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Chapter 1 
 

Introduction 
 
Before starting, it should be mentioned that the Chapters 1-6 in this thesis are written 
for scientists and students who have already knowledge about the basic concepts of 
diffusion in binary solid-state systems. For those readers who want to know more about 
the concepts, an extensive Appendix is written which will be referred to very often. 
 
1.1 Recent developments in the understanding of the Kirkendall effect 
 
Since the discovery, as far back as 1947 [1], and the following analysis by Darken [2], 
the Kirkendall effect assumed a prominent role in the diffusion theory, as it is seen as 
the most explicit evidence for the occurrence of a vacancy mediated mechanism in 
diffusion processes in solids. 
 
Although this subject is treated in all textbooks on solid-state diffusion and is taught in 
many universities, the rationalization and description of the Kirkendall effect is by no 
means as simple as it looks at first sight. Scientists dealing with diffusion phenomena 
thought that they had a reasonable notion of the Kirkendall effect induced migration of 
inert inclusions (markers) inside the diffusion zone and the uniqueness of the Kirkendall 
plane (as marked by inert particles placed at the initial contact surface between the 
couple halves) has not been questioned for quite a long time. 
 
However, sometimes researchers noticed a peculiar behaviour of markers, when 
studying solid-state diffusion in different systems. Carter [3] was surprised to find the 
split up of a molybdenum wire, used as inert marker at the Al2O3/MgO-gas interface to 
study reaction and diffusion in MgAl2O4-spinel. Bastin and Rieck [4] had the same 
experience when studying interdiffusion in the Ti-Ni system, as shown in Fig. (1.1-1), 
where a tungsten wire was split and embedded in two different phases. Shimozaki et al. 
[5] observed during study of diffusion in the β′-AuZn phase that after interaction the 

tungsten wire which were placed at the interface of Au/γ-AuZn2 (64 at.% Zn) couple 
and the “original interface” revealed by traces of the joining plane (presumably because 
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of the presence of debris at the interface or scratches on the bonding faces) were 
located at two different planes. If the Kirkendall plane is unique, they should be at the 
same plane after annealing. 
 
These conspicuous findings were not identified by any of the authors as multiple 
Kirkendall planes and were not critically examined. 
 
In the mean time, Cornet and Calais [6] published an article in which they described 
hypothetical diffusion couples of a binary system, where more than one “Kirkendall 
marker plane” can emerge. Later, van Loo et al. [7] made more explicit predictions on 
this phenomenon in multiphase diffusion couples. It was only in the last few years, that 
several systematic studies into the microstructural stability of the Kirkendall plane were 
undertaken in our laboratory in order to find experimental evidence for the possible 
occurrence of two Kirkendall planes in a diffusion couple [8-10]. A clear-cut 
experimental verification of the ideas of Cornet and Calais was found and a number of 
fundamental concepts related to the Kirkendall effect were reconsidered.  
 
It was shown that in a volume-diffusion controlled interaction the Kirkendall plane can 
be multiple, stable or unstable. A basic framework, in terms of velocity curve 
construction was formulated to evaluate these phenomena [8, 9].  
 
 
 
 
 
 
 
 
 
 
 Fig. (1.1-1) Back-scattered electron 

image of a Ti/Ni diffusion couple 
annealed at 800 °C for 72 hours. The 
tungsten wire used as inert markers at 
the interface before annealing was found 
to be split and embedded in two different 
phases [4]. 
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Introduction 

The Kirkendall effect can best be visualized by the motion of inert (“fiducial”) markers 
placed before the diffusion annealing along the anticipated zone of interdiffusion. In the 
case of a diffusion couple in a binary A-B system, the velocity of these markers is 
dependent on the difference in intrinsic diffusivities of the species and the concentration 
gradients developing in the interdiffusion zone [A.17]: 

 ( )
x

C
DDVJVJVv B

ABBAABB ∂
∂

−=+−= )(   (m.s-1)     (1.1-1) 

where Ji (mole.m-2.s-1) is the intrinsic flux of the species, Di (m2.s-1) is the intrinsic 
diffusion coefficient, Ci (mole.m-3) is the concentration of component i and x (m) is the 
position parameter. The velocity in a diffusion zone can be determined from the 
knowledge of intrinsic diffusivities at all compositions over the whole homogeneity range 
and with the help of the concentration gradient at the position of these markers in a 
particular diffusion couple.   
 
In a diffusion-controlled interaction, the inert markers positioned at the location of the 
original interface between the reactants (“Kirkendall plane”) are the only markers that 
stay at a constant composition during the whole diffusion annealing and move 
parabolically in time with a velocity (A.17) 

 
t

x
t

xx
dt
dxv KK

K 22
0 =

−
==     (m.s-1)                  (1.1-2) 

where xK and xο (= 0) are the positions of the Kirkendall plane at times t = t and t = 0, 
respectively.  
 
The position(s) of the Kirkendall plane(s) can be found at the point of intersection(s) 
between the velocity curve 2tv vs. x (calculated by Eq. (1.1-1)) and the straight-line 2tvK 
= xK (determined by Eq. (1.1-2)). It was shown that the nature of the Kirkendall 
plane(s) in a diffusion zone depends on the gradient of the velocity curve at the point of 
intersection. When the straight line intersects the velocity curve at a point, where 

, one should expect the presence of a stable Kirkendall plane. When the 

gradient at the point of intersection,

( ) 0/ ≤∂∂ Kxv
( ) 0/ 〉∂∂ Kxv , it will result into an unstable 

Kirkendall plane.  
 
For example, we consider a hypothetical diffusion couple of alloys of A and B       
(AyB1-y/AzB1-z, where y > z), where in the A-rich side of the diffusion zone A is the 
faster diffusing species, whereas in the B-rich side B is the faster diffusing species.   
Fig. (1.1-2) shows the schematic presentation of the velocity curves in different 
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Schematic velocity diagrams, pertaining a hypothetical diffusion couple between alloys of A 
1-y/AzB1-z (y>z), where in the A-rich side A diffuses faster than B and in the B-rich side B 

er than A. Different conditions are shown: (a) the straight line 2tvK = xK intersects the 
e 2tv vs. x once at a point with a negative gradient, (b) intersects at a point with a positive 
 (c) intersects at three different positions. 
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situations. In certain diffusion couples the straight-line 2tvK = xK may intersect the 
velocity curve 2tv vs. x in the diffusion zone once at a point with a negative gradient 
(Fig. (1.1-2a)). At the point of intersection one can then expect the presence of one 
stable Kirkendall plane. Markers, which by some perturbation end up at a position 
slightly ahead of the Kirkendall plane, will slow down (because of lower velocity) and if 
these markers are behind this plane, they will move faster (because of higher velocity). 
In other words, the stable Kirkendall plane acts as attractor to the inert markers. By 
changing the end-member compositions the straight-line 2tvK = xK might intersect the 
velocity curve 2tv vs. x at a point with a positive velocity gradient, as shown in Fig. (1.1-
2b). In this case one will find an unstable Kirkendall plane. The markers slightly ahead 
of this plane will move faster, whereas markers slightly behind this plane will move 
slower. This will result into scatter of the markers and there will be no particular unique 
plane as the Kirkendall plane. It is also possible to meet a situation as shown in Fig. 
(1.1-2c), where the straight-line intersects the velocity curve three times at K1, K2 and 
K3. In this case, one might expect that three Kirkendall planes will be present, but in 
reality one finds the presence of two stable Kirkendall planes only. The unstable 
Kirkendall plane is situated between two stable Kirkendall planes and the stable planes 
will accumulate all the markers during the initial stages of the interdiffusion.  
 
Experimental evidence of the presence of stable and unstable Kirkendall planes were 
verified in Ni/Pd and Fe/Pd diffusion couples, respectively [10] with the help of the 
velocity diagram construction, as shown in Fig. (1.1-3). The velocity curve 2tv vs. x over 
the whole homogeneity range was determined by multifoil experiments. It was indeed 
found that a stable Kirkendall plane is present when the straight-line 2tvK = xK intersects 
the velocity curve 2tv vs. x at a point with a negative gradient, whereas an unstable 
Kirkendall plane was found when the gradient is positive at the point of intersection.  
 
In order to verify the experimental findings by shimozaki et al. [5] and in the quest for 
finding examples as discussed in Fig. (1.1-2) the growth of β′-AuZn phase growing from 
different Au-Zn end-members were reexamined [9]. With changing end-member 
compositions, stable and unstable planes as well as the bifurcation of the Kirkendall 
plane were found in different diffusion couples, as shown in Fig. (1.1-4). Since the 
intrinsic diffusion coefficients as a function of composition for the β′-AuZn phase are not 
known, it was not possible to produce quantitative results to construct velocity diagram 
in these cases. 
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Fig. (1.1-4a) Back-scattered electron image
of a diffusion couple grown between the end
members Au36Zn64 (γ-phase) and Au66Zn34

((Au,Zn)-solid solution + β′-AuZn). Only one
Kirkendall plane is present in the diffusion
zone.
Fig. (1.1-4b) Back-scattered electron image
of a diffusion couple grown between the end
members Au40Zn60 (β′ + γ phase) and
Au70Zn30 ((Au,Zn)-solid solution). The
microstructure is shown in the vicinity of the
array of ThO2-particles and the unreacted
initial end-members are much further away.
The presence of an unstable Kirkendall plane
was found in the diffusion zone. 
 

 
 

Fig. (1.1-4c) Back-scattered electron image
of a diffusion couple grown between the end-
members Au and Au36Zn64 (γ-AuZn2). Two
Kirkendall planes are present in the diffusion
zone. 



Chapter 1 

 
diffusion zone. In this work, the bifurcation of the Kirkendall plane was found in a 
single-phased reaction zone in the β-NiAl system. Systematic studies were carried out to 
determine the diffusion parameters and the Kirkendall effect was rationalized 
successfully with the help of the velocity diagram construction as discussed in Chap. 3. 
The predicted occurrence of the trifurcation of the Kirkendall plane in a diffusion zone of 
Ti/TiAl3 is also presented in this chapter. 
 
The behaviour of the Kirkendall plane was successfully explained by a diffusion based 
approach by means of the velocity diagram construction. However, this approach does 
not shed light on the reactions involved in a multiphase diffusion zone and on the 
morphological evolution during interdiffusion. A physico-chemical approach, for this 
purpose, is developed and demonstrated in Chap. 4. This approach has the extra benefit 
that it explains the morphologies in the diffusion zone.  
 
The Ni-Al system is important both for scientific understandings and for technological 
applications. In earlier studies the molar volume, one important prerequisite to calculate 
diffusion parameters, was not taken into consideration or otherwise irregularities in the 
approach were found. In Chap. 5, results on interdiffusion coefficients calculated with 
the help of proper molar volume data are presented.  Since no suitable Al isotopes are 
available, the direct measurements of the Al tracer diffusivities are not possible. In this 
chapter the results on tracer diffusivities in the β-NiAl (of both the species Ni and Al) 

and γ′-Ni3Al (of Al) phases through an indirect method by the diffusion couple technique 
are shown. 
 
Research into the interactions between solder and underbump metallization has been 
triggered after the declaration of the ban to be imposed on lead content solder alloys. 
With the thrust for miniaturization in modern electronics industry the understanding on 
the interactions between the materials involved, which controls the overall performance 
of the structure is even more important. Our knowledge developed during this thesis 
work has been applied to understand the interactions in Cu(Ni)/Sn and Au/Sn systems 
important for the electronics industry and the results are presented in Chap. 6.  
 
The theories on the diffusion couple technique and Kirkendall effect developed until now 
were scattered throughout the literature. In the Appendix A, these theories are 
presented systematically for binary systems. 
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Experimental Techniques 
  
Throughout this investigation the diffusion couple technique is used. Two dissimilar 
materials (end-members) are coupled together and annealed at elevated temperature 
for a certain period of time after applying an external load for good contact. At high 
temperature interdiffusion takes place and reaction/diffusion products grow with time. 
The bonded couple is then removed from furnace, cross-sectioned and after 
metallographic preparation examined by Scanning Electron Microscopy (SEM) and 
Optical Microscopy (with the help of polarized light). The composition profile of the 
interaction zone is measured by Electron Probe Microanalysis (EPMA).  
 
2.1 Preparation of the starting materials (end-members) 
  
Many different pure elements and alloys are used in this study. Specifications of the 
elements are listed in Table 2.1. The required alloys are melted in an arc-melting 
furnace in argon atmosphere (∼0.3 bar). In order to produce good homogenization, the 
alloys are re-melted at least three times. After collecting the ingot (generally of 10 
grams), the weight is measured to check the weight loss; it was found to be within 2 
weight percent. Subsequently, they are sealed in a quartz-glass capsule in vacuum      
(∼ 10-2 mbar) or in argon depending on the systems and annealed to equilibrate the 
phases. After annealing they are quenched in water and the compositions of the phases 
are then measured by EPMA to verify the phase diagram.  
 
2.2 Preparation of the diffusion couple 
  
Thin slices of one or two millimeters were cut by a slow speed diamond saw from as 
received pure elements and prepared alloys. Couple halves of two different materials 
are then ground with 180-grid SiC grinding paper followed by 30 and 10 µm diamond 
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impregnated discs. After that, final polishing of the surfaces was performed by 0.5 µm 
alumina slurry.  
 
Prior to annealing, ThO2-particles (0.5 - 1 µm) or tungsten powder (of ∼1 µm in the Au-
Sn system) were introduced on the bonding faces as inert markers. A suspension of 
particles in acetone was dropped onto a bonding face. After a short time the acetone 
evaporates, keeping more or less evenly distributed particles on the surface.  
 
It is to be mentioned that the markers must be “chemically” inert with respect to the 
reactants (end-members of the diffusion couple) as well as the reaction products and 
marker material has to be impervious to a flux of vacancies occurring in the diffusion 
zone. Secondly, the markers should be identifiable inside the reaction zone by means of 
optical and/or scanning electron microscopy. In most of our case thorium dioxide (ThO2) 
turned out to be the material of choice to use as “fiducial” markers. This 
thermodynamically very stable oxide is not only chemically inert within the reaction 
zones studied here, but, what is important, the ThO2-particles are readily identifiable by 
scanning electron microscopy as “white contrast” on back-scattered electron images 
(and as black-particles in the AuZn system). In addition, their presence can be 
substantiated with EPMA simply by monitoring, for example, the Th-Mα line of the 
characteristic radiation when the electron probe is positioned in such a way that the 
volume of X-ray generation includes the anticipated oxide particles. In the Au-Sn system 
tungsten was used as inert marker. ThO2-particles were not found back after annealing 
in this system; probably because of their rather small size and poor embedding in the 
phases they were removed during standard metallographic preparation.   
  
Another important issue related to this subject is the size of particles used as fiducial 
markers. Obviously, too large particles may hinder interdiffusion. On the other hand, too 
small particles can be dragged by the moving grain boundary (“Zener’s” drag) [1, 2]. In 
the cases described in the thesis, the motion of grain boundary of the product phase 
takes place under a considerable driving force, and we found no experimental evidence 
that the behaviour of the ThO2- and W-particles used as Kirkendall markers have been 
affected by the Zener’s drag.  
 
After applying the inert particles, the couple halves are inserted in the vacuum furnace 
(∼10-6 mbar). An external pressure of around 5 MPa was applied to ensure a good 
contact. Once vacuum is reached, the couple is annealed at desired temperature         
(± 2 °C) for the desired period of time. 
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Table 2.1 Specifications of the pure elements used for the present study 

 
Material    Purity (wt.%)    Supplier   

 
   Ni        99.99       Goodfellow (UK) 
   Al        99.995       Goodfellow (UK) 
   Co        99.98       Goodfellow (UK) 
   Si        99.99       Hoboken (Belgium) 
   Ag        99.99       Drijfhout (Netherlands) 
   Zn        99.98       Alfa Products (Germany) 
   Ti        99.995       Alfa Products (Germany) 
   Au        99.95       Goodfellow (UK) 
   Sn        99.99       Goodfellow (UK) 
   Cu        99.999       Alfa Products (Germany) 

 
 
2.3 Analysis of the diffusion couple 
  
After removing the sample from the furnace, the bonded couple is cross-sectioned by a 
slow speed diamond saw and ground and polished with final finish by 0.25 µm diamond 
paste. The interaction zone in the diffusion couple was examined by SEM (JEOL, 840A) 
and OM (JENAVERT). In some cases, like in Ti-Al and Ni-Al systems, polarized light 
microscopic techniques were used to examine the grain structure of the reaction layers, 
which are not visible in SEM. The composition profile of the reaction-diffusion zone was 
obtained from EPMA (JEOL JXA 8600 Superprobe).  
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Chapter 3 
 

Bifurcation and trifurcation of the Kirkendall plane 
 
3.1 Bifurcation of the Kirkendall plane in a single-phased β-NiAl diffusion 
layer 
 
I. Introduction and Statement of the problem 
 
In recent years, research into the Kirkendall effect accompanying solid-state 
interdiffusion took a new direction due primarily to the experimental discovery of spatio-
temporal instabilities and bifurcation of the Kirkendall marker plane in a multiphase 
reaction zone [1-4]. In previous publications  [2, 4], a basic framework for evaluating 
these peculiar phenomena was formulated. It was shown that in a volume-diffusion 
controlled interaction, the Kirkendall plane as marked by inert particles, placed prior to 
the annealing at the contact surface of a diffusion couple, can be multiple, stable or 
unstable. However, further developments in this field to verify the model 
experimentally have been hampered by the lack of sufficiently precise information on 
molar volumes and atomic mobilities of the reacting species in the intermetallic phases 
where bifurcation of the Kirkendall plane had been observed. This problem has been of 
concern for few years in our group and has motivated the present study, which has, 
actually, a simple purpose: to design a model system (where bifurcation occurs in a 
single-phased diffusion zone) and model experiments that allow a direct  validation  of  
   
This chapter is written based on the articles: 
1. A. Paul, A.A. Kodentsov and F.J.J. van Loo, Bifurcation of the Kirkendall plane during interdiffusion in 

the intermetallic compound β-NiAl, Acta Materialia, 52 (2004) 4041-48. 
2. A. Paul, M.J.H. van Dal, A.A. Kodentsov and F.J.J. van Loo, The Kirkendall Effect in Multiphase 

Diffusion, Acta Materialia, 52 (2004) 623-30.  
3. A. Paul, M.J.H. van Dal, A.A. Kodentsov and F.J.J. van Loo, On the behaviour of Kirkendall markers in 

solid-state interdiffusion, Archives of Metallurgy and Materials 49 (2004) 259-76. 
4. A.A. Kodentsov, A. Paul and F.J.J. van Loo, Bifurcation of the Kirkendall plane and patterning in 

reactive diffusion, Z. Metallkunde, 95 (2004) 258-60. 
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the concept of the Kirkendall velocity construction.  
 
II. Selection of β-NiAl as a model system and experimental approach 
 
One can envisage an “ideal” material system for this study. Suppose that only one 
intermetallic compound with a fairly wide homogeneity range is growing in a binary 
diffusion couple. It is then conceivable that difference in intrinsic diffusivities of the 
components and, hence, the corresponding Kirkendall velocity may have a “different 
sign” in different domains of the product layer (see Fig. (1.1-2)). In this case, a straight 
line =  and a velocity curve may have more than one intersection. If the 

Kirkendall planes are fixed by intersections at the locations in the diffusion zone where 
the gradient of the Kirkendall velocity with respect to the position parameter is negative, 
they will act as attractors for markers, and the marker planes will be microstructurally 
stable. This means that under these conditions, a multiple Kirkendall plane can, in 
principle, emerge [2, 4].  

Ktv2 Kx

 
In this respect, a reaction system in which a single-phase diffusion zone of β-NiAl 
intermetallic growing during interdiffusion from its adjacent phases offers a particular 
suitable example. Apart from simplicity, a number of aspects have been considered in 
selecting this material system. The NiAl-phase with B2 (CsCl-type) structure exists over 
a wide concentration range extended across the stoichiometric (1:1) composition as 
shown in Fig. (3.1-1) [5]. The unit cell of this intermetallic, as shown in Fig. (3.1-2), 
consists of two interpenetrating simple cubic sublattices and at the equiatomic 
composition all Al-atoms occupy the cube corners of one sublattice (lets say α [0;0;0]), 

and Ni-atoms occupy the corners of the other sublattice (β [1/2;1/2;1/2]). The deviation 
from stoichiometry is accomplished by essentially two mechanisms [6]. On the Ni-rich 
side, antisite defects are created, that is Ni-atoms can occupy the Al-sublattice, whereas 
on the other side of the stoichiometry, structural vacancies are present on the Ni-
sublattice. The concentration of these constitutionally generated vacancies can be 
appreciable.  
 
Such a peculiar defect structure has great influence on the diffusion behaviour of the 
intermetallic compound, which can change drastically with deviation from the 
stoichiometric composition [6-11]. Changes in magnitude and sign of the difference 

 can be expected which could lead to a velocity curve (see Fig. (1.1-2)) that 

makes bifurcation of the Kirkendall plane possible.    

( BA DD − )
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It is, however, important to realize that the predicted position(s) of the Kirkendall 
plane(s) emerging inside the product layer during interdiffusion is determined not only 
by the shape of the velocity curve, but, also depends on the position of the plane, xo, in 
the diffusion zone where the Kirkendall markers were situated before the interaction. In 
other words, the question whether bifurcation of the Kirkendall plane within a diffusion-
grown layer of β-NiAl will occur or not, is highly sensitive to the initial compositions of 
the end-members of the reaction couple since these define the position xo = 0, through 
which the line 2tvK = xK runs.  
 
In our experiments, the simultaneous appearance of two Kirkendall marker planes 
moving with different velocities was observed inside a β-NiAl diffusion-grown layer 
during solid-state reaction at 1000 °C between two-phase alloy end-members with 
nominal compositions N72.24Al27.76 and Ni41.7Al58.3 (Fig. (3.1-3)). 
 
Thus, the problem is reduced to the construction of the Kirkendall velocity plot 
pertaining to the β-NiAl product layer formed in this diffusion couple. 
 
There are, in principle, two ways of constructing the Kirkendall velocity curve in a binary 

A-B system. The first one, from the tracer diffusivities,  and  of the species A 

and B, respectively (A.16): 
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 is the thermodynamic factor,  and  are the 

chemical activities of components with pure elements A and B as the reference state, 

 is the molar volume,  and  are the partial molar volumes of A and B, 

respectively, α (= 1/f, f is the correlation factor) is the Manning’s correction for the 
“vacancy wind” effects (see A.16) and C

Aa Ba

mV AV BV

B and NB are the concentration and mole 
fraction, respectively. 
 
The second possibility is to determine intrinsic diffusivities, DA and DB following the 
diffusion couple technique and construct the velocity curve through (A.8): 
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Fig. (3.1-1) Binary Ni-Al phase 
diagram [5].  

 
 
  
 
 
 
 Figure (3.1-2) Pictorial view of the B2-

NiAl structure: In completely ordered 
(eqiatomic) NiAl compounds Ni(Al) atoms 
occupy the α(β) sublattice of full(open) 
circles. 
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Fig. (3.1-3) Back-scattered electron
image of a diffusion zone developed
between binary alloys with nominal
compositions Ni41.7Al58.3 and Ni72.24Al27.76

after reaction in vacuum at 1000 °C for
24 hrs. ThO2-particles were used as inert
markers between the initial end-
members. Two well-defined “Kirkendall”
marker planes emerged upon the
interaction. 
(The original Ni41.7Al58.3-alloy is much
further away from the marker plane.

