based on composition, cooling
rate, and ultimate strength.  The number of data is 160 in all cases and the
number of models in the committee is 25 in Fig 3a, and 4 for Fig. 3b and 19
for Fig. 3c.  The addition of the yield or ultimate strength does not improve
the predictability of the reduction of area. This is also reflected in the larger
values of sn  listed in Table 2.



An examination of the significance, sw (Figs. 3d,e), shows that consistent
with these observations, the oxide forming elements, aluminum and oxygen,
are important in determining the reduction of area.

Charpy V-Notch Tests
CVN@-18˚C
Fig. 4 depicts the predictions of the neural network for the case of the
Charpy V-Notch tests at –18˚C.  Fig. 4a is the original result, whereas Fig.
4b includes the yield strength as input, and Fig. 4c includes the ultimate
strength.  The original predictions are based on a data set of 602 points and a
committee of 1 model. The addition of the yield strength resulted in a data
set of 566 points and a committee of 80 models and the addition of the
ultimate strength resulted in a data set of 568 points and a committee of 7
models.

CVN@-51˚C
Fig. 5 demonstrates the predictions of the neural network for the case of the
Charpy V-Notch tests at –51˚C.  Fig. 5a, which shows the original results,
was determined using a committee of 6 models based on 602 points.  Fig,
5b, with the yield strength as input, has a data set of 584 points and a
committee of 2 models.  Fig. 5c, ultimate strength as input, is based on a
data set of 584 points and a committee of 11 models yielded the least
correlation.

Dynamic Tear Tests
DT@-1˚C
Fig. 6a discloses the predictions of the neural network for the case of the
dynamic tear test at –1˚C for a data set of 180 points and a committee of 6
models.  The addition of the yield strength as a variable results in a data set
of 180 points and a committee of 2 models.  Substituting the ultimate
strength for the yield strength reduces the data set to 98 points and the
committee of models becomes 10.  The best correlation appears to be based
on chemistry and cooling rate only.

DT@-29˚C
Fig 7 shows the predictions of the neural network for the dynamic tear tests
at –29˚C.  The data set for all three cases was 180 points.  Fig. 7a, the



original results, has a committee of 77 models.  The addition of the yield
strength increases the number of models in the committee to 3, whereas the
addition of the ultimate strength increases the number of models in the
committee to 6.  The addition of either yield or ultimate strength does not
improve the predictability of the dynamic tear tests at –29˚C.

Use of the Models in Predictions

The performance of the models can be used to make predictions regarding
trends as a function of each of the inputs.  This is relatively straight forward
for the calculation of the strength, ductility, and impact resistance as a
function of composition and cooling rate.  The addition of strength as a
dependent variable complicates the predictive capability since it requires
first calculating either the yield or ultimate strength and then calculating the
desired property with the additional strength variable.

 Summary

It is found that in most cases, the complex mechanical properties of a weld
metal are best represented in terms of the chemical composition and cooling
rate alone.

The inclusion of the yield or ultimate strength as inputs failed to improve the
predictability of the neural network models, and did not provide any new
insight into trends as a function of the inputs. Furthermore, the models
become more difficult to use since a knowledge of the strength is required
before a calculation can be conducted.
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Figure Captions

Fig. 1 Comparison of predicted and measured values of UTS for as
deposited weld metal. The error bars represent +- 1s values, where s is
standard deviation. (a) Predictions in which the yield strength is not included
in the inputs. (b) Predictions in which the yield strength is included in the
inputs. (c) The significance of each variable, for the model used in the
calculations for Fig. 1b.

Fig. 2  Comparison between predicted and measured values of elongation for
as deposited weld metals. (a) Calculations in which the strength is not
included as an input variable. (b) Calculations in which the yield strength is
one of the inputs. (c) Calculations in which the UTS is one of the inputs.  (d)
The significance of each variable for the model illustrated in 2b. (e) The
significance of each variable for the model illustrated in 2c.

Fig. 3 (a-c) Comparison of predicted and measured reduction-in-area for as
deposited weld metals.  (d) The model perceived significance of each
variable for the case where the yield strength is included as a variable. (e)



The model perceived significance of each variable for the case where the
ultimate tensile strength is included as a variable.

Fig. 4 Comparison of predicted and measured Charpy V-notch energy at
–18˚C for as deposited weld metals

Fig. 5 Comparison of predicted and measured Charpy V-notch energy at
–51˚C for as deposited weld metals.

Fig. 6 Comparison of predicted and measured dynamic tear energy at –1˚C
for as deposited weld metals

Fig. 7 Comparison of predicted and measured dynamic tear energy at –29˚C
for as deposited weld metals
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Fig. 6a, 6b, and 6c
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Fig. 7a, 7b, and 7c
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