Complete diffusion zone of this couple 
can be seen in see Fig. (3.1-7)) 
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One can make incremental diffusion couples to determine the interdiffusion coefficient, 

D~  (see A.9) and the ratio of intrinsic diffusivities,  (see A.10) for each couple. 

Interdiffusion coefficients and ratio of diffusivities are material constants for a particular 
composition at certain temperature. Then, the intrinsic diffusivities of the species, D

BA DD /

A 
and DB over the homogeneity range can be determined by using the relation 

ABBBAA DCVDCVD +=~
  (Eq. (A.8-8)).  

 
It turned out that only the second approach could be used because of the absence of 
suitable radioactive isotopes of Al.  
 
III. Relative mobilities of species and Interdiffusion in the β-NiAl 
intermetallic 
 
No pores (voids) or changes in the local cross-section of the annealed samples have 
been observed after annealing and no indication of grain boundary contribution to the 
overall diffusion transport in the product layer of NiAl-intermetallic was found. 
Concentration profiles in the annealed couples measured with EPMA were followed by 
Wagner’s approach, which takes into account the volume changes during interaction 
and enables us to calculate the interdiffusion coefficients (Eq. (A.9-13)) as well as to 
determine the ratio of intrinsic diffusivities (Eq. (A.10-6)) at the position of the 
Kirkendall marker plane, following: 
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       (3.1-4) 

where the Sauer-Freise variable Y = ( )/( ),  is the mole fraction of 

B,  and  are the end-member compositions of B at the unreacted left and right-

hand side of the diffusion couple and x

BB NN −− −+ − BB NN BN
−
BN +

BN
* is the position of interest.  
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An important prerequisite to find the inter- and intrinsic diffusion coefficients and the 
Kirkendall velocity values (Eq. (3.1-2)) in the growing intermetallic is the knowledge of 
the partial molar volume of the species involved in the interaction and the molar volume 
of the alloys. These data were obtained taking into account the possible presence of 
constitutional vacancies in the B2 structure and available information on the lattice 
parameter of NiAl (see A.18). 
 
In Fig. (3.1-4) the values of ratio of intrinsic diffusion coefficients, / , derived 

from the examination of the Kirkendall marker shift in the reaction couples listed in 
Table (3.1-1) are displayed graphically. The lines drawn in this figure represent the 
result of polynomial interpolation of the sets of the experimental points (pertaining to 
the Al- and Ni-rich domains of the homogeneous region) and subsequent extrapolation 
to the equiatomic composition. This result is expected, given the differences in the point 
defect structure and diffusion mechanisms operative on either side of the stoichiometry 
in B2 NiAl-phase [6-11].  

NiD AlD

 
One sees that indeed a cross-over of the intrinsic diffusivities occurs within the stability 
range of this intermetallic, which reflects that (DNi-DAl) changes sign near stoichiometric 
composition. 
 
Another important point is to be mentioned here. Returning to the back-scattered 
electron image shown in Fig. (3.1-3), one can notice the abrupt change in contrast near 
the equiatomic composition inside the β-phase layer. This is caused by the steep 
concentration gradient developed in the reaction product upon interdiffusion. The 
physical meaning of the existence of this gradient is the slow diffusion in the vicinity of 
stoichiometric NiAl-intermetallic, which reflects the highest degree of order in the B2 
structure of the β-phase in this compositional interval. This also has a profound 
influence on interdiffusion in this intermetallic compound. 
 
Interdiffusion in β-NiAl has been the subject of intensive investigations [10-17]. It is 
generally agreed that interdiffusion coefficient in the NiAl-alloys varies several orders of 
magnitude over the β-field with a minimum near the equiatomic composition. A 
literature survey has also revealed many conflicting data, which has prompted the 
additional experimental investigation of the interdiffusion behaviour of this intermetallic.
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Fig. (3.1-4) Experimentally determined ratio of intrinsic diffusivities of nickel and aluminium, DNi/DAl in the 
β-NiAl phase as a function of composition at 1000 °C. 
 

 

Table (3.1-1) Diffusion couples analysed in the present work 

 
Number of    Diffusion couple            Annealing time  

   Sample                           (hrs) 
  

1 Ni49.8Al50.2/Ni72.24Al27.76          100 

2 Ni49.8Al50.2/Ni66.24Al33.76     24 

3 Ni46Al54/Ni72.24Al27.76      24 

4 Ni46Al54/Ni66.24Al33.76       24 

5 Ni46Al54/Ni57.5Al42.5     100 

6 Ni46Al54/Ni57.5Al42.5      24 

7 Ni46Al54/Ni49.8Al50.2     100   

8 Ni49.8Al50.2/Ni57.5Al42.5     100 

9 Ni46Al54/Ni52.2Al47.8     100 

10 Ni46Al54/Ni52.2Al47.8      24 

11 Ni41.7Al58.3/Ni72.24Al27.76      24 

12 Ni46Al54/Ni54Al46      24 
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In our work, interdiffusion in the NiAl intermetallic phase was studied at 1000 °C. The 
Sauer-Freise treatment adopted by Wagner (A.9) for diffusional growth of a compound 
layer was used to evaluate the results of diffusion couple experiments. The values of 

interdiffusion coefficient, D~ , computed in this manner are plotted in Fig. (3.1-5) shows 
the concentration dependence of the interdiffusion coefficient in the NiAl-phase at this 
temperature together with the data reported in the literature (Diffusion studies on the 
Ni-Al system by Janssen and Rieck [17] are not considered here because in their work 
no evaluation of the concentration dependence of the interdiffusion in the β-phase has 
been attempted). 
 
It has to be stressed that direct quantitative comparison between the results of the 
present investigation and those obtained earlier is difficult. In the work of Shankar and 
Seigle [2], for example, a “classical” Matano-Boltzmann treatment of the concentration 
profiles across the reaction zones was used to derive the concentration dependence of 
interdiffusion coefficient. This is not a suitable treatment for the Ni-Al system, as the 
molar volume is strongly dependent on the composition and deviates from ideality (A.6, 
A.18). Therefore, differences (especially, in the Al-rich domain of the homogeneity 
region) between the interdiffusion data reported presently and those found in Ref. [12], 
as well as in the work of Helander and Ågren [14], who used in their models data of 
Shankar and Seigle, are not surprising. From Fig. (3.1-5), one can also notice about an 

order of magnitude difference between D~  values for the Ni-rich β-phase reported 
recently by Nakamura et al. [16] and those of all other investigations. 
 
In contrast, the results of Watanabe et al. [13] are very close to the present 
observations, but unfortunately, from diffusion couples used by these authors, it was 

not possible to obtain interdiffusion coefficients in the β-NiAl phase with an Al-content 
beyond 51.5 at.%. 
 
As to the set of interdiffusion data published by Kim and Chang [15], two points are to 
be addressed. Firstly, in view of the potential existence of rather high concentrations of 
constitutional vacancies in the B2 structure of NiAl, they suggested to modify the 
classical treatment of the results obtained in diffusion couple experiments [9, 15] in 
terms of the so-called “lattice mole fraction”, M, and the volume of one mole of lattice 
sites, Vu. For component i, M and Vu for cubic B2 NiAl phase can be expressed by:  
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with , , ,  being the average number of structural vacancies, number of 

atoms of component i, the total number of atoms and the total number of lattice sites in 
the unit cell, respectively, N

Vn in an sn

Avo is the Avogadro number and a is the lattice parameter. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (3.1-5) Interdiffusion coefficient, D~ , in the NiAl-intermetallic compound at 1000 °C obtained with 
incremental diffusion couples. (The numbers with the legends corresponding to different samples as listed 
in Table 3.1-1). 
The data reported by Shankar and Siegle [12] (         ), by Watanabe et al. [13]    (         ), by 
Kim and Chang [15] (             ) and Nakamura et al. [16] (             ) are included for comparison. 
 
 
The authors also claim that this composition variable is physically more reasonable for 
interdiffusion data analysis in the case of triple-defect B2 phases because of the 
existence of high concentrations of constitutional vacancies.  It is to be remarked, 
however, that such a claim is somewhat misleading since the proposed treatment is 
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purely phenomenological and no attempts have been made to elucidate the underlying 
diffusion mechanisms. Moreover, it can readily be shown that there is no need for such 
new parameter, because it leads to exactly the same results as when using the classical 
parameters given in the present paper.   
 
In Wagner’s treatment the concentration variable is expressed by Ni/Vm and can be 
written with the help of Eq. (A.18-1) for molar volume, Vm: 
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Instead of Ni/Vm, Kim and Chang used Mi/Vu for their calculation. However, from Eq. 
(3.1-5 and -6) we can write, 
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which clearly shows the equivalence of the concentration variables. 
Note from Fig. (3.1-5) that for off-stoichiometric NiAl, the measurements by Kim and 
Chang are indeed similar to the present experimental findings with an apparently rapid 
increase in interdiffusion coefficient for Al-rich alloys.  
 
Secondly, the reported value of interdiffusion coefficient at stoichiometric NiAl is very 

low, in the order of m1710− 2/s. This low value has nothing to do with the 
abovementioned introduction of a new concentration parameter. In the cited paper, 
there seems to be an educated tendency to think of the extremum in the concentration 
dependence as a “very deep minimum” corresponding to exactly stoichiometric NiAl. As 
already pointed out, a steep concentration gradient occurs in the proximity of the 
equiatomic composition, and therefore, the extent of this part of the diffusion zone is 
small. This thwarts the accurate determination of the interdiffusion coefficient in this 
compositional interval owing to uncertainties connected with the concentration gradient 
determination and graphical integration involved in the Wagner’s method. 
 
IV. Velocity curve construction in the β-NiAl diffusion layer 
 
Returning to the diffusion couple shown in Fig. (3.1-3), it is now possible to determine 
the position of the plane within the intermetallic product layer where the Kirkendall 
markers were situated at time t = 0 (i.e. xo = 0). This can be done by subjecting the 
concentration profile (Fig. (3.1-6a)) measured across the reaction zone to the Sauer-
Freise treatment adopted by Wagner (see A.19). Using experimental results on the ratio 
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of diffusivities of the species (Fig. 3.1-4) and interdiffusion coefficients (Fig. 3.1-5) 
outlined in the preceding section the intrinsic diffusivities of Ni and Al over the 

homogeneity range was calculated using ABBBAA DCVDCVD +=~
.  From pertinent 

values of the concentration gradient derived from the concentration-distance plot given 
in Fig. (3.1-6a), the Kirkendall velocity in the NiAl-intermetallic layer corresponding to 

the off-stoichiometric domains of the β-phase can be found (as shown in Fig. (3.1-6b)) 
using Eq. (3.1-2). 
 
From Fig. (3.1-6b), one can see that the straight line KK xtv =2  intersects the velocity 

plot twice at locations where the gradient of the Kirkendall velocity with respect to the 
position parameter is negative. Under these conditions, the appearance of two 
microstructurally stable Kirkendall planes (i.e. bifurcation) inside the product layer is 
expected. Apparently, the marker plane locations predicted on the basis of the 
Kirkendall velocity diagram are in good agreement with the experimental observations, 
given the accuracy and limitations of the diffusion couple techniques employed.  
 
V. Kirkendall effect and morphological development 
 
An interesting experimental finding related to the presence of Kirkendall planes deserves 
further attention. It was noticed in the past that a “duplex” grain morphology sometimes 
develops inside diffusion-grown compound layers [18-20]. The term “duplex” is used 
here to emphasize that the layer of the same chemical compound looks in the examined 
reaction zone as if it consists of two sublayers demarcated by a distinct boundary and 
differing by shape, size or orientation of the grains. This boundary has been proved to 
coincide with the Kirkendall plane and, therefore, the presence of such a boundary can 
be considered as a manifestation of the Kirkendall effect [21].  
 
The phenomenon is independent of the presence of any inert markers. The role of the 
Kirkendall plane in developing a duplex grain morphology in a single-phased product can 
be (qualitatively) understood from grains developed inside the interdiffusion zone. 
 
When polarized light microscopic techniques were used to examine the diffusion couple 
shown in Fig. (3.1-1), it appeared possible to discern different grain morphologies 
(“sublayers”) within the product layer (Fig. (3.1-7)). At the interphase  interface I,  the 
product NiAl grows by the loss of Ni-atoms from the reactant Ni72.24Al27.76 and by the 
reaction of this end-member with Al-atoms “released” from the other end-member, 
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Ni41.7Al58.3. At the interface II, on the other hand, the product phase grows by the 
reaction of the Ni41.7Al58.3 alloy with incoming Ni-atoms (released from the Ni72.24Al27.76) 
and by loss of Al-atoms from the Ni41.7Al58.3. As a result, the “sublayers” adjacent to the 
end-members of the couple exhibit different crystal morphology, possibly related to the 
morphology of the initial alloy end-members.  
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ig. 3.1-6 (a) Distribution of nickel across the reaction zone in the annealed (1000 °C; 24 hrs) 
i41.7Al58.3/Ni72.24Al27.76 diffusion couple shown in Fig. (3.1-3). (Letters K1 and K2 indicate the observed 
ositions of the Kirkendall marker planes); (b) the Kirkendall velocity diagram of the β-NiAl layer growing 
 this reaction couple constructed with the experimental data of the present investigation. (Two 
tersections between the velocity plot and the line  are found. The dashed line connecting 

ata points pertaining to the Al-rich part of the product layer is drawn for eye guidance). 
KK xtv =2
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The grains in the region between K1 and K2 are different
the couple. This is a general finding, also in other 
Kirkendall planes are found. Sometimes completely new
one sees a kink in existing grain boundaries like in
becomes more clear in Chap. 4, where the physico-
growing line compounds. 
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Fig. (3.1-7) Optical image 
(polarized light) of the reaction 
zone in the Ni41.7Al58.3/Ni72.24Al27.76

diffusion couple after annealing at 
1000 °C in vacuum for 24 hrs. 
(K1 and K2 indicate the positions of 
the stable Kirkendall planes). 
 from those in the other parts of 
systems where two (or more) 
 grains are formed, sometimes 

 Fig. (3.1-7). This explanation 
chemical approach is used for 
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3.2 Bifurcation of the Kirkendall plane in a multilayered multiphase reaction 
zone: Ag-Zn system 
 
I. Interdiffusion and intrinsic diffusion coefficients, and the velocity curve 
construction 
 
Bifurcation in a multiphase system can be visualized in the Ag-Zn binary system. Pure 
Ag and Zn slices were coupled at 370 °C for 5 hours. As expected from the phase 

diagram (Fig. (3.2-1)) [22], three layers of the product intermetallics, β-AgZn, γ-Ag5Zn8 

and ε-AgZn3 were formed, as shown in Fig. (3.2-2). Here, the phases are denoted by 
their binary formulae. However, it is to be pointed out that the intermediate phases in 
this system exist over wide concentration ranges around the stoichiometric 
compositions. Prior to annealing ThO2-particles were introduced between the initial 
couple halves as inert (fiducial) markers. After intersection, a row of ThO2-markers can 
be seen inside the ε-, as well as in the γ-phase, i.e. two stable Kirkendall planes are 
present. Such marker behaviour can be rationalized in terms of the Kirkendall velocity 
construction as is shown below. 
 

The interdiffusion coefficient, D~ , and ratio of intrinsic diffusivities, DZn/DAg are 

calculated at the Kirkendall marker positions (for the ε- and γ-phases) from the 
measured concentration profile as shown in Fig. (3.2-3) following Wagner’s treatment 
(A.9 and A.10). The average values of molar volumes were calculated from the lattice 
parameters given in Ref. [23]. The absolute values of the intrinsic diffusivities are 

determined following the relation ABBBAA DCVDCVD +=~
 (Eq. (A.8-8)) and from the 

calculated values of interdiffusion and ratio of intrinsic diffusion coefficients. Partial 
molar volumes of the elements,  and  in the phases were considered as equal to 

the molar volumes of the pure components Ag,  (10.27 cm

AgV ZnV
Ag

mV 3/mole) and Zn,  

(9.16 cm

Zn
mV

3/mole), respectively, considering the ideal case (VA≠VB, but constant following 

Fig. (A.6-1a)).  Intrinsic diffusion coefficients for β-phase were calculated, in the same 
manner, from the incremental couple Ag/(Zn13at.%Ag) in which only one Kirkendall 
marker plane (in the β-phase) was observed. Interdiffusion coefficients from both 
couples at the same composition were found to be same within the limit of errors and 
the values are listed in Table (3.2-1).  
 
The velocity diagram was constructed as shown in Fig. (3.2-4). The position of initial 
contact plane xo = 0 was found from the YAg/Vm vs. x plot. For simplicity, we assumed a 
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constant marker velocity within the product phase layer, which means that each fiducial 
marker that might be present inside the product layer will move during the interdiffusion 
process with the same Kirkendall velocity. Apparently, this leads to a “stepwise” plot of 
2tv vs. x. One can see that the line 2tvK = xK (xK = xK – xo with xo = 0) intersects the 
velocity plot twice in the domains of the reaction zone corresponding to the product 
layers of γ-Ag5Zn8 and ε-AgZn3 intermetallics. This means that two microstructurally 

stable Kirkendall planes will emerge upon interdiffusion, one in the γ- and one in the ε-
phase layer, as was found experimentally (Fig. (3.2-2)).  
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I. Kirkendall effect and morphological evolution  
 

he micrographs of different phases grown during interdiffus
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Fig. (3.2-2) Backscattered Electron Image (BEI) of a diffusion zone developed between Zn and Ag after 
reaction in argon at 370 οC for 5 hrs. ThO2-particles were used as inert markers between the initial end-
members. Two well-defined Kirkendall-marker planes (K1 and K2) emerged upon the interaction. 
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Table 3.2-1 The diffusion coefficients, D~ , average values of molar volume, Vm of the Ag-Zn intermetallics 
and intrinsic diffusivities, DAg and DZn in these phases at 370 οC for the compositions corresponding to the 
locations of the Kirkendall planes in the reaction couples studied, along with the calculated marker 
velocities, vK. 

 
Phase 

(composition, at.%Ag) 

β - AgZn 
(49.7) 

γ - Ag5Zn8

(38.9) 
ε - AgZn3

(14.8) 

 
 
 
 

 
 
 
 Vm [m3/mole]
D~  [m2/s]* 

AgD [m2/s] 

ZnD [m2/s] 

 vK [m/s]*)

 

9.46 × 10-6

1.0 × 10-11

2.74 × 10-12

1.6 × 10-11

-2.8 × 10-9

 

9.44 × 10-6

1.69 × 10-12

5.89 × 10-13

3.17 × 10-12

-2.87 × 10-9

 

9.20 × 10-6

1.67 × 10-12

4.1 × 10-13

8.0 × 10-12

-4.67 × 10-9

 *) Calculated using the concentration gradient in the product layers in the annealed Zn/Ag couple      
(370 οC; 5 hrs).  

We assumed partial molar volumes and  m61027.10 −×== Ag
mAg VV 61016.9 −×== Zn

mZn VV 3/mole. 
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Fig. (3.2-4) The Kirkendall velocity diagram constructed for a Zn/Ag diffusion couple annealed at 370 οC 
for 5 hrs. The straight-line 2tvK = xK intersects the velocity plot twice (at the positions K1 and K2), i.e. two 
Kirkendall marker planes are present. 
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Fig. (3.2-5) Back-scattered electron 
images of different phases in a 
multiphase diffusion zone in a Zn/Ag 
reaction couple annealed at 370° C
in argon for 5 hrs: 
a) The Kirkendall marker position in 
ε-phase is clearly evident from the 
duplex morphology and the presence 
of ThO2-particles. 
(b) The Kirkendall marker position is 
demarcated by the grain morphology 
developed during diffusion in γ-
phase. 

(c) The absence of a duplex nature 
in the β-phase is evidence for the 
absence of a Kirkendall marker plane 
in this layer. 
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3.3 Trifurcation of the Kirkendall plane: Ti-Al system 
 
I. Interdiffusion and velocity curve construction 
 
Till date there have been many proofs on the bifurcation of the Kirkendall plane: in a 
single-phased diffusion zone (β-NiAl [chap. 3.1], β′-AuZn [4]), in multiphase diffusion 
zones in binary systems (Ag-Zn [chap. 3.2], Co-Si [chap. 4.1], Au-Sn [chap. 6.3], Ti-Ni 
[1, 24] and in ternary system (Ti-Ni-Cr [25]). However, there was no evidence, so far, 
on the presence of more than two Kirkendall planes. Looking for the possibility for 
trifurcation of the Kirkendall plane, we found the predicted occurrence in the Ti-Al 
system, which was subject of earlier investigations in our laboratory [26, 27]. This can 
be appreciated from Fig. (3.3-1). This micrograph represents a typical diffusion zone 
morphology developed in a multiphase TiAl3/Ti diffusion couple during reaction at     
870 °C after annealing for 1600 hrs. In this experiment ThO2-particles were used as 
inert markers between the end members. After interaction, rows of markers can be seen 
in all three reaction product layers, TiAl2, TiAl and Ti3Al, which are formed according to 
the phase diagram Fig. (3.3-2) [22].  
 
The ratio of diffusivities at Kirkendall marker planes and the velocity of the inert markers 
were calculated with the help of Eq. (A.10-6) and Eq. (A.17-8), respectively from the 
composition profile (Fig. (3.3-3)) and are listed in Table (3.3-1). The average molar 
volumes of the phases were calculated at the stoichiometric composition from the 
crystallographic data available in Ref. [23].  The ratio of diffusivities was found to be in 
accordance with Ref. [26]. Partial molar volumes of the elements, VTi and VAl in the 

phases were considered as equal to the molar volumes of the pure components Ti,  

(10.63 cm

Ti
mV

3/mole) and Al,  (10 cmAl
mV 3/mole), respectively, considering the ideal case 

(VA≠VB, but constant following Fig. (A.6-1a)). The velocity diagram was constructed, as 
shown in Fig. (3.3-4), from the 2tv vs. x stepwise plot and the straight line 2tvK = xK (xK 

= xK  - xo = xK), after finding the xo position following the procedure given in (A.19). It is 
clear that the line 2tvK = xK intersects three times the velocity curve 2tv vs. x. For 
simplicity, a constant marker velocity within a product phase layer was assumed.  
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 Fig. (3.3-2) Binary phase diagram of the Ti-Al system [22].
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Fig. (3.3-1) Back scattered electron 
image of a diffusion zone developed 
between Ti and TiAl3 after reaction in 
vacuum at 870 0C for 1600 hours. 
The locations of the Kirkendall planes 
inside the product layers are 
revealed by rows of ThO2-particles. 
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Fig. (3.3-3) Composition profile measured by EPMA of the TiAl3/Ti couple (as shown in Fig. (3.2-1)) 
annealed at 870 °C for 1600 hrs. K1, K2 and K3 correspond to the Kirkendall marker planes in the TiAl2, 
TiAl and Ti3Al phase, respectively. 
 
 
 
Table 3.3-1 The ratio of diffusivities, average values of molar volume, Vm of the Ti-Al intermetallics at   
870 οC for the compositions corresponding to the locations of the Kirkendall planes in the reaction couples 
studied, and the calculated marker velocities, vK. 
 

Phase 
(composition, at.% Ti) 

TiAl2 

(34.4) 
TiAl 

(49.63) 
Ti3Al 

(76.26) 

 
 
 
 
 

 
 
 Vm [m3/mole] 

AlTi

TiAl

DV

DV
 

 vK [m/s]*

 

9.62 × 10-6

0.0194 

-17.74 × 10-13

 

9.81 × 10-6

0.572 

-3.99 × 10-13

 

10.03 × 10-6

6.537 

17.79 × 10-13

we assumed V  10.63 ×10== Ti
mTi V -6 m3/mole and  10 × 10== Al

mAl VV -6 m3/mole 
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-4) The Kirkendall velocity diagram constructed for a TiAl3/Ti diffusion couple annealed at 870 οC 
 hrs. The straight-line 2tvK = xK intersects the velocity plot thrice (at the positions K1, K2 and K3), 
 Kirkendall marker planes are present. 

 effect of the Kirkendall plane on grain morphology 

x microstructure was found in all the three phases, as expected (Fig. (3.3-5a)) 
e of the presence of Kirkendall planes. This is, in fact, a characteristic 
logical feature in the presence of a stable Kirkendall plane. However, it should 
tioned here that in the same couple, in some parts of the diffusion reaction zone, 
n in Fig. (3.3-5b) the Kirkendall plane in the TiAl-phase was missing.  

n be explained from the velocity plot as shown in Fig. (3.3-4). The presence of 
endall plane in a phase layer is critically dependent on the thickness of the other 

. With changing of the thickness of the layers, the position of xo will move to the 
 left hand side (and also the length of the steps in the velocity curve for all the 
) will change) and the straight line 2tvK = xK can easily miss to intersect the 
 curve for one layer, especially if this layer is thin. The difference in the thickness 
total or phase layers can occur because of the grains developed with different 
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orientations. The lattices of all the three phases (TiAl2 (hexagonal), TiAl (tetragonal), 
Ti3Al (tetragonal)) are non cubic and can nucleate with different orientations. It is a 
well-known fact that with the difference in orientation, diffusion rates can be different.  
In the case of a multiphase diffusion zone, layers grow by the mutual competition 
between two simultaneous reactions (see Chap. 4). The phase grows by consuming 
neighbouring phase(s) and at the same time it is consumed because of the growth of 
other neighbouring phase(s). If the diffusion rate in some grains of the neighbouring 
phase(s) of TiAl is higher, the growth rate of these grains will be higher, so that they 
will consume more of the TiAl-phase.  This may result into the consumption of one of 
the sublayers of the TiAl-phase adjacent to the TiAl2 (or Ti3Al) phase and the straight-
line 2tvK = xK does not intersect the velocity curve for the TiAl-phase anymore. 
 
Note that the waviness in the phase layers reflects the difference in the growth rate 
from grain to grain resulting from the difference in orientation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. (3.3-5) Optical micrograph 
(polarized light) of a diffusion zone 
developed between Ti and TiAl3 after
reaction in vacuum at 870 οC for 1600 
hours. Kirkendall marker planes are 
shown with the help of arrows. 
(a) Duplex microstructure is evident in 
all the phase layers. 
(b) One sublayer in TiAl-phase is 
missing which reflects the absence of a 
Kirkendall plane in this phase. 
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3.4 Concluding remarks 
 
Unquestionably, the better understanding of the Kirkendall effect has a great potential 
for providing insights into the complexities of multiphase diffusion. 
 
We succeeded to demonstrate that the Kirkendall plane bifurcation in a single-phased 
intermetallic product layer and the bifurcation and trifurcation in a multiphase diffusion 
zone can be rationalized using the concept of “marker velocity construction”. Here, we 
rely solely on the information deduced from the experiments with incremental diffusion 
couples, which have proved to be a versatile technique for studying diffusion behaviour 
in intermetallic compounds.  
 
It is likely that improved models based, for example, on diffusion mechanism 
considerations will be developed in the future to describe the Kirkendall-effect mediated 
behaviour of inert inclusions (markers) during growth of an intermetallic layer. 
Nevertheless, the success of the present phenomenological model in the understanding 
of bifurcation and trifurcation of the Kirkendall plane is very gratifying.  
 
The results of the present study may also alter some previous notions about the 
diffusional growth of a compound layer. For instance, it was found that the stable 
Kirkendall plane(s) can be revealed by the grain morphology changes in the product 
layer. In other words, in this case, there is no need for any fiducial markers at all to find 
the positions of the Kirkendall planes!  
 
The bifurcation and trifurcation of the Kirkendall plane was observed, not only because 
of the grains growing from the interfaces with starting reactants, but also because of 
the grains developed at a location in between the stable Kirkendall planes. This is more 
clearly explained in next chapter (Chap. 4) with the help of a physico-chemical approach 
developed during this thesis work. 
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Chapter 4 
 

A physico-chemical approach and morphological evolution  
 
4.1 Multiphase diffusion growth and morphological developments in the Co-Si 
system 
 
Recently, bifurcation and trifurcation of the Kirkendall planes have been discovered in 
many diffusion couples in our laboratory. This phenomenon can quantitatively be 
rationalized using classical diffusion theory by means of the Kirkendall velocity diagram. 
Now, it is understood that the position of the Kirkendall plane is revealed in the reaction 
zone not only by inert markers, but also by a different crystal morphology developed on 
either side of the plane.  
  
For applications, it has been a challenge for researchers to develop a predictive 
capability, which envisage not only the thickness of the layers but also the position of 
the Kirkendall plane(s) and the morphology developing during interdiffusion. The 
Kirkendall plane is mechanically the weakest plane in the structure, because foreign 
inclusions and pores (resulting from a negative surface, i.e. scratch, on the bonding 
faces) will be accumulated along this plane. This plane has also strong influence on the 
morphological development, which ultimately controls the overall performance of the 
structure. 
  
There are two types of treatment, a “diffusion based model” and a “physico-chemical 
approach” to predict the details of the structure. The diffusion-based model can 
successfully predict the thickness of the layers and the Kirkendall plane position(s) (as 
shown in A.20). However, it has the limitation that this approach does not shed light on  
 
This chapter is written based on the articles: 
1. A. Paul, M.J.H. van Dal, A.A. Kodentsov and F.J.J. van Loo, The Kirkendall effect in multiphase 
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2. A. Paul, A.A. Kodentsov and F.J.J. van Loo, Bifurcation and trifurcation of a Kirkendall plane during 
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the reactions involved during interdiffusion. For that purpose, a physico-chemical 
approach is developed during this thesis work, which (with the help of the diffusion 
based approach) elucidates the role of the Kirkendall effect in the morphogenesis of 
interdiffusion systems. The models are verified using the experimental results in the Co-
Si system. The main advantage to consider this system is that there are numerous 
experimental results found in our laboratory [1, 2] and all the phases present in the 
system have a narrow homogeneity range. It is demonstrated that both the approaches, 
physico-chemical and diffusion based model lead to the same results regarding the 
predictions of the Kirkendall plane positions, however, the physico-chemical approach 
has the extra benefit of the prediction of the morphological developments.   

 

 
I. Diffusion based approach 
  
This approach is illustrated in A.20 by using examples of interaction in the system Co-Si. 
The pertinent experimental information on Co-silicide growth, which provides the basis 
for verification of the proposed models are found in our publications [1, 2]. 
   
In the Co-Si system three (nearly) stoichiometric compounds, viz. Co2Si, CoSi and CoSi2 
exist, as shown in Fig. (4.1-1). The most important data for the ensuing discussion are 

listed in Table (4.1-1). The average values of  at 1100 °C for intermetallic 

compounds of the Co-Si system obtained experimentally using different types of 
diffusion couples are given together with the ratio’s of intrinsic diffusion fluxes of Si and 
Co determined in the product phase layers at the position of the Kirkendall plane and 
the molar volumes of the Co-silicides. 

intD~

 
The thickness of the product layers can be predicted for any type of semi-infinite 

multiphase diffusion couple of this system if the values of intD~  are known for all the 

compounds formed during reaction. The results of the calculations (see A.20) for three 
different couples of the Co-Si system are presented in Table (4.1-2). The positions of 
the Kirkendall planes were calculated from ratio of intrinsic diffusivities. The straight-line 

2tvK = xK and the velocity plot 2tv vs. x found by ( )
x

C
DDVv B

ABB ∂
∂

−= , as explained in 

section A.17, A.20, should intersect at the Kirkendall plane positions(s). In Figs. (A.20-
2b, A.21-3a, and -3b) the Kirkendall velocity diagrams experimentally constructed for 
various diffusion couples of the Co-Si system are shown. In the case of the Co-Si couple 
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(Fig. (A.20-2b)), it is impossible for a Kirkendall plane to be located in the CoSi2-phase 
layer since the line 2tvK = xK does not hit the velocity plot 2tv vs. x in the domain of the 
reaction zone corresponding to that phase. As suggested in Ref. [3], in such situation 
one can define a virtual Kirkendall plane for this phase layer, whose meaning is more 
clearly understood from the physico-chemical treatment presented in the next section. 
 
II. A physico-chemical approach 
  
If one considers the couple Co2Si/CoSi2, it is clear from Fig. (4.1-2) that the product 
phase is growing in two ways, due to a different type of nucleation. At the interface 
Co2Si/CoSi the CoSi-phase nucleates and grows by the loss of Co atoms from Co2Si and 
by the reaction of Co2Si with Si atoms, released from CoSi2. At the CoSi/CoSi2 interface 
the CoSi-phase nucleates and grows by the reaction of CoSi2 with Co atoms (released 
from Co2Si) and by the loss of Si atoms from CoSi2. 

 
In terms of chemical reaction equations the process can be described a follows: 

 
at the interface Co2Si/CoSi 

[ ]
2
1

2
1

3
1

3
2 23 SipCoCopSipCo d +→  

[ ]
2
1

2
1

3
1

3
2 43 SiqCoSiqSiqCo d →+  

 at the interface CoSi/CoSi2  
 [ ]

2
1

2
1

3
2

3
1 43 SipCoCopSipCo d →+  

 [ ]
2
1

2
1

3
2

3
1 23 SiqCoSiqSiqCo d +→  

The parameters p and q are the number of moles of Co and Si atoms, respectively, 
transferred per unit area of the reaction layer during the total diffusion time. The 
symbols [Co]d and [Si]d denote the diffusing atom species in the product layer; they do 
not represent the phases Co or Si. 
 
For a quasi-steady state growth of the product layer, one can write 

∫ ∫ ===
t t

CoCo Jtdt
t

kdtJp
0 0

2
2

1  ; SiJtq 2=                (4.1-1) 

as the intrinsic flux, Ji in a diffusion-controlled interaction is proportional to t-1/2. Here k 
is a constant.
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Fig. (4.1-1) Binary phase diagram of Co-Si system. Three line compounds with narrow homogeneity range 
are present in the system. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (4.1-2
compound
Co2Si/CoSi
exhibiting 

 

a) 
s an
2 dif
a wh
Schematic illustration of the growth of the CoSi-layer between the Co2Si and CoSi2 
d b) backscattered electron image showing the formation of CoSi in an annealed 

fusion couple (1100 °C; 25 hrs). The Kirkendall plane (K) is revealed by the ThO2-particles 
ite contrast on the micrograph. 
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Table (4.1-1) The integrated diffusion coefficients, int
~D , molar volumes Vm of the Co-silicides and ratio’s 

of intrinsic fluxes of Si and Co, VCoDSi/VSiDCo in  these  phases at 1100 °C. 
 

Phase 
 

 
 
 
 

Co2Si CoSi CoSi2

 

t
~

inD [m2.s-1]*

 

CoSi

SiCo

DV

DV
 

 
Vm [m3.mole-1] 

 
(1.5±0.5)×10-14

 
 

0.06±0.025 

 

6.56×10-6

 
(4.6±0.3)×10-14

 
 

35±15 

 

6.60×10-6

 
(7.7±1.2)×10-16

 
 

1.4±0.25 

 

7.75×10-6

*) average values obtained from different diffusion couples 

 
 
 
 
Table (4.1-2) The calculated thicknesses, d and Kirkendall velocities, vK  corresponding to the phase layers 
growing during interdiffusion in various couples of the Co-Si system at 1100 °C along with the predicted 
positions, xK (where coordinate xK = xK - xo; xo = 0) of Kirkendall plane(s) in the reaction products (see 
Figs. (A.20-2b, -3a and -3b)). 
 

                   Product Phase 
 

Diffusion 
Couple 

(annealing 
time) 

Calculated 
values 

         CoSi                  Co2Si                 CoSi2
 

d (10-6 m)         315 

vK (10-10 m/s)         2.75 

 
 

Co2Si/CoSi2
(25 hrs) 

 xK (10-6 m)         49.5 

d (10-6 m)         463                    164 

vK (10-10 m/s)         1.86                  -2.31 

 
 

Co/CoSi2
(100 hrs) 

 xK (10-6 m)        133.8                -166.3 

d (10-6 m)          321                    131                    6.8 

vK (10-10 m/s)         2.69                  -2.92                    0.4 

 
 

Co/Si 
(100 hrs) 

 xK (10-6 m)        193.7                 -210.5                 28.6 
                                                      (virtual)        
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Therefore, the ratio q/p equals to the ratio of the momentary diffusion fluxes of the 

components inside the phase layer at time t, that is (considering Eqs. (A.4-9 and A.8-1))  

CoSi

SiCo

CoSiCo

Si
t

Co

t

Si

DV
DV

J
J

dtJ

dtJ

p
q

===

∫

∫

0

0        (4.1-2) 

The reaction zone developed in this couple can be considered as if it was composed of 
two regions separated by the Kirkendall plane and the following relations can be 
defined: 

( )
( ) bVqp

aVqp
CoSi

m

CoSi
m

=+

=+

24

42
                   (4.1-3) 

with a and b being the thicknesses of the CoSi-layer nucleated at either side of the 
Kirkendall plane (Fig. 4.1-2). 
 
We know the total layer thickness of the CoSi-phase that will grow after 25 hours of 
annealing in the Co2Si/CoSi2 couple as shown in Table (4.1-2) calculated by the 
diffusion-based approach (see A.20) and we can write, a + b = 315 µm. The ratio of 
diffusivities q/p is known from Eq. (4.1-2) in this phase as listed in Table (4.1-1). From 
these information’s we can solve the Eq. (4.1-3) and find the values of a and b as 208 
and 107 µm, respectively, and p and q as 0.22 and 7.73 mole/m2, respectively.  
 
According to the basic diffusion concepts we earlier found (see Eq. (A.8-7))  

( ) ( )CoSimCoCoSiSiK JJtVJVJVttv +−=+−= 222      (4.1-4) 

considering  (i.e. we take the partial molar volumes of the species in a 

phase is equal to the molar volume of the phase). According to the physico-chemical 
approach we can transform Eq. (4.1-4) into:   

mCoSi VVV ==

                          (4.1-5) ( )pqVxtv CoSi
m

CoSi
KK −==2

With the values of p and q, the velocity of the marker plane, vK was calculated from   
Eq. (4.1-5) as 2.75×10-10 m/s which agrees with the value listed in Table (4.1-2) 
calculated by the diffusion-based approach through Eq. (A.17-9): 
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where  is the thickness of CoSi diffusion layer developed after interaction.  CoSix∆
 
This shows the equivalence of the diffusion-based and the physico-chemical approaches 
in describing a product phase growth and by both approaches we get the same results. 
In fact, the results could not be otherwise, since both models describe the same 
phenomenological processes in terms of purely phenomenological quantities. 
 
The calculated results calculated are also consistent with the experimentally found 
location of the Kirkendall plane, xK (Fig. (4.1-2)). The micrograph presented in          
Fig. (4.1-2b) indeed shows the completely different crystal morphology developed within 
the product layer on either side of the Kirkendall plane, originating from the two 
different nucleation sites. 
 
The fact that the experimentally observed value of b seems to be somewhat higher than 
the calculated results which stems from the presence of pores in the part of the CoSi-
layer adjoining the CoSi2 end-member. The pore formation can be attributed to the 
release of Si atoms from CoSi2 upon the reaction and the incomplete plastic relaxation 
inside the diffusion zone associated with the poor mechanical characteristics of the Co-
silicides. 
 
A similar analysis can be used to describe the solid-state interaction between Co and 
CoSi2 when two product layers grow in the diffusion zone (Fig. (4.1-3)). In this case, 
one can write the following reaction scheme: 
 
at the interface Co/Co2Si on the Co2Si-side 
 [ ]

3
1

3
232 SiCosSisCos d ′→′+′  

at the interface Co2Si/CoSi on the Co2Si - side 
[ ]

3
1

3
2

2
1

2
1 34 SiCosSisSiCos d ′+′→′  

3
1

3
2

2
1

2
1 3][2 SiCorCorSiCor d ′→′+′  
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.1-3a) Backscattered electron image of the reaction zone between Co and CoSi2 showing the 
ion of two Kirkendall marker planes (K1 and K2) after interdiffusion at 1100 0C for 100 hrs (ThO2-
s were used as inert markers between the couple halves), (b) A schematic representation of the 
n process in the reaction zone of the Co/CoSi2 couple,(c) Magnified area of the diffusion zone in 

.1-3a) close to the reaction product/Co interface (optical micrograph, polarized light). 
nt crystal morphology in the product layers on either side of the Kirkendall planes is clearly visible. 
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at the interface Co2Si/CoSi on the CoSi - side 
[ ] 

2233
d 1112 23 SiCopCopSiCop ′+′→′  

[ ]
2
1

2
1

3
1

3
2 43 SiCoqSiqSiCoq d ′→′+′  

at the interface CoSi/CoSi2 on the CoSi - side 
[ ] 

2233
d 1121 43 SiCopCopSiCop ′→′+′  

 [ ]
2
1

2
1

3
2

3
1 23 SiCoqSiqSiCoq d ′+′→′  

Apparently, the resultant thickness of the product layer depends on the growth from, 

he thicknesses of the phase layers growing on either side of the Kirkendall plane(s) 

and at the same time, consumption by the neighbouring layers. The total thickness of 
each product layer, however, always increases with time. 
 
T
(Fig. (4.1-3)) can be expressed by 

( )

( )

( ) bqpV

arsqpV

dqprsV

csV

SiCo

m

SiCo

m

SiCo

m

SiCo 12

m

′=′+′×

′=′−′−′+′×

′=′−′−′+′×

′=′×

24

2442

3333

3

2
1

2
1

2
1

2
1

3
1

3
2

33

       (4.1-7) 

In view of Eqs. (A.8-7, 4.1-1 and 4.1-4), the velocity, vK and the position of the 

he Co2Si layer: 

for the CoSi-layer:      (4.1-8)  

Again A B = Vm. 

o simplify further calculations, we ignored the presence of the solid solution of Si in 

Kirkendall plane, xK in each product layer of the Co/CoSi2 couple can be found as 
following: 

for t ( ) SiCo
K

SiCo
K

SiCo
m xtvrsV 222 2 ==′−′  

( ) CoSi
K

CoSi
K

CoSi
m xtvpqV ==′−′ 2

we assumed V  = V
 
T
cobalt next to the intermetallic layer. This means that the value of c′ will be slightly 
overestimated because a small amount of that part of the Co2Si-layer will actually 
dissolve in the cobalt end-member. With these assumptions, the parameters a′, b′, c′, d′ 
and p′, q′, r′, s′ in Eq. (4.1-7) were computed using values of the thickness of the 

phases (a′+ b′= 463 and c′ + d′ = 164 µm) calculated from the integrated diffusion 

coefficients (Table (4.1-2)) and ratio’s of intrinsic diffusion fluxes (q′/p′ and s′/r′) in the 

 49



Chapter 4 

product phases listed in Table (4.1-1). It was found that a′ = 168.5 µm, b′ = 294.5 µm, 

c′ = 32 µm, and d′ = 133 µm and p′ = 0.6, q′ = 21.0, r′ = 26.8  and s′ = 1.6 mole.m-2, 
respectively. This leads, through Eq. (4.1-8), to the same values of the Kirkendall 
velocity in the product layers as deduced from the diffusion-based model              
(Table (4.1-2)), and they are in fair agreement with the experimental results. The 
locations of the Kirkendall planes predicted in this manner agree with those determined 
by means of the Kirkendall velocity construction (Table (4.1-2), Fig. (A.21-3a)) and with 
those found experimentally (Fig. 4.1-3a). 
  
Again, an important microstructural feature is to be noticed here. In Figs. (4.1-3a and -
3c), one clearly sees two different grain morphologies in each product phase layer, 
corresponding to the two different nucleation sites as follows from the chemical reaction 
equations. 
 
In order to analyse the diffusion-controlled growth of three product phases between the 
end-members Co and Si (Fig. (4.1-4)), three more equations are to be added to the 
previous reaction scheme of the Co/CoSi2 couple. These are: 
 
at the interface CoSi/CoSi2, on the CoSi2-side 

[ ]
3
2

3
1

2
1

2
1 34 SiComComSiCom d ′′+′′→′′  

[ ]
3
2

3
1

2
1

2
1 32 SiConSinSiCon d ′′→′′+′′  

at the interface CoSi2/Si, on the CoSi2-side 
 [ ]

3
2

3
132 SiComComSim d ′′→′′+′′  

The rest of the treatment follows the line of the previous case, and the problem reduces 
to solving the system of equations 

( )

( )

( )

( )

fmV

eqpnmV

bnmqpV

arsqpV

dqprsV

csV

SiCo

m

SiCo

m

SiCo

m

SiCo

m

SiCo

m

SiCo

m

′′=′′×

′′=′′−′′−′′+′′×

′′=′′−′′−′′+′′×

′′=′′−′′−′′+′′×

′′=′′−′′−′′+′′×

′′=′′×

3

3333

2424

2442

3333

3

3
2

3
1

3
2

3
1

2
1

2
1

2
1

2
1

3
1

3
2

3
1

3
2

       (4.1-9) 
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. (4.1-4a) Backscattered electron image of a cross section of a Co/Si diffusion couple after annealing at 
00 °C for 100hrs, b) a schematic representation of the interdiffusion process in the reaction zone 
tween Co and Si; (c) and (d) magnified areas of the reaction zone in the vicinity of the Co/CoSi2 and 
Si2/Si interface, respectively. (Backscattered electron images). 
e Kirkendall planes marked by ThO2-particles (K1 and K2) emerged in the Co2Si- and CoSi-phase layers 
d no Kirkendall plane was found in the CoSi2 product. The “uniform” crystal morphology within the 
Si2-layer is indicative for the absence of a Kirkendall plane. 
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with the −
′′
′′

p
q

, −
′′
′′

r
s

 and −
′′
′′

m
n

ratio’s being equal to 35, 0.06 and 1.4, respectively 

(Table (4.1-1)). 
 
The total thicknesses of the product phase layers are calculated using the integrated 
diffusion data from Table (4.1-1), and listed in Table (4.1-2). With these informations 
the values calculated from Eq. (4.1-9) as a″ = 313.4, b″ = 7.6, c″ = 40, d″ = 91, e″ =   

-209 and f ″= 215.8 µm and the fluxes as p′′ = 0.87, q′′ = 30.4, r′′ =33.8, s′′ =2.0, m′′ 
= 9.3 and n′′ = 13.0 mole.m-2. Again, the actual thickness c′′ is slightly less than the 
calculated one owing to dissolution of a small part of the Co2Si-layer into cobalt        
(Fig. (4.1-4)). The negative value of e′′ stems from the fact that the rate of the CoSi2 

formation from CoSi (3m′′ + 3n′′ ) is lower than its consumption by the reaction at the 

CoSi/CoSi2 interface (3p′′ + 3q′′ ).  
 
Further, the Kirkendall velocity and locations of the Kirkendall(s) in each product layer 
can be found by 

( ) CoSi
K

CoSi
K

CoSi
m xtvpqV ==′′−′′ 2  

( ) SiCo
K

SiCo
K

SiCo
m xtvrsV 222 2 ==′′−′′  

( ) 222 2 CoSi
K

CoSi
K

CoSi
m xtvmnV ==′′−′′  

The calculated values of the fluxes lead to the same values of the Kirkendall velocity and 
the location for the Kirkendall plane positions in these product layers as found using the 
diffusion based model (Fig. (A.20-2b)). They both agree with the experimental results 
(Fig. (4.1-4)).  
 
In the CoSi2 layer no Kirkendall plane can be present. This is reflected in the negative 

value of e′′ and corresponds with the position of the virtual Kirkendall plane as shown in 

Fig. (A.20-2b). The “uniform” crystal morphology in the CoSi2-phase layer is indicative 
for the absence of a Kirkendall plane as can be seen in Fig. (4.1-4d) as well.  
 
4.2 Application of the physico-chemical approach in a system consisting of  
phases with wide homogeneity range 
  
In the previous section (chap. 4.1), we have shown that the physico-chemical approach 
can be used successfully to analyze/predict the diffusion structure developed in diffusion 
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couples where line compounds are formed. It was demonstrated that this approach 
leads to the same results as those calculated by diffusion-based model.  
 
Our next interest is to check if this approach can also be used in a system, where a 
diffusion zone is developed by phases with a wide homogeneity range. Whether we can 
use this approach to the phases with wide homogeneity range depends largely on 
whether we can predict the composition profile, a priori, from the data available on the 
interdiffusion coefficients. The problem is that there are not many systems where one 
can find the data on interdiffusion coefficients all over the composition range, which are 
needed to predict the composition profile. However, using some simplifications this 
approach can be used to rationalize the experimentally found composition profile and to 
explain the characteristic microstructure developed during interdiffusion. In this section 
the Ag-Zn and Ti-Al systems are chosen. The specific reason behind selecting these two 
systems is that we already have used the diffusion-based approach to rationalize the 
marker positions in these systems (Chap. 3), which will help to understand the 
applicability of the physico-chemical approach in the case of phases with a wide 
homogeneity range.  
 
I. A diffusion zone in the Ag-Zn system showing bifurcation of the Kirkendall 
plane 
   
Let us consider the experimentally found diffusion layer in a Ag/Zn diffusion couple 
annealed for 5 hours at 370 °C, as shown in Fig. (3.2-2). The composition profile 
measured by EPMA is shown in Fig. (3.2-3). For the sake of simplicity and application of 
physico-chemical approach the average composition of the phases are calculated as 
Ag0.154Zn0.846 for the ε-AgZn3 phase, Ag0.394Zn0.606 for the γ-Ag5Zn8 and Ag0.521Zn0.479 for 

the β-AgZn phase. The average compositions were calculated, for example, for the ε-
phase from  

ε

ε

ε

ε

x

dxN

N

Ag

Ag

N

N
Ag

aveAg ∆
=

∫
+

−

                  (4.2-1) 

where  and  are the lower and upper limit of the mole fractions in the ε-phase 

developed during interdiffusion and 

ε−
AgN ε+

AgN

εx∆ is the layer thickness of the ε-phase. 
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The diffusion fluxes are shown in the schematic diagram Fig. (4.2-1b). The layer 
thickness of the ε- and γ-phase are divided into two sublayers a, b and c, d respectively 
and can be measured directly from the micrograph presented in Fig. (4.2-1a). We found 
no Kirkendall plane in the β-AgZn phase, but we can consider a virtual Kirkendall plane 
in this phase and divide the layer into to sublayers as e and f. We cannot determine 
these two sublayers from experimental results but we can measure the total thickness 
of the layer as, (e + f). We can write the reaction scheme at different interfaces as 
following: 
 
Interface I- Zn/AgZn3 (AgZn3 side) 
  [ ] 846.0154.049.649.5 ZnnAgAgnnZn d →+
 
Interface II- AgZn3/Ag5Zn8 (AgZn  side) 3

  [ ] 846.0154.0606.0394.0 64.164.0 ZnmAgZnmZnmAg d →+

 [ ] 846.0154.0606.0394.0 53.253.3 ZnnAgAgnZnnAg d +→  
 
Interface II- AgZn3/Ag5Zn8 (Ag5Zn8 side) 
 [ ] 606.0394.0846.0154.0 64.064.1 ZnpAgZnpZnpAg d +→  

  [ ] 606.0394.0846.0154.0 53.353.2 ZnqAgAgqZnqAg d →+

 
Interface III – Ag5Zn8/AgZn (Ag5Zn8 side) 
   [ ] 606.0394.0479.0521.0 10.410.3 ZnpAgZnpZnpAg d →+

 [ ] 606.0394.0479.0521.0 77.377.4 ZnqAgAgqZnqAg d +→  
 
Interface III – Ag5Zn8/AgZn (AgZn side) 
 [ ] 479.0521.0606.0394.0 10.310.4 ZnrAgZnrZnrAg d +→  

  [ ] 479.0521.0606.0394.0 77.477.3 ZnsAgAgsZnsAg d →+
 
Interface IV - AgZn/Ag (AgZn side) 
  [ ] 479.0521.009.209.1 ZnrAgZnrrAg d →+
 
where m, n, p, q, r and s are the flux (moles.m-2) of the species as shown in the       
Fig. (4.2-1b).  
 
The resultant thickness of the product layers depends on the growth from, and at the 
same time consumption by the neighbouring phases. The thickness of the phase 
sublayers can be written as  
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b)  
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      (4.2-2) 

)
)
)
)

)
) fr

eqpsr

dsrqp

cnmqp

bqpnm

an

=

=−−+

=−−+

=−−+

=−−+

=

77.410.377.4

77.310.477.310

53.364.053.364

53.264.153.24

9

r volumes of the phases are given in Table (3.2-1). The values of the 
asured directly from the micrograph Fig. (4.2-1a) as a = 48.6, b = 

d = 24.45 and (e + f) = 244 µm. To determine the values for the fluxes 

m Eq. (4.2-2) the ratio of diffusivities of Zn and Ag in the β-phase 
 an incremental couple is considered and we can write 
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5.6==
AgZn

ZnAg

DV
DV

s
r

. From these informations Eq. (4.2-2) can be solved and we find the 

values m = 19.60, n = 0.81, p = 13.91, q = 2.35, r = 13.53, s = 2.06 mole.m2 and e =  
-23.72 and f = 267.72 µm. The negative value of e reflects the absence of Kirkendall 

plane in β-phase, because the formation of the phase by (3.10r + 4.77s) is less than the 
consumption of the phase by (3.10p + 4.77q). 
 
The velocity of the Kirkendall marker plane in the phases can be calculated by 
(considering the molar volume of the pure phases as the partial molar volumes of the 

components in the phase compounds, i.e. ×1027.10== Ag
mAg VV -6 and 

×1016.9== Zn
mZn VV -6 m2/s), 

 

( ) ( )
( )
( ) smrVsV

t
v

smpVqV
t

v

smmVnV
t

JVJVv

Zn
m
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m
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mZnZnAgAgK
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2
1
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2
1
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1

9

9

9

−

−

−

×−=−=

×−=−=

×−=−=+−=

β

γ

ε

  

It is clear that the data calculated by physico-chemical approach are equal to the data 
calculated by diffusion-based approach (Table 3.2-1). The minor difference in the values 
resulted from the fact that we neglected dissolution of Ag in the Zn end-member. The 
physico-chemical approach explains the reactions at the interfaces and the grain 
morphology developed during interdiffusion. 
 
II. A TiAl3/Ti diffusion couple showing trifurcation of the Kirkendall plane 
 
We consider the experimentally found diffusion couple of TiAl3/Ti annealed for 1600 
hours at 870 °C. Kirkendall planes were found in every phases developed during 
interdiffusion as could be seen in Fig. (3.3-1). The average phase compositions were 
found to be Ti0.344Al0.656 for the TiAl2-phase, Ti0.494Al0.506 for the TiAl-phase and 
Ti0.749Al0.251 for the Ti3Al-phase, which can be appreciated from Fig. (3.3-3). We divide 
each phases into two sublayers by the Kirkendall plane positions as shown in Fig. (4.2-
2) and can write the reaction scheme at different interfaces following Fig. (4.2-2b) as, 
 
Interface I - TiAl3/TiAl2 (TiAl2 side) 

[ ] 656.0344.0746.0254.0 82.282.3 AlmTiAlmAlmTi d +→  
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[ ] 656.0344.0746.0254.0 28.828.7 AlnTiTinAlnTi d →+  
 
Interface II - TiAl2/TiAl (TiAl2 side) 

[ ] 656.0344.0506.0494.0 29.329.2 AlmTiAlmAlmTi d →+  

[ ] 656.0344.0506.0494.0 37.337.4 AlnTiTinAlnTi d +→  
 
Interface II - TiAl2/TiAl (TiAl side) 

[ ] 506.0494.0656.0344.0 29.229.3 AlpTiAlpAlpTi d +→  

[ ] 506.0494.0656.0344.0 37.437.3 AlqTiTiqAlqTi d →+  
 
Interface III - TiAl/Ti3Al (TiAl side) 

[ ] 506.0494.0251.0749.0 94.294.1 AlpTiAlpAlpTi d →+  

[ ] 506.0494.0251.0749.0 98.098.1 AlqTiTiqAlqTi d +→  
 
Interface III - TiAl/Ti3Al (Ti3Al side) 

[ ] 251.0749.0506.0494.0 94.194.2 AlrTiAlrAlrTi d +→  

[ ] 251.0749.0506.0494.0 98.198.0 AlsTiTisAlsTi d →+  
 
Interface IV Ti3Al/Ti (Ti Al side) 3

[ ] 251.0749.098.398.2 AlrTiAlrrTi d →+  

 
The thickness of the phase sublayers growing either side of the Kirkendall planes can be 
written as, 

        (4.2-3) 

( )
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( ) frV
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3

3

2

2

The values on molar volumes are listed in Table (3.3-1). The average length of the 
sublayers are measured directly from the micrograph Fig. (4.2-2a) as a = 60, b = 9, c = 
6, d = 7, e = 17 and f = 14 µm and after solving the Eq. (4.2-3) we find, m = 2.06, n = 
0.05, p = 1.14, q = 0.68, r = 0.35 and s = 2.3.  
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a) 

b) 

 
Fig. (4.2-2a) Backscattered electron image of a TiAl3/Ti diffusion couple annealed for 1600 hours at 870 
°C. K1, K2 and K3 show the position of the three Kirkendall planes. 
(b) a schematic representation of the interdiffusion process in the TiAl3/Ti diffusion couple. 

 
Considering the molar volume of the pure phases as the partial molar volumes of the 

components in the phases ( ×1063.10== Ti
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velocity of the Kirkendall marker plane can be found as 
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Comparison of these data with those in Table (3.3-1) shows the equivalence of the 
diffusion-based and physico-chemical approach. The minor difference in the data 
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calculated here from the data by the diffusion-based approach (as shown in           
Table (3.3-1)) is because we neglected the Al dissolved in the Ti end-member.  
 
4.3 Conclusions 
 
The conclusions of the present analysis lead to a change in view on the formation and 
growth of product layers during solid-state reactions.  
 
As demonstrated in the preceding sections, all thermodynamically stable phases will 
grow simultaneously in a purely diffusion-limited process. If n phases will grow between 
two stoichiometric binary compounds, 2n equations can be defined for the interfacial 
reactions occurring in the diffusion zone. If one calculates the layer thickness from 
knowledge of the integrated diffusion coefficients for each product phase, and combines 
this with information on the component mobilities in each growing compound, one can 
solve this set of equations, resulting in the coordinates (position) of the (possibly virtual) 
Kirkendall plane(s) belonging to each phase layer. There is no reason whatsoever for a 
product phase layer to be totally consumed by its neighbours as it is sometimes stated 
[4]. Sometimes, in a diffusion couple one or more phase layers seem to be missing. It is 
well possible that the layers are present but difficult to detect when they are present as 
very thin layers because of the very high difference in the growth rate compared to 
other layers.  
 
It should be stated that these conclusions are only valid in a diffusion-controlled growth 
process. Especially during the start of the annealing procedure deviations can occur. It 
is, therefore, possible to miss equilibrium phases at this stage, which becomes 
important in thin-film experiments. 
 
The role of the Kirkendall effect in developing a duplex grain morphology inside the 
product layers is clear by considering the nucleation sites of the growing phases, using 
the chemical reaction equations as a starting point. The existence of two or more 
Kirkendall planes in a diffusion zone is the result of nucleation of new crystals away 
from the interfaces of the initial materials with the reaction product. Now we realize that 
such an abrupt change in grain morphology was noticed in the past without being 
recognized as the location of the Kirkendall plane. 
 
An interesting question here is whether the presence of a Kirkendall plane in a diffusion 
zone should always be accompanied by a sharp change in morphology within a phase 
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layer as observed in the Co-Si and Ti-Al systems. It seems to be found always in 
product layers of stoichiometric compounds (e.g. Ni5Si2 [5], Ni3Sn2 [6], Co3O4 [7]). It is 
also found for compounds with a homogeneity range if the Kirkendall plane is of the 
stable type. This is the situation when at the point of intersection between the velocity 
curve (2tv vs. x) and the straight-line 2tvK = xK, the gradient of the Kirkendall velocity 

with respect to the position parameter is negative (e.g. β′-AuZn [8], β-NiAl (Chap. 3.1)). 
If, on the contrary, this gradient at the intersection is positive, the inert particles 
(markers) at the Kirkendall plane will spread more or less randomly over the product 
layer. The Kirkendall plane is then microstructurally unstable [8], which will probably not 
result in a duplex layer. 
 
Generally speaking, it might be expected that the sharp change in grain morphology 
within the product layer could become more vague with increasing diffusion time 
because of recrystallization processes, which occur simultaneously with the phase 
growth. In our experiments, we indeed see sometimes the development of rather wavy 
boundaries between the “sublayers” of the duplex structure, but the changes remain 
clearly visible.  
 
Our analysis also provides the experimental possibility to investigate the initial stages of 
the interaction. Suppose that inert markers of about 0.5 µm are placed in between the 
end-members prior to annealing. Then, these markers are expected to be situated in the 
phase layers where they should be according to our analysis, provided that in a 
diffusion-controlled regime these phases are all present when the total product layer 
thickness is, say, 1 µm. In the Co/Si diffusion couple, for instance, that thickness is 
reached after approximately 1 sec of annealing at 1100 0C, for the TiAl3/Ti couple after 
about 8 minutes of interaction at 870 0C. The fact that we found the markers back at all 
Kirkendall planes proves that after these reaction times, the respective phases were 
already formed, because once caught by a stable Kirkendall plane, the inert particles 
cannot escape later on towards other positions.  
 
If in the case of two Kirkendall planes one stable Kirkendall plane (recognizable by an 
abrupt change in the product layer morphology) is not “marked” by the inert Kirkendall 
markers, this is an indication that this phase was formed after a certain incubation time. 
The markers have then already found a stable position in the other Kirkendall plane 
before the phase in question starts to grow. The experiment should, of course, be 
carried out carefully. Misinterpretation might occur when, for instance, during 
preparation of the couple, markers (particles) are pressed into the softer end-member. 
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Then, they do not represent the position of the original contact interface, which might 
create a situation where the markers are biased towards the phase layers adjacent to 
this “soft” end-member. 
 
We believe that it is certainly worthwhile to investigate in this direction the reaction 
phenomena in “thin-film” structures, since often a sequential phase growth is reported 
before simultaneous growth sets in [9-12]. The critical thickness (or, equivalently, 
reaction time) after which all phases start to grow, might, however, be very small, 
which asks for very small inert particles (markers) to verify this statement 
experimentally. The size of particles should, on the other hand, not be too small 
because then they can be dragged by, for example, grain boundaries, which renders 
them unsuitable to mark the Kirkendall plane. 
  
It is important to note that both the diffusion-based and physico-chemical models are 
purely phenomenological and do not require any assumptions on the operative diffusion 
mechanisms. The widely used notion that the occurrence of the Kirkendall effect (in the 
sense of marker displacement with respect to the laboratory-fixed frame of reference) 
proves a vacancy-mediated diffusion mechanism is incomplete. In this respect, 
additional information about the variation of the number of lattice sites on either side of 
the Kirkendall plane during interdiffusion, or microstructural evidence (like, the presence 
of pores), is needed to make the statement valid.    
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Chapter 5 
 

Diffusion studies in the β-NiAl and γ′-Ni3Al phases 
 
Materials in the Ni-Al system are attractive for a wide range of applications, because of 
their high strength to density ratio. Good oxidation resistance at high temperature 
makes them suitable for the use in blades and vanes in gas and aircraft turbine engines. 
Numerous experiments have been conducted on mechanical properties of the materials 
in this system, including on diffusion properties but these studies give in some respects 
conflicting results. Several processes are driven by diffusion like recrystallisation, grain 
growth, solid-state reactions, and therefore, the knowledge of diffusion is essential. 
 
5.1 Studies in the β-NiAl phase 
I. Interdiffusion Coefficients  
  
The β-NiAl phase draws special attention because of its complex defect structure, where 
on the Ni-rich side antisite defects are present (i.e. Ni atoms occupy the Al sublattice) 
and on the Al-rich side vacancies are present in the Ni sublattice as explained in     
Chap. 3.1.II.  Different atomistic diffusion mechanisms are believed to be operative on 
either side of the stoichiometry.  
 
After going through available literature [1-5] on this phase, it was found that the 
variation in molar volume with composition was not taken into consideration [1-3] or 
irregularities were observed in the treatment [4].  
 
In this study interdiffusion coefficients are calculated by Wagner’s approach (A.9) in the  
 
This chapter is written based on the articles: 
1. A. Paul, A.A. Kodentsov and F.J.J. van Loo, Diffusion in the β-NiAl phase, to be submitted for 

publication 
2. C. Cserháti, A. Paul, A.A. Kodentsov, M.J.H. van Dal and F.J.J. van Loo, Intrinsic diffusion in Ni3Al 

system, Intermetallics 11 (2003) 291-297 
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ig. (5.1-1) Interdiffusion coefficient, D~  in the β-NiAl phase at 1100 and 1200 °C obtained from 
ncremental couples. The data reported by Shankar and Seigle [1] and Kim and Chang [4] and Watanabe 
t al. [5] are shown for comparison.  

ig
nc
. (5.1-2) Interdiffusion coefficient, D~  in the β-NiAl phase at 1050 and 1150 °C obtained from 
remental couples. The data reported by Shankar and Seigle [1] are incorporated for comparison.  
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Fig. (5.1-3) The interdiffusion coefficients, D~  at the compositions in the Al-rich domain of the β-NiAl 
phase are shown as a function of reciprocal temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig
ph

 

. (5.1-4) The interdiffusion coefficients, D~  at the compositions in the Ni-rich domain of the β-NiAl 
ase are shown as a function of reciprocal temperature. 
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temperature range of 1000 - 1200 °C.  Molar volumes  across  the  homogeneity  range 
were determined from the data available on the lattice parameter and constitutional 
vacancies present in the structure (see A.18). Results obtained on interdiffusion 
coefficients are shown in Figs. (3.1-5 (see Chapter 3.1), 5.1-1 and 5.1-2) and compared 
with the results available in literature [1, 4, 5]. Shankar and Seigle [1] did not consider 
the variation in molar volume with composition in their calculations and this could be the 
reason behind the significant differences in the interdiffusion coefficients from the 
results determined in this study, especially in the Al-rich part, as the molar volume 
changes dramatically in this domain (see Fig. (A.19-3)). Kim and Chang [4] and 
Watanabe et al. [5] considered the data on molar volume in their calculations and good 
agreement between the results from them and those in the present study is found 
(except the results in the off-stoichiometric region by Kim and Chang). The deep 
minimum found by Kim and Chang at stoichiometric composition should be questioned 
and might have been caused the uncertainties in determination of the composition 
gradient required for calculation of interdiffusion coefficients. For further discussion see 
Chap. (3.1-III).  
 
The temperature dependent interdiffusion coefficient can, according to our results, be 
expressed in terms of Arrhenius equation: 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
Q

DD o exp~
         (5.1-1) 

where D~  is the interdiffusion coefficient, Do is the pre-exponential factor, Q is the 
activation energy, R is the gas constant and T is the temperature in Kelvin. The changes 
in interdiffusion coefficients with temperature at different Ni compositions are shown in 
Fig. (5.1-3 and -4). It should be mentioned that the interdiffusion coefficients 
sometimes do not follow the Arrhenius law especially in the range of 50-53 at.% Ni. This 
is clearly seen from the Figs. (5.1-3 and -4). Obviously, the defect structure changes in 
this region with temperature and, therefore, the diffusion mechanism changes with 
temperature. So, the intrinsic diffusivities may vary with temperature in a non-Arrhenius 
way, which leads to a nonlinear variation for interdiffusion coefficients with temperature. 
The values of Do and Q calculated with the help of Eq. (5.1-1) are shown in Fig. (5.1-5). 
The results obtained by Shankar and Siegle [1] and Kim and Chang [4] are given for 
comparison. Good agreement exists between Do and Q values found in this study and 
the data determined by Kim and Chang.  
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II. Intrinsic Diffusion coefficients 
  
Series of incremental diffusion couples are studied to measure the intrinsic diffusivities 
of the species over the homogeneity range at 1000 °C. The ratios of diffusivities, DNi/DAl 
at Kirkendall plane positions in different couples were calculated following Eq. (A.10-6) 
and are shown in Fig. (3.1-4) (see Chap. 3.1). Partial molar volumes of the species 
required for the calculations were obtained from the data as plotted in Fig. (A.18-3). 
Intrinsic diffusivities of the species were then calculated over the homogeneity range 
from the data on the ratio of the intrinsic diffusivities and from the interdiffusivities (see 

Fig. (3.1-5)) after solving ( ABBBAA DVCDVCD += )~
 as shown in Fig. (5.1-6). The 

molar volume at the vicinity of 50 at.% changes dramatically and determination of the 
intrinsic diffusivities at that composition was not possible, because it is difficult to 
calculate the partial molar volumes of the species at that composition.  
 
III. Tracer diffusion coefficients 
  
The atomistic diffusion mechanism in β-NiAl is of interest because of the complicated 
defect structure of this phase.  Knowledge on mobilities of the species measured from 
the data on tracer diffusivities (through Eq. (A.14-6)) is important to understand the 
diffusion process. Ni tracer diffusivities were measured by Hancock and McDonnel [6] 
and Frank et al. [7] in the β-NiAl phase. Significant difference is present in the values 
found in these two studies. Measuring the Al tracer diffusivities is not possible because 
of a lack of suitable Al isotopes. Minamino et al. [8] and Lutze-Birk and Jacobi [9] 
measured the In tracer diffusivities in this phase on the belief that In may have more or 
less the same diffusivity as Al, as they both belong to same group in the periodic table 
and have similar atomic sizes. 
 
There is also a possibility to determine tracer diffusivities by the classical diffusion 
couple technique from the knowledge on intrinsic diffusivities, Di following               
(Eq. (A.16-1)): 

 ( )AA
B

m
A WD

V
V

D +Θ= 1* ;  ( BB
A

m
B WD

V
V

D −Θ= 1* )    (5.1-2) 

where the vacancy wind factor 
( )

( )**

**2

BBAAo

BAi
i

DNDNM
DDN

W
+

−
= , with  as a constant 

which depends on the crystal structure of the system, N

oM

i is the mole fraction of species i   
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and Θ is the thermodynamic factor BBAA NaNa lnlnlnln ∂∂=∂∂ . 
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Fig. (5.1-5) The activation energy, Q and pre-exponential factor, Do over the homogeneity range in the β-
NiAl phase. Results found by Shankar and Siegle [1] and Kim and Chang [4] are incorporated for 
comparison. 
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Fig. (5.1-6) Intrinsic diffusivities of Ni and Al in the β-NiAl phase at 1000 °C. 
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The vacancy wind effect can be measured from the knowledge on tracer diffusion 
coefficients if Mo is known. However, as discussed in A.16, the experimental 
investigations into the vacancy wind effect are ambiguous. In many cases to simplify the 
calculation the vacancy wind effects are neglected, considering its value of Wi = 0. Now 
we have an opportunity to check the significance of this effect on the calculated tracer 
diffusivities from data determined on intrinsic diffusivities. Although this model was 
developed for random solid solutions it has also been used for stoichiometric 
compounds (A.16). The values on thermodynamic factor were determined from the 
activity data available in Ref. [10] and shown in Fig. (5.1-7). Note that the values near 
stoichiometric composition were not calculated because of the inconvenience in 
measuring high concentration gradient and large scatter in this regime in the 
experimental data points. Tracer diffusivities of Ni and Al are calculated through Eq. 
(5.1-2) from the data on intrinsic diffusivities (Fig. (5.1-6)) found in this study and are 
shown in Fig. (5.1-8 and -9). Data are shown for both cases when vacancy wind effect 
was neglected and also when the effect was taken under consideration.  The changes in 
vacancy wind effect for Ni and Al are shown in Fig. (5.1-10). The value of Mo was 
considered to be 5.33 as given by Manning for a body centered cubic lattice (A.16). It 
can be seen that the differences on the calculated tracer diffusivities by considering 
vacancy wind effects are negligible and fall within the limit of experimental errors. Ni 
and In tracer diffusivities available in the literature are incorporated for the comparison. 
Tracer diffusivities calculated by this classical diffusion couple technique fall in the range 
of data found directly from tracer methods. 

Fig. (5.1-7) Thermodynamic factor, 
dlnaAl/dlnNAl calculated from the 
activity data available in Ref. [10]. 
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Fig. (5.1-8) Ni tracer diffusivities in the β-NiAl phase calculated by the diffusion couple technique. Data 
measured by the tracer method are incorporated for comparison. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (5.1-9) Al tracer diffusivities in β-NiAl calculated by the diffusion couple technique. Tracer diffusivities 
in this phase available in literature are incorporated for comparison. 
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Fig. (5.1-10) The in vacancy wind effect as a function of composition. 
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5.2 Studies in the γ′-Ni3Al phase 
 
The goal of this part of our study was to determine the tracer  diffusion coefficients of Al 
in Ni3Al from the interdiffusion coefficients and Ni-tracer diffusivities available in the 
literature [11-13]. Tracer measurements concentrated mainly on the determination of Ni 
diffusivities because of the lack of a proper Al isotope. Larikov [14] is the only one who 
reported the tracer diffusion coefficients of Al in Ni3Al and found that the values are 
almost equal to the Ni tracer diffusivities in this phase. This measurement is, however, 
doubtful since the Ni tracer diffusion data they measured are significantly larger than in 
other recent reports. For the purpose of this study, the diffusion couple technique was 
used to determine the interdiffusion coefficients and the ratio of intrinsic diffusivities.   
 

I. Experimental results and interdiffusion coefficients 
 

Four different binary alloys were prepared for two types of diffusion couples, A: 
N65Al35/Ni85Al15 and B: Ni72Al28/Ni78Al22. A typical morphology of an annealed diffusion 
couple can be seen in Fig. (5.2-1). The interface between the end members and the 
Ni3Al-phase grown during interdiffusion is wavy which can be explained by the 
heterogeneous structure of the initial two phase materials. The moving interface of the 
growing Ni3Al incorporates the Ni3Al precipitates on both sides of the new phase and in 
the course of this process the interface becomes irregular. One clearly sees the different 
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crystal morphology of Ni3Al on both sides of the Kirkendall plane because the crystals 
grow differently at either side of the end-members.  
 
The exact location of the Kirkendall plane can be determined easily from the presence of 
straight row of ThO2-particles visible in white contrast in Fig. (5.2-1). The irregular 
nature of the interface makes it difficult to determine the thickness of the Ni3Al-layer. In 
order to calculate the average thickness the SEM images were processed by computer 
and the contours were fitted with a polinom. The areas of the reaction product on both 
sides of the original welding plane were calculated. Summing the two areas gives the 
average thickness of the reaction layer, while by taking the ratio, the position of the 
Kirkendall plane was determined. On Fig. (5.2-2) a typical concentration profile is shown 
and the Kirkendall plane position is indicated. In general, the ThO2 particles in the 
interdiffusion zone are located at the stoichiometric Ni3Al composition within the 
experimental error (~1 at.%). The layer thickness and the position of the Kirkendall 
plane changes along the sample due to the wavy nature of the interface. To perform the 
diffusion analysis the concentration profile was scaled to the calculated average phase 
thickness.  
 
In this way a stepwise linear concentration profile was constructed (see Fig. (5.2-2)). 
The changes in molar volume in this phase can be calculated from [5]: 

     cm2965.0823.060.6 AlAlm xxV ++= 3/mole    (5.2-1) 

where xAl is the mole fraction of Al. Partial molar volumes of Ni and Al were calculated 
to be 6.54×10-6 and 7.85×10-6 m3/mole at 75 at.%Ni. 
 
Time dependence of the phase growth was measured at two different temperatures 
(900 and 1050 °C). Parabolic growth was found which demonstrates the diffusion 
control of the process. Interdiffusion coefficients at 75 at.% Ni were calculated applying 
the Wagner analysis [A.9] and are shown in Fig. (5.2-3). Janssen [15] reported that 
below 1000 °C grain boundary diffusion becomes the dominant process. However, in our 
case the average grain size of the product phase was found to be comparable with the 
thickness of the whole Ni3Al layer (as can be seen in Fig. (5.2-1)). Moreover, the 
protruding of the interface does not specifically occur at the grain boundaries. This 
indicates that the importance of grain boundary diffusion is small compared to volume 
diffusion.  
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Fig.(5.2-1) Back-scattered electron image of the diffusion zone after annealing for 196 hrs at 1000 °C. 
The Kirkendall markers (ThO2-particles) are visible with white contrast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (5.2-2) 
1000 °C. The
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A typical composition profile of the couple (shown in Fig. (5.2-1)) annealed for 196 hrs at 
 Kirkendall plane position is indicated by “K”.   
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The values of the interdiffusion coefficients calculated near the stoichiometric 
composition are plotted on Fig. (5.2-3) together with data obtained from the literature 
[5, 15]. The authors in these references performed multi-phase diffusion measurement, 
but their starting materials were different. The data found by Watanabe et al. [5] were 
lower than the results obtained in the present study and the data reported by Janssen 
[15]. 
 
II. Determination of the Al tracer diffusivities 
 
Since inert ThO2-particles were used to mark the initial welding plane, the ratio of the 
intrinsic diffusion coefficients at this position after interaction can be calculated through 
Eq. (A.10-6) (see appendix A.10).  
 
The calculated values of intrinsic diffusivities are listed in Table (5.2-1). The ratio of the 
intrinsic diffusivities, DA/DB can be related to the ratio of tracer diffusivities from Eq. 
(5.1-2) (see also A.16): 

 
( )
( )BB

AA

AB

BA

WD
WD

VD
VD

−

+
=

1
1

*

*

        (5.2-2) 

where the vacancy wind factor 
( )

( )**

**2

BBAAo

BAi
i

DNDNM
DDN

W
+

−
= ,  is a constant, which 

depends on the crystal structure of the system.  

oM

 
It has been suggested that Manning’s theory might be applied for L12 compounds where 
the diffusion of the minor element occurs by ordinary vacancy mechanism over the 
sublattice of the other species [12, 13]. Following the statements of Ikeda et al. [12] 
and Numakura et al. [13] this assumption seems to be adoptable in our case as well. 
The value of Mo was considered to be 7.15 for calculations as suggested by Manning 
(see A.20). 
 
Since the tracer diffusion coefficients of Ni in Ni3Al are well documented in the literature 
[17], the tracer diffusivities of Al can be computed using Eq. (5.2-2). From the 
measured Ni tracer data and ratio of diffusivities as listed in Table (5.2-1), a second 
order equation was obtained and the tracer diffusion coefficients of Al in Ni3Al near the 
position of the Kirkendall plane (i.e. at ∼75at. % Ni) were calculated. The values of WNi 

and  WAl  are  found  to  be  ~0.18  and ~0.06,  respectively.  The  calculated  Al  tracer  
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Fig. (5.2-3) Interdiffusion coefficients calculated at the marker plane position are plotted with respected 
to temperature. Data available in literature is incorporated for comparison. 
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Fig. (5.2-4) The Al tracer diffusion coefficients calculated in this study are plotted together with the data 
available in literature. Ni tracer diffusion coefficients are incorporated for comparison. 
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diffusion coefficients are represented by an Arrhenius plot in Fig. (5.2-4) together with 
data’s found by Fujiwara and Horita [18] and Ni tracer diffusion data’s found in Ref. [17] 
are incorporated for comparison.  
 
 
Table (5.2-1) Details of the couples used in this study: annealing temperature (K), time (hrs), mole 

fraction of Ni at the Kirkendall plane position ( ) and the ratio of diffusivities calculated in this study 
(A: Ni

KNi
65Al35/Ni85Al15, B: Ni72Al28/Ni78Al22). 

 

Couple        Temperature (°C)    Time (hrs) (at. %)          DKiN Ni/DAl

 
   A       900          400      74.6   1.92 
   A       950           196      75.0   3.67 
   A       975          196      75.0   4.58 
   A       1000      196      74.5   3.33 
   A       1000      196      74.5   4.50 
   A       1050      392      74.9   5.75 
   A       1050      98      74.8   3.50 
   B       1100      196      74.9   5.50 
   B       1100      196      75.3   2.00 
   B       1100      196      73.9   2.00 
   A       1200      196      76.0   2.83 

 
 
 
Our results determined in this study are compared with the data available in literature in 
Fig. (5.2-4). The result of Ikeda et al. [12] was measured in a single-phase 
interdiffusion experiment and fits well within our results, although in that work besides 
the slightly different circumstances, the correct value of the thermodynamic factor was 
also needed. Fujiwara and Horita [18] performed intrinsic diffusion measurement using 
NiAl(62 at.%)/Ni diffusion couples. They were also able to estimate the tracer diffusion 
coefficient of Al in Ni3Al. They found values of the Al tracer diffusion coefficients are 
more close to the Ni tracer diffusion coefficients. However, their initial materials were 
different in the sense that a concentration gradient will develop in the NiAl and Ni end 
members. NiAl exists in a large composition range and Al can dissolve into the Ni solid 
solution up to about 16 at.% at 1200 oC. Measuring the long tail in composition profile 
in both the end phases with desired accuracy is technically difficult. The advantage of 
our study is that we were able to avoid this uncertainty by using saturated two-phase 
alloys as end-members for the diffusion couple. 
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5.3 Conclusions  
 
Intrinsic and tracer diffusivities of Al and Ni are measured by the diffusion couple 
technique in β-NiAl and γ′-Ni3Al. Tracer diffusivities determined indirectly in this study in 

the β-NiAl phase are found to be within the range of data of In and Ni tracer diffusivities 
available in literature measured directly by the tracer method. Al tracer diffusivities in 
the γ′-Ni3Al phase are measured using the knowledge on Ni tracer diffusivities in this 
phase. It was not possible to measure Al tracer diffusivities directly by the tracer 
method because of the lack of suitable Al isotopes. Vacancy wind effects on the 
diffusion rates of Al and Ni were considered in both phases. It was found that the 
vacancy wind effects on the calculated tracer diffusivities fall within the range of 
experimental errors what one might expect.  
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Chapter 6 
 

Intermetallic growth and Kirkendall effect manifestations in Cu(Ni)/Sn and 
Au/Sn diffusion couples 

 
The ability to rationalize (and predict) the Kirkendall effect manifestations still remains 
an elusive problem. During this thesis work, we have developed an alternative theory 
(see Chap. 4) to explain diffusion controlled growth of line compounds and 
morphological evolutions of product layers, taking into consideration chemical reactions 
occurring at the interphase interfaces. This approach was demonstrated to be 
equivalent to the traditional diffusion-based treatment; both models describe the same 
phenomenological process in terms of purely phenomenological quantities. 
 
Motivated by the apparently coherent analysis, we turn our attention to study the 
growth of intermetallics in two other technologically important systems, namely 
Cu(Ni)/Sn and Au/Sn. The formation of intermetallic phases at the interface between 
tin-bearing solder alloys and constituents of under-bump metallizations (Cu, Ni, Au, etc.) 
is an important phenomenon, which controls (to a large extent) the strength of the joint 
throughout the lifetime of an electronic component. It is necessary to add here that the 
thrust for miniaturisation and environmentally friendly products, Au-Sn system offers 
possibility for a fluxless joining [1] in C4 (“Controlled collapse Chip Connection”) flip-chip 
technology.  
 
The Kirkendall effect in these systems deserves further investigation, because its 
manifestations, like, for example, the development of diffusion porosity, deformation on 
a macroscopic scale, etc.,  will  noticeably  affect  the overall performance (reliability) of  
 
This chapter is written based on the articles: 
1. A. Paul, A.A. Kodentsov and F.J.J. van Loo, Intermetallic growth and Kirkendall effect manifestations 

in Cu/Sn and Au/Sn diffusion couples, Z. Metallkunde In press, 2004 
2. A. Paul, C. Luef, A.A. Kodentsov, H. Flandorfer, H. Ipser and F.J.J. van Loo, Solid-state diffusion 

controlled interaction in the Cu(Ni)/Sn system, unpublished research 
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the interconnect, especially when manufacturing advanced Pb-free electronics where 
dimensions of the solder volumes are decreasing markedly.  
 
The purpose of this chapter is to report on kinetic and morphological aspects of the 
intermetallic growth in Cu(Ni)/Sn and Au/Sn diffusion couples and to contribute to the 
understanding of the role of the Kirkendall effect in the solid-state interactions in these 
systems.  
 
6.1 Solid-state interactions in Cu/Sn binary diffusion couples 

 
As expected from the binary Cu-Sn phase diagram (Fig. (6.1-1)) [2], two intermetallic 
compounds, viz. ε-Cu3Sn and η-Cu6Sn5 should be formed between Cu and Sn 
interactions below the liquidus temperature. These phases were indeed found in the 
Cu/Sn diffusion couple after annealing at 215 °C for 225 hrs (Fig. (6.1-2)). It can be 
seen that the product layers in the reaction zone are bound by somewhat wavy 
interfaces. This might be attributed to the influence of short-circuit (mainly grain-
boundary) diffusion and diffusion anisotropy on the overall mass transport across the 
intermetallic layers, although absolute proof is lacking. 
 
The growth of the intermetallic layers obeys the parabolic law underlying a diffusion-
controlled process. On the basis of the thickness measurements, the apparent rate 

constants txk p 22∆= (∆x is the reaction layer thickness and t is the annealing time, 

see A.17) at 215 °C were deduced as 7.55×10-17 and 1.58×10-16 m2/s for Cu3Sn and 
Cu6Sn5, respectively. From the position of the Kirkendall markers (ThO2-particles), the 
ratio of the volume intrinsic fluxes of the components (see A.10) in the phase layer of η-
Cu6Sn5 was found to be  

 6.1==
SnCu

CuSn

Cu

Sn

VD
VD

J
J

  

 
In order to determine the relative diffusivities of species in the ε-Cu3Sn phase, an 
incremental couple based on pure copper and laboratory prepared Cu6Sn5-compound 
was studied. Fig. (6.1-3) shows microstructure of the diffusion zone in this couple after 
heat-treatment at 215 °C for 225 hrs. The ThO2-markers are clearly visible inside the ε-
Cu3Sn product layer. It was calculated that in Cu3Sn  
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Fig. (6.1-1) Binary phase diagram 
of Cu-Sn binary system.  
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Fig. (6.1-2) Backscattered Electron 
Image (BEI) of the diffusion zone 
developed between Cu and Sn after 
reaction at 215 °C in vacuum for 
225 hrs. ThO2-particles (“white 
contrast”) were used as Kirkendall 
markers.
Fig. (6.1-3) BEI of the reaction 
zone developed in the incremental 
couple based on Cu and η-Cu6Sn5

after annealing at 215 °C for 225 
hrs. ThO2-particles were used as 
“Kirkendall markers”.  
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9.0==
SnCu

CuSn
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From a phenomenological viewpoint it is conceivable that at the reaction interfaces, 
product Cu-Sn intermetallics nucleate and grow by the loss of Cu- or Sn-atoms from or  
by adding Cu- or Sn-atoms to the adjoining phase layer. In terms of chemical reaction 
equations it can be re-stated as (see Fig. (6.1-4)): 
 
Interface I - Cu/Cu3Sn on the Cu3Sn-side 

4/14/34][3 SnqCuSnqqCu d →+  

Interface II - Cu3Sn/Cu6Sn5 on the Cu3Sn-side: 

[ ] 4/14/311/511/6 9
20

9
11 SnpCuCupSnpCu d →+  

[ ] 4/14/311/511/6 3
8

3
11 SnqCuSnqSnqCu d +→  

Interface II - Cu3Sn/Cu6Sn5 on the Cu6Sn5-side: 

[ ] 11/511/64/14/3 9
11

9
20 SnrCuCurSnrCu d +→  

[ ] 11/511/64/14/3 3
11

3
8 SnsCuSnsSnsCu d →+  

Interface III - Cu6Sn5/Sn on the Cu6Sn5-side: 

[ ] 11/511/66
11

6
5 SnrCuCurrSn d →+  

Here, the symbols [Cu]d and [Sn]d denote the diffusing atom species in the product 
layer; they do not represent the phases Cu and Sn. 
 
 
 
 
 
 
 
 
 
 
 

SnCu Cu(p)

Sn(q)

Cu(r)

Sn(s)

η- Cu6Sn5ε - Cu3Sn

a+b c+d

I II III

Fig. (6.1-4) Schematic 
illustration of the growth of 
Cu3Sn and Cu6Sn5 layers in 
a binary Cu/Sn couple. 
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The parameters p and q are the total amount of moles of Cu- and Sn-atoms, 
respectively, transferred per unit area through the product layer of Cu3Sn during total 
diffusion time, t. Analogously, r and s are the number of moles of Cu- and Sn-atoms 
transported during interaction across unit area through the Cu6Sn5-phase layer. 
 
For a volume diffusion-controlled growth of the intermetallic compounds, the magnitude 
of the intrinsic flux across a phase layer, Ji, is inversely proportional to the square root 
of the reaction time. In this case, one can write  

∫ ∫ ===
t t

CuCu Jtdt
t

dtJp
0 0

2constant
       (6.1-1) 

Similarly, SnJtq 2= , and therefore, the ratio q/p equals the ratio of the instantaneous 

fluxes in the Cu3Sn-product layer, i.e.  

9.0==
Cu

Sn

J
J

p
q

          (6.1-2) 

In the same way, we found for the product layer of Cu6Sn5

 6.1==
Cu

Sn

J
J

r
s

          (6.1-3) 

The thickness of the parts of the product phase layers resulting from the interfacial 
reactions given above (Fig. (6.1-4)) can be expressed by 
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       (6.1-4) 

Note that to simplify calculations we have ignored the presence of the solid solution of 
Sn in copper next to the product intermetallic layer. This means that the value of a will 
be slightly overestimated, because a small amount of that part of the Cu3Sn-layer will 
actually dissolved in the copper end-member. For the Cu/Sn diffusion couple annealed 
at 215 °C for 225 hrs, the average thickness of the intermetallic layers (in µm) was 
found to be  

            (6.1-5) 
5.16

9.8
=+
=+

dc
ba
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Thus, we have defined system of eight equations with eight unknowns (Eq. (6.1-2)-  
(6.1-5)). 
 
Further, we assume that for the partial molar volume of the species in a phase is equal 
to the molar volume of that phase of interest, i.e. mCuSn VVV == . Using the lattice 

parameter values given in Ref. [3], the molar volumes were calculated as  = 9.49 

cm

SnCu
mV 3

3/mole;  = 11.64 cm56SnCu
mV 3/mole  

  
With these assumptions, the marker velocity, vK and the location of the Kirkendall plane, 
xK in each product layer of the Cu/Sn couple can be found (see Chap. 4.1): 
  ( )CuCuSnSnKK JVJVttvx +−== 22
Comparing these equations with Eq. (4), one can write 

( )
( ) 565656

333

2

2
SnCu

K
SnCu

K
SnCu

m

SnCu
K

SnCu
K

SnCu
m

xtvrsV

xtvpqV

==−

==−
      (6.1-6) 

By solving set of equations (6.1-2) - (6.1-5), one finds for the case of annealed Cu/Sn 
couple (215 °C; 225 hrs) that a = 13.6 µm, b = -4.7 µm, c = 8.7 µm and d = 7.8 µm. 
The negative value of parameter b stems from the fact that rate of the Cu3Sn formation 

from Cu6Sn5, that is, ⎟
⎠
⎞

⎜
⎝
⎛ + qp

3
8

9
20

is lower than its consumption at the Cu3Sn/Cu6Sn5-

interface ⎟
⎠
⎞

⎜
⎝
⎛ + sr

3
8

9
20

. 

 
Accordingly, the coefficients p, q, r and s in the equations of the interfacial reactions are 
0.4, 0.36, 0.37 and 0.57 mole/m2, respectively. This leads, through Eq. (6.1-6), to the 
following values of the Kirkendall velocity: -2.47×10-13 m/s in the Cu3Sn- and 1.42×10-12 
m/s in the Cu6Sn5-phase layer. Co-ordinates of the Kirkendall marker plane(s), xK (= xK - 
xo) in this diffusion couple obtained through Eq. (6.1-6) are -0.4 µm and 2.3 µm 
corresponding to the Cu3Sn- and Cu6Sn5-product layers, respectively.  
 
Returning to the diffusion couple shown in Fig. (6.1-2), it is possible to determine the 
position of the plane within the reaction zone where the Kirkendall markers were 
situated at time t = 0 (i.e. xo = 0). This can be done by subjecting the concentration 
profile measured across the reaction zone with EPMA to the Sauer-Freise treatment (see 
A.19). Finally, using experimental results discussed in this section, the Kirkendall velocity 
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diagram for the Cu/Sn diffusion couple annealed at 215 °C for 225 hrs was constructed 
(Fig. (6.1-5)). From the negative value of b = -4.7 µm, it follows that no Kirkendall 
plane can be found on the Cu3Sn-layer. The position for the Kirkendall plane calculated 
for this product phase (xK = -0.4 µm) is, therefore, a virtual plane as can be appreciated 
from Fig. (6.1-5). 
 
Apparently, the location of the marker plane in the Cu6Sn5-layer found with Eq. (6.1-6) 
and that predicted on the basis of the Kirkendall velocity diagram is in good agreement 
with the experimental observations, given the accuracy of the diffusion couple technique 
employed.  
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6.2 Solid-state interactions in Cu(Ni)/Sn ternar
 
The ternary Cu-Ni-Sn is one of the most importan
industry. Ni is used on Cu layer as underbump met
rate with Sn-based solder alloys for better reliability o
 
Before proceeding to study ternary interactions, kn
important for comparison. It is already shown in prev
diffusion couple both the equilibrium phases accordin
(see Fig. (6.2-1)). ThO2-particles present in the 
Sometimes the presence of very small ThO2-particle
which could be incidental and dragged by the grain b
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Fig. (6.1-5) The Kirkendall velocity 
diagram constructed for a Cu/Sn 
diffusion couple annealed at    215 °C for 
225 hrs. The straight-line 2tvK = xK
intersects the velocity plot in the domain 
of the reaction zone corresponding to the 
single-phased layer of η-Cu6Sn5. The 
stable Kirkendall plane (K) exists inside 
this product layer. For the Cu3Sn one 
could define a virtual Kirkendall plane 
(Kvirt). 
y diffusion couples 

t systems to study in electronics 
allization to decrease the reaction 
f the interconnects.  

owledge on binary interactions is 
ious section that in a binary Cu/Sn 
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act as Kirkendall marker to detect the marker plane. On the other hand, when the 
binary Ni/Sn was coupled at same temperature and for same annealing time, only one 
phase Ni3Sn4 was found to develop in the diffusion zone. According to the Ni-Sn binary 
phase diagram [2] two other equilibrium phases, Ni3Sn and Ni3Sn2 should also develop 
in the reaction zone. The absence of these phases could be because of difficulties in 
nucleation. Sometimes, phases are present in a reaction zone as a very thin layer and 
difficult to detect with the analytical techniques used in this study (see A.21). The total 
layer thickness of the diffusion grown layer in a Ni-Sn binary couple at 215 °C after 400 
hrs of annealing was found to be around 9.2 µm, which is few times less than the total 
thickness in the Cu-Sn diffusion couple. In both Ni-Sn and Cu-Sn binary diffusion 
couples, the boundaries of the phase layers were quite wavy, which could be the result 
of grain boundary diffusion.  

 

 
 
 
 
 
 
 
 
 
 
  
 
 
To study ternary interactions, end-member 
prepared and coupled with pure Sn at 2
annealed for 400 hrs, Cu6Sn5 (presence o
EPMA measurements) and (Cu,Ni)3Sn laye
The total thickness of the diffusion zone w
couple     (Fig. (6.2-1). The presence of
almost at the same place compared to Cu/
of) intrinsic diffusivities of Cu and Sn in 
present in (Cu,Ni)3Sn-phase increased drast
intrinsic flux of Cu(Ni) and Sn in this phase 
 

 

Fig. (6.2-1) BEI image of binary Cu/Sn diffusion
couple annealed at 215 °C for 400 hrs.  
a
1
f
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S
t
i
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Fig. (6.2-2) BEI image of ternary Cu1at.%Ni/Sn 
diffusion couple annealed at 215 °C for 400 hrs. 
lloys of Cu with increasing amount of Ni are 
5 °C. When a Cu1at.%Ni/Sn couple was 

 Ni was not detected in this phase during 
 were developed as shown in Fig. (6.2-2). 
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With increasing amount of Ni in the Cu-Ni alloy end-member, however, a striking 
difference was found in the diffusion zone. When Cu5at.%Ni/Sn was coupled at same 
conditions, only the (Cu,Ni)6Sn5-phase developed with straight boundaries as shown in 
Fig. (6.2-3). The layer thickness is around 5 times higher than the total thickness of the 
Cu/Sn binary couple. The inert ThO2-markers, inserted between the couple halves 
before annealing, were found at the (Cu,Ni)6Sn5/Sn interface, which means that Sn is 
virtually the only mobile species in this phase. The same type of reaction zone was 
found, when Sn was coupled with end-members of Cu-Ni alloy up to 15 at.% of Ni. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (6.2-3) BEI image of the Cu5at%.Ni/Sn 
diffusion couple annealed at 215 °C for 400 hrs. 
ThO2-markers were found at the (Cu,Ni)6Sn5/Sn 
interface which reflects that Sn is by far the faster 
moving species in the reaction zone compared to 
Cu(Ni).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (6.2-4) Micrograph showing grains of the 
Cu6Sn5-phase in a binary Cu/Sn diffusion couple 
at 225 °C after annealing for 400 hrs. 

Fig. (6.2-5) Micrograph showing grains of the 
(Cu,Ni)6Sn5-phase in a ternary Cu5at.%Ni/Sn 
diffusion couple at 225 °C annealed for 400 hrs. 
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An etching agent based on FeCl3 was used to remove Sn to expose the (Cu,Ni)6Sn5-
layer. Then a standard metallographic treatment was followed to examine the 
microstructure under microscope. A distinct difference was found in the grain size 
between the layers grown under binary (and end-member with Cu1at.%Ni) couples and 
those of Cu(5-15)at.%Ni/Sn as shown in Figs. (6.2-4 and -5). The decrease in grain size 
(by more than an order of magnitude) may have increased the diffusion rate by fast 
grain boundary diffusion resulting in a much thicker reaction zone for the latter case. It 
is very well possible that in the grain boundary diffusion process only Sn takes part, 
which explains the position of the ThO2-particles at the Sn/(Cu,Ni)6Sn5-phase. Further 
research is going to understand the actual reason.  
 
6.3 Reactive phase formation in the binary Au/Sn system 
 
To stress the salient points of the proposed phenomenological treatment, we will 
confine the following discussion to the interactions at one temperature, viz. 180 °C. Fig. 
(6.3-1) shows a typical morphology of the diffusion zone developed in the Au/Sn couple 
after annealing at this temperature. Again, one can notice the rather irregular shape of 
the interfaces between the product phase layers. As already mentioned, the appearance 
of such “wavy” interphase interfaces in the reaction zone of a binary couple is often 
attributed to a grain boundary diffusion in the growing layers. It is, however, unlikely 
that this mechanism alone can account for the experimental observations, given the 
rather coarse-grained structure of the reaction product layers. For orthorhombic 
structures such as those of η-AuSn4 and ε-AuSn2 as well as for hexagonal δ-AuSn, one 
anticipates that the lattice diffusion will display a strong anisotropy. 
 
It is to be remarked here that when local equilibria are attained in the diffusion zone 
between Au and Sn, the formation of five intermediate phases, viz. ζ-, ζ′- “Au5Sn”, δ-

AuSn, ε-AuSn2 and η-AuSn4, is expected according to phase diagram (see Fig. (6.3-2)) 
[2] during interaction at 180 °C. However, after standard metallographic preparation of 
the Au/Sn couples, only three intermetallic phases are visible on backscattered electron 
images of the reaction zone (Fig. (6.3-1)). 
 
It is well documented that sometimes certain phases seem to be missing in a diffusion 
couple when investigated by microscopic and microprobe analysis [3]. One of the 
reasons for the absence of an equilibrium phase might be the presence of a barrier layer 
at the interface, such as, for example, an oxide film at the contact surface or the 
presence of impurities in the starting materials. Sometimes, the absence of certain 
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phases might be due primarily to difficulties in nucleation, however, it is important to 
point out that the apparent absence of a particular intermediate phase in a diffusion 
zone cannot automatically be interpreted as the result of nucleation problems. It is 
possible that the phase is present as such a thin layer that it cannot be detected easily 
by the experimental techniques used. 
 
The apparent absence of the ζ- and ζ′- “Au5Sn” phases on the micrograph given in Fig. 
(Fig. (6.3-1)) turned out to be connected with the procedure used for preparation of the 
samples, and nucleation of the Au-rich phases appeared not to be a problem. When 
cross-sections of the Au/Sn - couples annealed under the same conditions were 
prepared with SiO2 - polishing suspension (OPS™) as a final finish (instead of 0.25 µm 
diamond slurry), the “missing” phases became visible (Fig. (6.3-3)). 
 
Growth kinetics of the Au-Sn compounds was studied on a series of diffusion couples. It 
was found that at 180 °C the growth rate of the product layers of δ-, ε- and η-phases 
follows a square root dependence on the annealing time. This generally indicates that 
diffusion is the rate-limiting step of the intermetallic growth. The parabolic rate 
constants derived from the thickness measurements are 1.55×10-16 m2/s, 2.28×10-16 

m2/s and 4.18×10-15 m2/s for the δ-AuSn, ε-AuSn2 and η-AuSn4 intermetallic 
compounds, respectively. 
 
Prior to annealing of the diffusion couple shown in Fig. (6.3-1), W-particles were 
introduced between the initial couple halves as fiducial markers. After interaction, the 
tungsten markers can be seen inside the δ-AuSn- as well as in the η-AuSn4 - phase 
layer, i.e. two Kirkendall planes are present. From the Kirkendall plane locations and the 
composition profile across the reaction zone of this couple, the ratio’s of volume intrinsic 

fluxes of the components 
AuSn

SnAu

Sn

Au

VD
VD

J
J

=  in the intermetallics δ-AuSn and η-AuSn4 

were deduced as ~12.7 and 0.024, respectively. 
 
From Fig (6.3-1), one can also see that no Kirkendall marker plane is present in the      
ε-AuSn2 layer, which makes it impossible to assess component mobilities in this ordered 

structure by means of the standard procedure. Our attempts to obtain the 
Sn

Au

J
J

- values 

for the ε- phase using incremental diffusion couples were inconclusive due mainly to the  
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90
Fig. (6.3-1) BEI of the reaction zone in a 
Au/Sn couple after annealing in vacuum 
at 180 °C for 36 hrs. W-particles were 
used as Kirkendall markers. Only three 
product layers are visible after standard 
metallographic preparation using 0.25 
µm diamond slurry for the final polishing. 
Fig. (6.3-2) Binary Au-Sn phase diagram 
[2] . 
Fig. (6.3-3) BEI of a cross-section of the 
annealed Au/Sn couple (180 °C; 36 hrs) 
after polishing with SiO2-suspension 
(OPS™) as a final finish. The layer of 
“Au5Sn” is clearly visible.  
The positions of the Kirkendall planes are 
indicated by arrows. 
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technical difficulties connected with the preparation of well-defined reproducible 
samples. Nevertheless, as explained before, the ratio of intrinsic fluxes of the diffusing 
species across the growing layer is related to the stoichiometric coefficients in the 
equations of the corresponding interfacial reactions. Thus,  the  question  here is: “To 
what extent is it possible to rationalize diffusional growth of the line-compounds and the 
Kirkendall effect manifestations in the Au/Sn reaction couples using the alternative 
physico-chemical approach explained in Chap. 4?” 
 
If for the sake of simplification, we neglect the presence of the “Au5Sn”- layer, then the 
following reaction scheme can be used for the analysis: 
Interface I- Sn/AuSn4 on the AuSn4-side: 
 

[ ] 5/45/154 SnnAuAunnSn d →+    

Interface II-AuSn4/AuSn2 on the AuSn4-side: 

[ ] 5/45/13/23/1 2
5

2
3 SnmAuSnmSnmAu d →+  

[ ] 5/45/13/23/1 56 SnnAuAunSnnAu d +→  

Interface II-AuSn4/AuSn2 on the AuSn2-side: 

[ ] 3/23/15/45/1 2
3

2
5 SnpAuSnpSnpAu d +→  

[ ] 3/23/15/45/1 65 SnqAuAuqSnqAu d →+  

Interface III-AuSn2/AuSn on the AuSn2-side: 
[ ] 3/23/12/12/1 32 SnpAuSnpSnpAu d →+  

[ ] 3/23/12/12/1 34 SnqAuAuqSnqAu d +→  

Interface III-AuSn2/AuSn on the AuSn-side: 
[ ] 2/12/13/23/1 23 SnrAuSnrSnrAu d +→  

[ ] 2/12/13/23/1 43 SnsAuAusSnsAu d →+  

Interface IV- AuSn/Au on the AuSn -side: 
[ ] 2/12/12 SnrAuSnrrAu d →+  

 
Apparently, the resultant thickness of the product layers depends upon the growth from 
and at the same time, consumption by the neighbouring layers. The total width of each 
reaction product (a+b, c+d and e+f in Fig. (Fig. 6.3-4)), however, always increases 
(parabolically) with time. 
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 Schematic illustration of the growth of diffusion layers in a binary Au/Sn couple 

oceeding further, one important experimental finding has to be mentioned. 
 to Fig. (6.3-3), one can note a “duplex” grain morphology developed in the δ-

 η-AuSn4 product layers. This microstructural feature is now understood as a 
tion of the Kirkendall effect (see Chap. 4), and can be explained (qualitatively) 
ering the different nucleation sites of the grains in the growing phase layer 
mical reaction equations as a starting point. The AuSn- as well as AuSn4- 
llic is growing from two sides with a different type of nucleation, and these 
 nucleated grains meet at the Kirkendall plane. Therefore, the location of the 
irkendall plane(s) inside the multiphase diffusion zone can be identified by the 
 between the different grain morphologies within the microstructure of the 
lline reaction product(s). This “demarcation line” separating the sub-layers 

 with the position of the Kirkendall markers. This phenomenon was found to be 
ent of the presence of any inert particles (markers). 

Sn and η-AuSn4 product layers in the Au/Sn couple can be considered as if 
em were composed of two domains bounded by the Kirkendall plane and the 

e interfaces. The thickness of the parts of the intermetallic layers growing on 
e of the Kirkendall plane (a, b and e, f in Fig. (6.3-4)) can be expressed in 
the coefficients m, n, p, q, r, s and molar volume of the phase involved 

 cm99.14 3/mole;  cm44.13=AuSn
mV 3/mole [3]): 
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      (6.3-1) 

  
On the other hand, the “uniform” crystal morphology of the product layer of the ε-
AuSn2 is indicative for the absence of a Kirkendall plane (see Chap. 4). Although no 
(stable) Kirkendall plane exists in the AuSn2, it is also possible to think of this product 
layer as if it consists of two parts with (unknown) thicknesses (c and d in Fig. ((6.3-4)) 
related to the stoichiometric coefficients in the pertinent reaction equations and the 

molar volume of the ε- phase (  cm38.142 =AuSn
mV 3/mole [3]). It follows that   

( ) dsrqpV

cnmqpV

AuSn
m

AuSn
m

=−−+×

=⎟
⎠
⎞

⎜
⎝
⎛ −−+×

3333

6
2
36

2
3

2

2

       (6.3-2) 

 
Note that depending upon the relative rate of a diffusion-controlled formation (and 
consumption) of the AuSn2 - phase on either side of the AuSn2/AuSn - and AuSn4/AuSn2 
- interfaces, one of the values of c and d can be negative. 
 
Let us again turn our attention to the Au/Sn couple annealed at 180 °C for 36 hrs      
(Fig. (6.3-1)). The corresponding average values of a, b, e and f are 4.45, 32.6, 6.51 

and 2 µm, respectively, and the width of the ε-AuSn2-phase in the reaction zone (i.e. 
c+d) was measured as 8.9 µm. In order to examine the Kirkendall marker behaviour in 
this couple, two limiting cases are to be considered: 
 
I) In the diffusion-controlled interaction, the rate of consumption of AuSn2 on the AuSn-
side of the AuSn2/AuSn-inerface (3r+3s) resulting in the production of the AuSn-
intermetallic is higher than its formation from the AuSn-phase (3p+3q). This means that 
c ≥ 8.9 µm and d ≤ 0. If we take c = 8.9 µm and d = 0, then the set of Eq. (6.3-1 and 
6.3-2) yields (in mole/m2) the following values for the stoichiometric coefficients m = 
2.47, n = 0.06, p = 0.32, q = 0.70, r = 0.074 and s = 0.094. Accordingly, the ratio of 
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volume intrinsic fluxes, 
AuSn

SnAu

Sn

Au

VD
VD

J
J

= , in the binary intermetallic at 180 °C are found 

to be  in η-AuSn024.0/ =nm 4, 70.12/ =rs  in δ-AuSn and  in ε-AuSn19.2/ ≥pq 2. 

 
One can see that the results for the η-AuSn4 and δ-AuSn products are consistent with 
those obtained on the basis of standard analysis of the Kirkendall effect in the annealed 
Au/Sn-couple, which could not be otherwise, since both models describe the same 
phenomenological process in terms of purely phenomenological quantities. This, in fact, 
underlines the equivalence of the diffusion based and physico-chemical approaches 
used. 
 
II) Another alternative can be suggested. That is c ≤ 0 and d ≥ 8.9 µm. This implies that 

the consumption of AuSn2 on the AuSn4-side of the AuSn4/AuSn2-interface ( nm 6
2
3

+ ) is 

faster than the formation of this phase on another side of the reaction interface 

( qp 6
2
3

+ ). For this limiting case we found (in mole/m2) that m = 2.47, n = 0.06, p = 

0.73, q = 0.49, r = 0.074 and s = 0.094, and the ratio of volume intrinsic fluxes across 

the growing AuSn2-layer was determined as 67.0≤==
p
q

VD
VD

J
J

AuSn

SnAu

Sn

Au . Now, the 

values of the Kirkendall velocities in the product layers developed in the annealed Au/Sn 
couple can be obtained in a rather straightforward way  

( AuAuSnSn JVJVttv +−= 22 )        (6.3-3) 

Further calculations can be simplified considerably, if we assume that partial molar 
volumes of diffusing species in each binary Au-Sn intermetallic are equal to the molar 
volume of this phase, i.e. VSn = VAu = Vm. With these assumptions Eq. (6.3-3) takes on 
the following forms: 
 

for the AuSn4-layer: , and  ( ) 444 2 AuSn
K

AuSn
K

AuSn
m xtvmnV ==−×

for the AuSn-layer: . ( ) AuSn
K

AuSn
K

AuSn
m xtvrsV ==−× 2

 
For the annealed Au/Sn-couple (180 °C; 36 hrs), the co-ordinates of the Kirkendall plane 

in these products were found to be = -36.13 µm and = 11.64 µm. The 

corresponding values of the Kirkendall velocities, computed through the last two 

4AuSn
Kx AuSn

Kx
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equations, are -1.28×10-10 m/s and 4.5×10-11 m/s in the AuSn4- and AuSn-product layer, 
respectively.  
III) An analogous procedure can be used to estimate a magnitude of the Kirkendall 
velocity in the AuSn2-layer as well. For the first limiting case, one finds 

, and .  ( ) mpqVxtv AuSn
m

AuSn
K

AuSn
K µ46.52 222 ≥−×≥≥ smvAuSn

K /1013.2 112 −×≥

Similarly, for the second limiting case: 

( ) mpqVxtv AuSn
m

AuSn
K

AuSn
K µ45.32 222 −≤−×≤≤ , and . smv AuSn

K /103.1 112 −×−≤

 
Again, as in the previous case of the Cu/Sn couple, the position of the plane within the 
diffusion zone of the annealed couple where the Kirkendall markers were situated at 
time t = 0 (i.e. xo = 0), was found by subjecting the corresponding composition profile 
to the Sauer-Freise treatment. Using the experimental results and assessments outlined 
in this section, the Kirkendall velocity diagram pertain to the Au/Sn diffusion couple, 
annealed at 180 °C for 36 hrs, was constructed (Fig. (6.1-5)). One can see that the line 
2tvK = xK intersects the velocity plot twice in the domains of the reaction zone 

corresponding to the single-phased product layers of η-AuSn4 and δ-AuSn intermetallics. 
This means that two (microstructurally stable) Kirkendall planes will emerge upon 
interdiffusion, one in the η- and one in the δ-phase layer, as was indeed observed 
experimentally (Fig. (6.3-1 and 6.3-2). The value of 2tv for the AuSn2-phase lays 
somewhere in the shaded areas of  Fig. (6.1-5). 
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Fig. (6.3-5) The Kirkendall velocity 
diagram constructed for the Au/Sn 
diffusion couple annealed at 180 °C for 
36 hrs. The straight-line 2tvK = xK
intersects the velocity plot twice (at the 
positions K1 and K2), i.e. the Kirkendall 
plane bifurcates. The shaded areas 
indicate the possible values of the 
Kirkendall velocity in the ε-AuSn2 product 
layer. 
Note that the Kirkendall marker velocity 
in the AuSn2-phase can not be higher 
than the velocity of the moving Sn/AuSn4

and AuSn/Au interfaces. 



Chapter 6 

6.4 Concluding remarks 
 
The examples given in this paper show quite clearly that an understanding of the 
Kirkendall effect manifestations has great potential for providing insights into the finer 
nuances of multiphase diffusion.  
 
The manifestations of the Kirkendall effect and its role in morphological evolution of the 
reaction zone associated with the nucleation and growth of the product intermetallic 
layers in Cu/Sn and Au/Sn binary systems could be explained in terms of an alternative 
theory considering the diffusion-controlled interactions at the interphase interfaces.  
 
However, much remains to be learned about the Kirkendall effect manifestations 
accompanying multilayer growth in the Cu/Sn and Au/Sn systems. For example, the 
diffusion anisotropy of the Cu-Sn and Au-Sn intermetallics may render the analysis of 
the Kirkendall marker migration rather cumbersome, and the possible contribution of the 
grain boundaries in the overall diffusion transport in product layers at these low 
temperatures may add even more complexity to the phenomenological description. 
 
Undoubtedly, results of the present study are of importance for a broad engineering 
community dealing with the reliability of electronic devices. The Kirkendall plane is a 
notoriously problematic microstructural feature in any joint, because of higher 
mechanical failure risk at this plane. Also, the realization that the Kirkendall plane can 
be multiple, which suggests that diffusion porosity may develop at more than one 
location inside the interconnect, now opens this field to exploration.  
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Appendix  
 

Diffusion in a binary solid state system 
 

A.1 The basic concepts 
 
In metallurgy many physical processes are controlled by diffusion, such as 
homogenisation, non-martensitic transformation, precipitation, oxidation and sintering. 
Sir W. C. Roberts, in 1896, for the first time reported the systematic study of diffusion of 
gold in solid lead [1]. In almost all the structural applications containing heterogeneous 
materials systems diffusion is ubiquitous at elevated and even in many cases at ambient 
temperature, depending on the material systems. An understanding of this process is 
crucial in a wide variety of research fields, ranging from (relatively) bulk applications as 
in composite materials or coatings to very thin metallization films in microelectronics. 
Basically there are two approaches to study diffusion in solid state, the atomistic 
approach, where the nature of the diffusing species in atomic level is explicitly 

considered and the continuum approach, where the diffusing substance is treated as 
continuous medium, ignoring the nature of diffusion in atomic level.  Advantage of the 
latter approach is that one can analyse and predict the micro and or macroscopic 
physico-chemical changes in applications without going to rather complicated atomistic 
model. Extensive research is going on to understand the atomistic models, however we 
shall refrain ourselves from going into the details of these interesting models where still 
many questions are to be addressed. 
 
A.2 Fick’s laws 
 
Adolf Fick proposed the phenomenological diffusion theory [2]. If we consider the flux of 
particles (atoms, molecules, ions etc) in a one-dimensional system because of a 
concentration gradient, it can be expressed as, 

 ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
x
CDJ             (A.2-1) 



Appendix 

where J (mole/m2/s) is the flux, D (m2/s) is the diffusion coefficient, C (mole/m3) is the 
concentration and x (m) is the position parameter. The negative sign stems from the 
fact that diffusion occurs in the direction opposite to the increasing concentration 
gradient. 
 
Fick’s first law prevails only in the cases of steady states as shown in Fig. (A.2-1) where 
composition does not change with time. However, if composition changes with time at a 
particular position, as shown in Fig. (A.2-2), Fick’s second law should be used, which 
was derived from the Fick’s first law and law of mass conservation: 

⎟
⎠
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⎝
⎛

∂
∂

∂
∂

=
∂
∂

−=
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∂

x
CD
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J

t
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            (A.2-2) 

where t is time(s). 
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Fig. (A.2-1) Concentration profile of a system 
where concentration is always same (can be 
like 1, 2 or 3) with respect to position at any 
time. 

Fig. (A.2-2) Concentration profile of a system 
where concentration changes with respect to 
position with time (t2 > t1> to). 

 
If D is not a function of position (or composition) and the diffusion distance is short 
relative to dimensions of the initial inhomogeniety in an infinite systems, one can find 
the solution for C(x,t) in terms of error functions. In “small” systems, where complete 
homogenisation is approached, one can treat the same by “separation of variables”. For 
extensive treatments one can go through the classical book written by J. Crank [3]. 
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A.3 Interdiffusion coefficient 
 
From experiments in early 20th century, it was evident that the diffusion coefficient in 
solid-state is not constant, but is a function of composition and temperature [4, 5].  In 
structural applications very often two materials of different compositions are in contact 
with each other at a temperature when interdiffusion takes place through an interfacial 
product layer. The composition changes in a particular position because of the 

concentration gradient, and the interdiffusion coefficient, D~  also changes along the 

sample with composition. The interdiffusion coefficient relates the interdiffusion flux iJ~  

with the concentration gradient by 
x

C
DJ i

i ∂
∂

−= ~~
; i = components A or B. The 

interdiffusion fluxes are defined in the laboratory-fixed frame of reference (see section 

A.8). The interdiffusion coefficient D~  is, in general, a function of composition and, 

therefore, of x ( )( )xDD ~~ =  and Fick’s second law can be written as 

 
2

2~~~
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          (A.3-1) 

The term xD ∂∂~
 makes the equation inhomogeneous, and the solution in closed form is 

not possible. 
 

However, instead of finding solution for C(x,t), one can find the solution for ( )CDD ~~ =  

and this treatment is known as Matano-Boltzmann analysis.  
 
A.4 Some standard and thermodynamical relations 
 
Before proceeding further, we shall consider a few standard and thermodynamical 
relations for a binary system of species A and B, which will be used very frequently in 
the proceeding sections (some derivations can be found in Ref. [6]): 
 =1             (A.4-1) BA NN +

where NA and NB are the mole fractions of A and B. 

 
m

A
A V

N
C = ;  

m

B
B V

N
C =           (A.4-2) 

where Ci is the concentration of species i and Vm is the molar volume. 
             (A.4-3) 

where V
mBBAA VVNVN =+

i is the partial molar volume of the species i. 
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=+             (A.4-4) 

             (A.4-5) 1=+ BBAA VCVC
            (A.4-6) 0=+ BBAA dVNdVN
            (A.4-7) 0=+ BBAA dVCdVC
            (A.4-8) 0=+ BBAA dCVdCV
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A.5 Matano-Boltzmann analysis for the interdiffusion coefficient (applied to 
systems where the total volume does not change with reaction/mixing): 
 
The Matano-Boltzmann analysis is used frequently by researchers to study diffusion in 

the solid-state. By this method one can measure interdiffusion coefficients, D~ , at 
different compositions from the concentration profile measured by microprobe analysis. 
However, this method is restricted to systems where the partial molar volumes of the 
components are constant, i.e. the total volume does not change with reaction and 
mixing (see A.6). Consider the case, when two materials with initial compositions  

and  are coupled and annealed for reasonably short time, t, such that after 

annealing, still some part of the end-members is not affected by the diffusion process as 
shown in Fig. (A.5-1a). Boundary conditions can be written  

−
BC

+
BC

 
00

00

=〉=

=〈=
+

−

tatxforCC

tatxforCC

BB

BB           (A.5-1) 

where “-” and “+” represents the left- and right-hand end of the reaction couple. 
Boltzmann [7] introduced the variable  

( ) 2
1

/ txCB == λλ              (A.5-2) 

which means that  is a function of BC λ  only. This relation states that all compositions 

in a diffusion zone move parabolically in time with respect to one fixed frame of 
reference. 
By using the definition of λ ,  
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Transforming Eq. (A.5-3) in Fick’s second law (Eq. (A.2-2)) 
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By using Eq. (A.5-2) 
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This treatment is known as Boltzmann transformation and this transformation was used 
for the first time by Matano [8] to study interdiffusion in the solid-state. 
Initial conditions at time t = 0 can be written as considering Eq. (A.5-2), 
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Eq. (A.5-4) contains only total differentials and λ∂ can be cancelled from both sides. 

Integrating between initial composition  to the concentration of interest to measure 

the interdiffusion coefficient, 
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The data is always measured at some fixed time so that t is constant. If we assume that 

after annealing the ends of the couple are not affected then dxdCB = 0 at  and 

. Using Eq. (A.5-2) one can write, 
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and 
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              (A.5-8) ∫
+

−

=
B

B

C

C

BxdC 0

Eq. (A.5-8) defines the plane xM = 0, the initial contact plane between the end-

members, called the Matano plane. 
The Matano plane position, xM, can be determined from the concentration penetration 
curve of the system measured by X-ray microanalysis by equalising the area P and Q as 
shown in Fig. (A.5-1b).  
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Fig. (A.5-1a) Diffusion couple 
with end member compositions 

 and C  before and after 

annealing for time t. 

−
BC +

Bt = t 

(1b) Matano plane xM = 0 can 
be found by equalizing the 
areas P and Q. 

(1c) The value of the integral 
in Eq. (A.5-7) is equal to the 
shaded area (A+B) as shown 
in Eq. (A.5-10). 

ter integrating by parts, Eq. (A.5-7) can be written as, 
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om Fig. (A.5-1c), the interdiffusion coefficient can be expressed in terms of shaded 
ea as, 
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The main disadvantage of this analysis is that one has to find the position of the Matano 
plane, xM. When the total volume does not change with reaction/mixing, this is easy to 
determine. However, when the total volume changes, determining the initial contact 
plane (denoted by xo) is rather confusing (see section (A.6, A.19)).  
 
A.6 Effect of change in total volume with reaction/mixing 
 
Most of the real systems, in diffusion, are affected by a change in total volume. The 
effect could be very minor to considerable, depending on the deviation of molar volume 
from the ideal case. Let us consider an ideal system, as shown in Fig. (A.6-1a): the 
partial molar volumes VA and VB of the components A and B, respectively are always 

fixed, in both the cases, 1 (where VA = VB = Vm) or 2 (where VA ≠ VB but constant for all 
compositions). In this case the total volume does not change and there will be no 
difference in length in the diffusion couple sample after annealing for time, t. However, 
in almost all real systems the molar volume deviates from ideality (dashed line) as 
shown in Fig. (A.6-1b and -1c). In the case of Fig. (A.6-1b), there is a negative 
deviation from ideality and the total volume of the reaction/mixing product between end 

members  and  will decrease, so that it will result into shrinkage of the diffusion 

couple specimen as shown in Fig. (A.6-1b). In the case of Fig. (A.6-1c), because of a 
positive deviation from ideality, the total volume will increase with reaction/mixing and 
there will be swelling of the specimen.  In non-ideal cases, the partial molar volumes of 
the components can be found from the gradient in the V

−
BN +

BN

m vs. NB plot at the point of 

interest and by extending it to NB zero and one. As shown in Fig. (A.6-1b) and (A.6-1c) 

the partial molar volumes of A and B at  are  and *
BN *

AV *
BV , and are related to the 

molar volume at  by . *
BN ***

BBAAm VNVNV +=

 
In the ideal case, when there is no change in total volume (i.e. partial molar volumes of 
the components do not change), one can easily find out the initial contact plane (called 
Matano plane), xM, following the procedure shown in Fig. (A.5-1b), so that Matano-
Boltzmann method can be used to analyse for the interdiffusion coefficient.  However, 
when total volume changes with reaction/mixing, the position of the initial contact plane 
(denoted by xo) becomes vague as one will find two different values, depending on 
whether it is determined from -∞ or from +∞ side (see section A.19). For these cases 
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one should follow the method shown in the section A.9 to determine interdiffusion 
coefficients, when there is no need to define the initial contact plane. 
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ig. (A.6-1a) The ideal cases, like 1 or 2, when partial molar volumes of the components are always fixed 
nd there will be no change in total volume in the diffusion couple after reaction/mixing. 
1b) when the molar volume deviates negatively from ideality (dotted line), the diffusion couple specimen 

hrinks, after annealing for time, t. The partial molar volumes of A and B at  are  and . *
BN *

AV *
BV

1c) when the molar volume deviates positively from ideal case (dotted line), diffusion couple specimen 

wells, after annealing for time, t. The partial molar volumes of the components at  are  and . *
BN *

AV *
BV

.7 Kirkendall effect 

y the Matano-Boltzmann analysis one can quantify the interdiffusion coefficient, D~ , 
hich is, in fact, a kind of average diffusivity of the elements, and it does not shed light 
n the diffusivities of the species, separately. In the early stage, it was common belief 
mong researchers that diffusivities of the species are the same. In 1929 Pfiel [9] 
eported one peculiar phenomenon while studying oxidation of iron and steel: 

 
It had frequently been noticed that small particles of foreign matter (such as 
ieces of muffle) falling on the surface of oxidising iron were gradually buried. The 
cale grew up round these particles until they finally disappeared beneath the 
urface, but they could afterwards be found by breaking up the layer of scale”. 
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These foreign particles were inert to the diffusing species, iron and oxygen and this 
observation reflected that iron diffuses through the oxide scale to the surface, where it 
reacts with oxygen to form oxide.  
 
Hartley [10] was the first to use purposely foreign inert particles, titanium dioxide, in an 
organic acetone/cellulose-acetate system, to study the inequality of the diffusing 
species. Shortly after that Smigelkas and Kirkendall [11] used the same technique to 
examine the inequality of diffusivities of the species in the Cu-Zn system by introducing 
molybdenum as an inert marker. Researchers dealing with metallic systems at that time 
were not familiar with Hartley’s work and the effect of inequality of diffusivities on the 
inert marker was named as the Kirkendall effect [12].   
 
In the experiment by Smigelkas and Kirkendall, a rectangular bar (18×1.9 cm2) of 70-30 
wrought brass (70wt%Cu-30wt%Zn) was taken. This bar was ground and polished and 
then 130 µm diameter molybdenum wires, which are inert to the system, were placed 
on opposite sides of the surfaces. Then a copper layer of 2500 µm was deposited on 
that, as shown in Fig. (A.7-1). This couple was subjected to annealing at 785 °C. After 
annealing for a certain time one small piece was cross-sectioned to examine and the 
rest of the part was annealed further. Following this method, it was possible to get 
specimens at different annealing times. With annealing, α-brass grows in between and 
after etching, the distance between the markers was measured. If the diffusivities of 
copper and zinc are the same and there is no change in volume during 
diffusion/reaction, marker should not move and stay at the original position. 
 
However, after measuring, it was clear that with increasing annealing time, the distance 
between markers decreases parabolically with time. Considering the change in the 
lattice parameter, it was found that only 1/5th of the displacement occurred because of 
molar volume change. This shift was explained by Kirkendall as [11]: 
 
“The movement of the insoluble molybdenum wire was conclusive evidence that the 
alpha brass was being forced back as a whole (or attracted back) as a result of the 
diffusing out of the zinc atoms individually”.  
 
From this study two conclusions were drawn which had enormous impact at that time 
on solid-state diffusion: 
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1.  The rate of diffusion of zinc is much greater than that of copper in alpha brass, 
and 
2. When zinc diffuses more rapidly then copper in alpha brass, the interface shifts 
to compensate at least partially for the diffusion rate.   
 
 

 
 
 
 
 
 
 

Brass
Cu-30 wt% Zn

Brass

Cu

Cu

Cu

Cu

Mo-wire

785 0C

 
 
 
Fig. (A.7-1) Schematic representation of a cross-section of the diffusion couples prepared by Smigelkas 
and Kirkendall [11] before and after annealing at 785 °C. Molybdenum wires moved closer to each other 
with increasing time, t.  

 
 
Till then, direct exchange or ring mechanisms were accepted as diffusion mechanism in 
the solid-state as shown in Fig. (A.7-2-a, -b). If any of these mechanisms would be true 
then diffusivities of the species should be the same. However, from the Kirkendall’s 
experiment, it is evident that Zn diffuses faster than Cu, which results into the 
movement of the markers. When zinc diffuses away, all the sites are not occupied by 
the flow of Cu from opposite direction and because of that vacant sites are left 
unoccupied. In other sense, there should be a flow of vacancies opposite to the faster 
diffusing species Zn to compensate for the difference between the Zn and Cu flux. 
Vacancies will flow towards the brass side and excess Zn will diffuse towards the Cu-
side. Ultimately, this results into shrinking in the brass side and swelling in the copper 
side so that markers move to the brass side. In some diffusion reactions pores can be 
found in the product phase (see for example Fig. (4.1-2b, 6.1-2 and 6.2-2). If there is 
not enough plastic relaxation during the process, vacancies will coalesce to form pores 
or voids in the reaction layer. 
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From this experiment, it was clear that diffusion occurs by a vacancy mechanism and 
after that the direct exchange and ring mechanisms were abandoned.  At first this work 
was highly criticized but later this phenomenon was confirmed from experiments on 
many other systems [13].  Readers, interested on the historical developments are 
advised to read the article by Nakajima [14] and da Silva followed by comments from 
Kirkendall [15]. In fact, five years before Kirkendall’s publication, Huntington and Seitz 
[16] already showed that diffusion occurs by the vacancy mechanism, not by direct 
exchange, but at that time this work was overlooked. 
 
 
 
 
 
 
 
 
             (a)        (b)                            (c)  
 
Fig. (A.7-2) Atomic diffusion mechanisms: a) direct exchange mechanism, b) ring mechanism and c) 
vacancy mechanism. 

 
The impact of Kirkendall’s work, at that time, can be realized from R. F. Mehl’s [17] 
comment on his work,  
 
“If verified, this “Kirkendall effect” would greatly modify not only the treatment of 
diffusion data but also the theory of mechanism of diffusion. It would, for example, 
be no longer possible to represent diffusion data in a substitutional solid solution 
by one coefficient, applying to both metal atoms since the separate coefficients are 
equal, but one would have to show two coefficients, one each for each of the two 
metal atoms.” 
 
A.8 Darken analysis: relation between interdiffusion and intrinsic diffusion 
coefficients 
 
From Kirkendall’s experiment it was clear that the diffusion process in solid solutions 
cannot be described by one diffusion coefficient, rather, one has to determine the 
diffusivity of both the species. This was treated mathematically by Darken [18]. Almost 

 107



Appendix 

at the same time, Hartley and Crank [19] studied the same subject and they named the 
diffusivities of species as intrinsic diffusion coefficient. Seitz [20] and Bardeen [21] 
studied the solid-state diffusion process more extensively.  
 

Let us consider a binary diffusion couple of species A and B, of the compositions  

and , as shown in Fig. (A.8-1). Before annealing fiducial (inert) markers are 

introduced at the initial bonding interface and annealed at elevated temperature so that 
interdiffusion takes place. When interdiffusion starts, the markers will be trapped at a 
certain fixed composition and cannot escape at later stage so that they move along with 
that fixed composition. If the intrinsic diffusivity of B ( ) is higher than the intrinsic 

diffusivity of A ( ) at that marker plane (called Kirkendall plane), then the Kirkendall 

marker plane will move to the right hand side from the initial contact interface, x

−
BN

+
BN

BD

AD

M/o. 
Matano plane, xM is the initial contact interface when there is no change in total volume 
and is fixed with respect to the ends of the diffusion couple. This initial contact plane is 
denoted by xo when volume changes upon reaction/mixing (see A.19).  
 
The intrinsic molar flux at the Kirkendall plane can be expressed by Fick’s first law as, 
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This Kirkendall reference plane, , is not fixed but moves relative to the laboratory 

frame of reference. If we consider that this Kirkendall plane moves from x
Kx

M/o = 0 with a 

velocity, , then the relation between interdiffusion fluxes, Kv AJ~  and BJ~   (measured 

with respect to xM/o) and intrinsic diffusion fluxes,  and  (measured with respect 

to the Kirkendall frame of reference at the position x
AJ BJ

K) can be written as, 

 AKAA CvJJ +=~
; BKBB CvJJ +=~

        (A.8-2) 

where  and  are related by (using Eq. (A.4-8)) AJ~ BJ~
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In terms of volume flux (volume flux = partial molar volume of component, Vi × molar 
flux), 

 AAKAAAA
vol
A CVvJVJVJ +== ~

; BBKBBBB
vol
B CVvJVJVJ +== ~

    (A.8-4) 

In an “infinite” diffusion couple (where ends of the couple are not touched by diffusion) 
from Eq. (A.8-3)  
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From Eq. (A.8-1, -4 and -5) it follows that, 
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By using the standard thermodynamic relation as stated by Eq. (A.4-5 and -8) 
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Substituting Eq. (A.8-7) in Eq. (A.8-2) and comparing 
to 
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 ABBBAA DCVDCVD +=~
     

In the special case when partial molar volumes of the 
change with the composition so that BAm VVV == , Eq

 BBBA DNDND +=~
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Fig. (A.8-1) Schematic representations 
of a diffusion couple with the end 

members  and  demonstratin−
BN +

BN g 

the Kirkendall effect. Inert markers 
(white spots) placed at initial contact 
interface before annealing are shifted 
with increasing annealing time (t2>t1) 
to the right (from xM/o) as the diffusion 
of the species B is higher than the 
species A. The Kirkendall frame of 
reference, , moves with time, with 

respect to one end of the unreacted 
part of the specimen or with respect to 
x

Kx

M/o = 0. 
with Eqs. (A.4-5 and A.8-3) leads 
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components are equal and do not 
. (A.8-8) reduces to, 

     (A.8-9) 



Appendix 

Eq. (A.8-9) is known as the Darken equation. 
(Note: Interdiffusion coefficients can be measured at any composition in a concentration 
profile, however, intrinsic diffusivities can only be measured at compositions indicated 
by inert markers introduced in the couple prior to annealing). 
 
A.9 Interdiffusion coefficient considering changes in total volume upon 
mixing/reaction 
  

One can determine D~  as a function of the composition by the Matano-Boltzmann 
analysis (see A.5) for a diffusion couple for the ideal cases where the total volume does 
not change. Ballufi [22] first derived the solution for the interdiffusion coefficient for 
systems involving a deviation in molar volumes from the ideal case and changes in the 
total volume upon mixing/reaction. Some time later, Sauer and Freise [23] generalized 
the Matano-Boltzmann analysis for the same conditions.  Later Wagner [24] came to the 
same relation but in a different way and then Den Broeder [25] developed the same 
theory based on graphical interpretation. In the following sections Wagner’s approach is 
demonstrated elaborately. 
 
From Fick’s first law (Eq.(A.2-1))  and through Eqs. (A.4-3) one can write, 
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By using the condition in Eq. (A.8-3), Eq. (A.9-1) can be written as, 
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The time of the diffusion experiment is sufficiently short so that no changes in 
composition occur at either end of the couple, and therefore, the integrals at the ends 
vanish. Following Boltzmann (Eq. (A.5-2)) [7] the composition of the sample is a single 
valued function of the auxiliary variable 

 
2
1

)(
t

xC == λλ            (A.9-3) 

where x is the distance from the initial contact plane, xo (see A.19), such that x = x - xo 
(xo = 0). This equation states that any composition in a diffusion zone moves 
parabolically with time from xo. 
From Fick’s second law, (Eq. (A.2-2)), 
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Sauer-Freise [22] introduced the auxiliary variable 
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from which one can write  

( ) ( )( )YNYNN BBA −−+−= −+ 111          (A.9-6a) 

( YNYNN BBB −+= −+ 1 )          (A.9-6b) 

 
Substitution of Eq. (A.9-4, -6a, -6b) in (-4a and -4b) yields 
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Multiplying through Eq. (A.9-7a) by  and Eq. (A.9-7b) by −
BN ( )−− BN1  and subtracting 

corresponding sides, 
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In the same way multiplying through Eq. (A.9-7a) by  and Eq. (A.9-7b) by +
BN ( )+− BN1  

and subtracting corresponding sides, leads to 
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From Eq. (A.9-3) one can write  

 
2
1

t

dxd =λ             (A.9-9) 

Next we multiply λd  to the left hand side and dx/t1/2 to the right hand side of the Eq. 

(A.9-8a) and then integrate for a certain fixed time, t, from λ = -∞ to a particular 
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position of interest λ = λ* (corresponds to the mole fraction ). Following integration 

by parts of the left hand side of the equations we find, 
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(A.9-1) Schematic representations of a diffusion couple,  and , demonstrating diffusion after 

, t. White spots represents the inert Kirkendall markers moving depending on the inequality of 
sing species A and B. The interdiffusion coefficient, 

−
BN +

BN

D~ , can be determined at any position, let us say 
 at x*, however, intrinsic diffusivities can only be measured at Kirkendall marker (plane) position, xK. 

e way, from Eq. (A.9-8b) after multiplying λd  to the left hand side and dx/t1/2 to the 

t hand side and integrate from λ = λ* to λ = +∞. Following integration by parts of 
left hand side of the equations we find, 
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*
AJ  and  are the fluxes at λ = . Multiplying through Eq. (A.9-10a) by *

BJ *λ ( )*1 Y−  and 

Eq. (A.9-10b) by *Y and subtracting corresponding sides, one obtains 
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Substituting Eq. (A.9-2) for  in Eq. (A.9-11) and using *
BB NN =

2
1

t

dxd =λ  and solving for 

D~ , one obtains 
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By differentiating Eq. (A.9-5) and substituting in Eq. (A.9-12) one can write, 
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Interdiffusion coefficients can be measured at any position in the diffusion zone. 
The advantage of this method is that, to measure interdiffusivities, it is not necessary to 
find out the position of xo, which becomes cumbersome in real systems, where total 

volume changes with reaction/mixing. Here,  is the molar volume at *
mV *Y . If the molar 

volume  is independent of composition changes, the factor  in front of the 

expression in brackets cancels against  in the denominator of the integrals. If the 

diffusion couple consists initially of pure components, i.e. = 0 and  = 1, the 

auxiliary variable Y is equal to the mole fraction, N

mV mV

mV
−
BN +

BN

B. 
 
Den Broeder [24] graphically treated and modified the Matano-Boltzmann equation (Eq. 
(A.5-9)) to find the solution for the interdiffusion coefficient as 
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where 
−+

−

−

−
=

BB

BB
C

CC
CC

Y
B

,  is the concentration of B and,  and  are the 

concentrations at left- and right-hand unreacted part of the end members, respectively. 
       

BC −
BC +

BC

Note that the values calculated by Wagner’s approach (Eq. (A.9-13)) and Den Broeder’s 
approach (Eq. (A.9-14)) will be the same.  The difference is in the way of treating the 
experimental data points. In Den Broeder’s approach the interdiffusion coefficient is 
determined from the concentration profile, Ci vs. x (where i represents the species, i), 
where as in Wagner’s approach it is calculated after converting the mole fraction, Ni to 
the Sauer-Freise auxiliary variable, Y (by Eq. (A.9-5)).  
 
A.10 Intrinsic diffusion coefficients 
 
Intrinsic diffusivities can be measured straightforwardly only at the Kirkendall plane 
position, xK, marked by the markers as shown in Fig. (A.9-1), since this marker plane 
moves parabolically with time starting from t = 0 (contrary to markers put in other 
positions in the couple at t = 0). This is the only plane, which is immediately affected by 
the diffusion process at the start of the annealing and once the markers are trapped in a 
certain composition, they stay at that same composition for the entire annealing time 
and this plane acts as a reference to determine the intrinsic diffusivities.  From Wagner 
analysis it is possible to derive the relation for the intrinsic diffusivities. Multiplying 

through Eq. (A.9-10a) by  and (A.9-10b) by , then adding them and after 

rearranging: 
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              (A.10-1) 
where subscript and superscript “K” corresponds to the Kirkendall plane position. 
After rearranging Eq. (A.10-1) 
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Using Eq. (A.9-9) and rearranging again one can find  
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From Eq. (A.8-2) K
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So from Eq. (A.10-3 and -4) we can write, 
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In the same way, multiplying Eq. (A.9-10a) by ( )+− BN1  and (A.9-10b) by ( )−− BN1  and 

following the same procedure, one can determine the intrinsic diffusivity for component 
A. 
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From Eq. (A.10-5a and -5b) and Eq. (A.4-8), the ratio of diffusivities can be written as  
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Heumann [26] and van Loo [27] derived relations for the intrinsic diffusivities in 
different way.  
 
A.11 Integrated diffusion coefficient 
 
The equations above cannot be used straightforward to calculate diffusion coefficients 
for compounds with a narrow homogeneity range, as it is not possible to measure the 
vanishingly small concentration gradient. Wagner [23] introduced a new variable, the 
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integrated diffusion coefficient int
~D to describe the diffusion in line compounds. Consider 

the presence of a line compound β with a very narrow homogeneity range of and 

, such that , in a system as shown in the schematic phase 

diagram Fig. (A.11-1a). Two end members  and  are coupled at elevated 

temperature for time t and the resulting concentration profile is shown in Fig. (A.11-1b). 

The total thickness of β is ∆x
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β ( )11 ββ xx −= . The integrated diffusion coefficient can be 

expressed from Eqs. (A.9-5 and -14) for β as, 
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β
int

~D  can be related to the average interdiffusion coefficient 
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In the case of a diffusion system where several line compounds exist and where no 
solubility in the end members of the components occur as shown in Fig. (A.11-2a and   
-2b), Eq. (A.11-1) can be written as,  
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From Fig. (A.11-2b), Eq. (A.11-2) can be expressed as, 
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n the special case that only one intermetallic compound, β, exists between two end 

embers,  and , as shown in Fig. (A.11-3), then Eq. (A.11-3) reduces to, −
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here  is the parabolic growth constant (see Eq. (A.17-3)). In the case of a diffusion 

ouple with pure end members, A and B i.e.  = 0 and  = 1, then, a + b = 1 and 

q. (A.11-4) further reduces to, 
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.12 Intrinsic diffusion coefficients for line compounds 

n the case of a line compound one cannot measure the intrinsic diffusion coefficients of 
lements, because of the vanishingly small concentration gradient at the Kirkendall 
lane position in a compound with a very narrow homogeneity range. However, one can 
easure the ratio of the intrinsic diffusivities by Eq. (A.10-6), as there is no need to 
easure the slope. In the case of a diffusion couple as shown in Fig. (A.12-1), if the 
irkendall marker plane is situated at xK, the ratio of intrinsic diffusivities can be written 
y using Eq. (A.9-5) and (A.10-6) as,  
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where         
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In the case of Fig. (A.12-2), when no solubility exists in the end members, all the 
compounds have a narrow homogeneity range and the Kirkendall plane is located in β-
phase at xK, then Φ and Ψ in Eq. (A.12-1) can be written as,     
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In the special case when there is only one layer, β, growing between two end members, 
and the Kirkendall plane position xK is present in that phase, as shown in Fig. (A.12-3), 
the equations reduce to, 
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Fig. (A.12-1) Schematic composition profile for
the case when only one line compound β grows
between the end members α and γ. The
Kirkendall marker plane is in the β phase at
position xK.
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Fig. (A.12-2) Schematic composition profile for 
the case when several line compounds exist. The 
Kirkendall marker plane is in the β phase at 
position xK.
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It should be reminded, that the value VB/VA is di

Therefore, one actually finds from experiment

material constant.
 
A.13 Tracer diffusion coefficients 
  
Another way to study and get knowledge of diff
through the use of tagged atoms of radioisotope
diffusivity of species B in a binary alloy of AxB1-x

on a flat surface as shown in Fig. (A.13-1a). Afte
for a certain time t (such that the deposited laye

Dt ), the distribution of B* can be written after

as [3], 
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Fig. (A.12-3) Schematic composition profile
of a diffusion couple when only one line
compound exists. The Kirkendall marker
plane is inside the β phase at position xK. 
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 solving Fick’s second law (Eq. (A.2-2)) 
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where  is the concentration of B*
BC *  at a distance, x, from the surface.   is the 

number of moles of tracer atoms deposited per unit area. 

*
BN

 
Radioisotopes should have sufficient half-life, not too short or too long, in order to 
measure their concentration by the emission of β or γ rays. They are chemically the 
same as species B, with only one or two neutron mass difference. After certain 
annealing time the specimen is cross-sectioned at different distances x (as shown by 
dotted lines in Fig (A.13-1b)) to measure isotope concentrations. Then after plotting 

 to x,  (which is practically identical to D*ln BC *
BD B) can be measured from the slope 

tDB
*4

1
− , as shown in Fig. (A.13-1c). 
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. (A.13-1) a) Tracer B* is deposited as a very thin layer on the alloy AxB1-x, b) the specimen is cross 
tioned at different distances after annealing at temperature T for time, t to measure the tracer 

centrations, c) the concentration of tracer  is plotted vs. distance x. The tracer diffusivity of B can 

 measured from the slope of the curve according to Eq. (A.13-1). 
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A.14 Phenomenological equations: Darken’s analysis for the relation between 
interdiffusivity, intrinsic diffusivities and tracer diffusivities 
 
Mathematical formulations as shown in previous chapters are theoretically sound. 
However, to gain more insight into the conditions of the treatment and the 
phenomenological process one has to understand it through a thermodynamical point of 
view.  Basic conditions of the previous equations are that the system is under isothermal 
and isobaric conditions; that no high external force is present (which might cause plastic 
deformation of the sample or, possibly, pressure dependent diffusion coefficients) and 
time dependent effects are absent. This holds specifically for the recrystallisation 
processes, when small grains found during the early stage of the diffusion process might 
grow. This might cause a gradual transition from grain boundary diffusion to the much 
slower bulk diffusion. We consider here bulk diffusion throughout the whole process.  
 
If further the diffusion process occurs under the condition of local equilibrium, then 
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where iµ  is the thermodynamic (or chemical) potential for component i, Li is the 

phenomenological coefficient, independent of  dµi/dx and only dependent on the 
composition. 
 
If we consider the force, F due to the chemical potential, and  is the velocity of 

species B, then the mobility of B can be written as, 
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written as (considering the force for the diffusion is the chemical potential gradient) 
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So, the phenomenological constant BBB CML =  and 
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From Eq. (A.4-2, -9 and A.14-2) can be written as, 
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We know that, 
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where the activity of B is aB = γBNB, γB is the activity coefficient of B, R is the gas 

constant and µB is the chemical potential of B. 
From Eqs. (A.14-3 and -4), 
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In case of the diffusion of an infinitely thin layer of radioactive tracer of B in an alloy of 
A-B as shown in section A.13, the volume terms as well as the non-ideality term in Eq. 
(A.14-5) vanish and we can write 

RTMD BB
** =             (A.14-6) 

which is known as the Nernst-Einstein relation.  
By transforming, Eq. (A.14-6) in Eq. (A.14-5), 
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In the same way, for species A, 
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Combining Eq. (A.8-8) and (A.14-7) and using the Gibbs-Duhem equation 
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This relation was first proposed by Darken [18] 
The ratio of diffusivities in terms of tracer diffusivities can be expressed by, 
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From Eq.s (A.14-9 and A.10-6) it follows that 
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which is directly measurable by the classical diffusion couple method. 
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A.15 Relation between integrated and tracer diffusion coefficients 
 

Consider a diffusion couple of alloys A and B (between end members  and ) 

where one phase with a narrow homogeneity range (line compound), β, is forming as 

shown in Fig. (A.15-1). It is apparent that layer β is formed at the interface II by the 

dissociation of species B and by the reaction of  with species A, which dissociated at 

interface I and then diffused through the product layer. In the same way, at interface I, 

β is formed by the dissociation of species, A from the end-member alloy  and by the 

reaction with the diffused species B released from interface II.  
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By definition the integrated diffusion coefficients of phase, β (Eq. A.11-1) is equal to  
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where and  are the composition of β phase at interface I and II such that 
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Using Eq. (A.14-8) and Eq. (A.15-1) can be written as 
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Here, the energy per mole of B for dissociation in interface II can be represented by the 

Gibbs energy,  (where ) and the energy per mole 

of B for the reaction at interface I to form β can be written by . So the 

total energy to form β by diffusion (one mole of) B (by dissociation and reaction) can be 

written as 

II
B

o aRTG ln−=∆ B
o
BB aRT ln+= µµ

I
B

o aRTG ln=∆

( )I
B

II
B

o
Br aaRTG lnln −−=∆ . So that Eq. (A.15-2) can be written as, 
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~
        (A.15-3) 

It should be noted that  is equal to , where  is the Gibbs 

energy for the net reaction per mole of species A moving from interface I to interface 
II. 
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ig. (A.15-2) Stability diagram for A-B system with three line compounds, , and ;  is 

he Gibbs energy for the net reaction per mole of species given in Eq. (A.15-3). In the case of pure end 
embers A-B, the energy of formation for the β-phase can be expressed (as explained by dashed lines) 
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 ( )
RT

G
DNDND f

ABBA

0
**

int
~ β∆

+−=         (A.15-4) 

 

where  is the Gibbs energy of formation per mole of particles for the β-phase. In 

this condition if β-phase has the composition of A

0
βGf∆

xB1-x then, 

.  ( ) 000 1 ArBrf GxGxG ∆=∆−=∆ β

The change in energy can better be understood from Fig. (A.15-2).  
The Kirkendall marker velocity as expressed by Eq. (A.8-7) can be written in terms of 
the tracer diffusion coefficients of the species with the help of Eq. (A.14-7) and (A.4-9) 
by 
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where Θ is the thermodynamic factor 
B
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In the case when  Eq. (A.15-5) reduces to  mBA VVV ==

 ( )
x

N
DDv B

ABK ∂
∂

Θ−= **           (A.15-6) 

 
A.16 Vacancy wind effect and Manning’s correction 
 
Darken’s treatment correlates interdiffusion, intrinsic diffusion and tracer diffusion 
coefficients of the species with the aid of thermodynamic factor (Eq. (A.14-7 and -8)). 
As explained, in a binary system the intrinsic diffusivities of the species are different. 
When diffusion is controlled by vacancy mechanism, the net flow of matter in one 
direction will be balanced by a net flow of vacancies in the opposite direction. Manning 
[28, 29] showed how this vacancy flux can affect the intrinsic diffusion and proposed 
the incorporation of a correction factor to the equations, which relates the intrinsic and 
interdiffusion coefficients with tracer diffusion coefficients. Manning explained that the 
net flux of vacancies will create a vacancy wind effect. This effect will enhance the 
intrinsic diffusion coefficients of the faster species whereas it will decrease the diffusion 
rate of a slower species. In this way it also affects to the interdiffusion coefficients and 
will result into increased Kirkendall marker velocity.  
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Assuming there is no supersaturation, binding of vacancies and no clustering in the 
alloy, Manning modified the Eqs. (1.14-7a and -7b) using a random alloy model. He 
showed that in a binary diffusion couple the intrinsic diffusion coefficients can be written 
as 

 ( )AA
B

m
A WD

V
V

D +Θ= 1*                   (A.16-1a) 

 ( )BB
A

m
B WD

V
V

D −Θ= 1*                   (A.16-1b) 

where the vacancy wind factor 
( )
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DNDNM
DDN

W
+

−
= ,  is a constant, which 

depends on the crystal structure of the system, N

oM

i is the mole fraction of species i and 

Θ is the thermodynamic factor BBAA NaNa lnlnlnln ∂∂=∂∂ . From Eq. (A.16-1) 

the relation for interdiffusion coefficient (Eq. (1.8-8)) was modified to  
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In the same way the Kirkendall marker velocity (Eq. (A.8-7 or A.15-5)) after some 
mathematics was modified to 
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                                                                                                           (A.16-3) 
where f1=α and f is the correlation factor for self diffusion. 

In the ideal case when  Eq. (A.16-3) reduces to  mBA VVV ==

 ( )
x

N
DDv B

ABK ∂
∂

Θ−= α**                    (A.16-4) 

Values of and α for face centered cubic, body centered cubic, simple cubic and 

diamond structure are 7.15, 5.33, 3.77, 2 and 1.280, 1.375, 1.531, 2 respectively. 
oM

 
Later Manning [30] and Dayananda [31] extended this approach to consider the 
vacancy wind effect to multicomponent systems.   
 
Many experiments have been conducted to compare the experimental results on 
intrinsic diffusion coefficients and those calculated by Manning’s method from tracer 
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diffusion coefficients. The outcome is ambiguous. Schmatz et. al. [32] and Irio et. al. 
[33] found that the Manning’s correction led to a better match between the ratio of self-
diffusivities calculated from the Kirkendall effect and the ratio determined by radiotracer 
measurements. However there was significant disagreement in the absolute values of 
the self-diffusivities between those experimentally determined and those calculated by 
Manning’s approach. Kohn et. al. [34] also found discrepancies between experimental 
and calculated values. Meyer [35] and Dallwitz [36] calculated the Kirkendall marker 
shift and found good agreement between experimentally determined results and the 
values predicted by Manning’s model. Carlson [37] found that the vacancy wind effect is 
an important parameter for intrinsic diffusion fluxes and determined the values at 
different compositions for the Ti-V system. Although the model for vacancy wind effect 
was developed for random solid solutions, Sohn and Dayananda [38] used the same 
model to calculate the vacancy wind effect in β′-FeAl phase. In this study the vacancy 

wind effect is calculated in β-NiAl and γ′-Ni3Al phases as discussed in Chap. 5. 
  
A.17 Growth kinetics, Kirkendall marker velocity and velocity curve 
construction 
 
Following the Boltzmann variable (Eq. (A.5-2)) λ = λ (C) = x/t1/2 and from experiments, 
it is well known that in a diffusion controlled growth, all compositions in a diffusion layer 
will move parabolically in time in the laboratory frame of reference from xM/o (where xM 
and xo are the initial contact interface, for the conditions as explained in A.8 and A.19).  
 
In the case of line compounds or the phases with narrow homogeneity range, phase 
layers will have an almost fixed composition and will grow with that fixed composition. 
In this case phase boundaries will move parabolically in time from the xM/o and the layer 
thickness also will grow parabolically such that  

                     (A.17-1) tkdx p222 ==∆

where ∆x or d are the layer thickness of the phases or the total layer thickness of a 
diffusion grown system; kp is called the parabolic growth constant. 
 
Kirkendall markers placed at the initial contact interface will be trapped to a certain 
composition and move parabolically in time with that composition right from beginning 
of the diffusion process and act as a reference plane to calculate intrinsic diffusivities at 
that composition.  
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If we consider xK and xM/o as the Kirkendall marker plane position at times, t = t and      
t = 0, respectively, then the Boltzmann variable corresponding to the Kirkendall marker 
composition can be written as  

 ( )
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2
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/
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x

t

xx
C KoMK
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−

== λλ                   (A.17-2) 

where initial contact interface xM/o = 0.  

By differentiating with respect to t and replacing λK, one can find the Kirkendall velocity, 
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Following Eq. (A.8-7), the velocity of any particular composition in a diffusion zone or 
Kirkendall marker composition also can be found from the knowledge of intrinsic 
diffusion coefficients by 

 ( )
x

C
DDVv B

ABB ∂
∂

−=             (A.17-4) 

If one has the knowledge on tracer diffusivities, thermodynamic factor and partial molar 
volumes of the species, the velocity can be found by Eq. (A.15-5). 
 
As mentioned earlier, the intrinsic diffusivities are materials constant. One can 
determine intrinsic diffusivities at different compositions from incremental couple 
experiments (i.e. by using different end member compositions in different couples). 
Because of the different end member compositions, Kirkendall markers placed at the 
initial contact plane will be trapped at different compositions. Then the velocity curve for 
any diffusion couple over the whole composition range can be constructed using 
intrinsic diffusivities calculated from several couples over the homogeneity range of a 
phase with the help of concentration gradient at that composition in the particular 
couple. 
 
One can find the numbers, location and the nature of the Kirkendall plane(s) from 
the intersection of the straight line 2tvK = xK  (Eq. (A.17-2)) and a plot of 2tv vs. x 
determined through Eq. (A.17-4) (by multiplying 2t in both sides) (see Chap. 1).  
 
However, in the case of a line compound (or in a phase with narrow homogeneity 
range) one cannot measure the vanishingly small concentration gradient required to plot 

 129



Appendix 

velocity curve by Eq. (A.17-4). This equation can be modified to make suitable for line 
compounds.  
 
Using Eq. (A.4-9) and Eq. (A.17-4) it can be written as  
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         (A.17-5) 

Eq. (A.8-8) with the help of Eq. (A.4-2) can be rearranged as, 

 ABBBAAm DVNDVNVD +=~
         (A.17-6) 

Integrating Eq. (A.17-5) for a line compound, lets say β-phase, as shown in              

Fig. (A.11-3), with a very narrow composition range (where 

) with a thickness 
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        (A.17-7) 

From the fact that velocity of a line compound is constant at each composition in that 
phase and the intrinsic diffusivities are materials constants, the Eqs. (A.17-6 and A.17-7) 
can further be written as 
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From the definition of integrated diffusion coefficient (Eq. (A.11-1)) and rearranging   
Eq. (A.17-8), the velocity can be written as 
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In the case of a multilayered multiphase system containing phases with line compounds 
or narrow homogeneity range, one can find the velocity curve (line) for each phase 
separately and 2tv vs. x for the whole system through Eq. (A.17-9) will lead to a 
stepwise plot. 
  
To construct the velocity plot by Eq. (A.17-4) for the phases with wide homogeneity 
range and Eq. (A.17-9) for line compounds, one needs to determine first the diffusion 

 130



Diffusion in a binary solid state system 

parameters. However, sometimes it could be easier to find the Kirkendall marker 
velocity directly, without going to details of the diffusion parameters or even without 
determining the concentration gradient.  
 
If we denote the integrals of the Eqs. (A.10-5a) and (A.10-5b), in the relation for 

intrinsic diffusion coefficients as dx
V
YKx

m
∫
∞−

=φ  and dx
V

Y

Kx m
∫
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−
=

1ψ , and then replacing  

and  in Eq. (A.17-4), it follows that 
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“-” and “+” represents for the ∞−  and +∞  side of the diffusion couple. In the special 
case when both the end members are from pure materials then in a composition profile 

plotted with respect to composition of the element B, then  = 0,  = 1,  = 1, 

 = 0 and Eq. (A.17-10) reduces to 

−
BN −

AN +
BN

+
AN

 [ ψφ AB VV ]
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v −=
2
1

           (A.17-11) 

Note the main advantage of this relation is that one can use it for phases with a wide 
homogeneity range as well as for line compounds directly from a composition profile 
after converting to a Y/Vm vs. x plot. In the case of a diffusion layer consists of line 
compounds, as shown in Fig. (A.12-2 and -3), Φ and Ψ in Eq. (A.12-1) are related as 

( )−+ −Φ= BB NN/φ  and ( )−+ −Ψ= BB NN/ψ .  

 
A.18 Molar volume and partial molar volumes 
 
Important prerequisite to calculate diffusion parameters are molar volume and partial 
molar volumes. By definition, the molar volume,  of a phase can be determined from  mV

 Avo
a

cell
m N

n
V

V =            (A.18-1) 

where Vcell is the volume of the unit cell (m3) determined with the help of lattice 
parameter data available in literature,  is the Avogadro number (6.022×10AvoN 23    

mole-1) and is the number of atoms in the unit cell.  an
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When virtually no structural vacancies are present in a unit cell the number of atoms, 
 in the last equation can be replaced by the number of lattice sites,  in a unit cell. 

On the other hand, when constitutional vacancies are created in the structure, then 
, with  being the number of vacancies present in the unit cell. 

an sn

Vsa nnn −= Vn
 
Consider, for example, the β-NiAl phase as shown in the phase diagram (Fig. (3.1-1)). 
The deviation from stoichiometry can be accomplished in principle by two different 
mechanisms, either by the formation of anti-structure defects or, as in the case of the 
Al-rich NiAl intermetallics, by the occurrence of structural vacancies on the Ni-sublattice, 
so called triple-defects. The concentration of the constitutionally generated vacancies 
can be appreciable.  
 
The molar volume can be calculated from the available data on the lattice parameter of 
cubic β-NiAl phase (Fig. (A.18-1)) and vacancy concentrations (Fig. (A.18-2)) as shown 
in Fig. (A.18-3). The presence of antisite atoms does not affect the number of atoms 
present in the unit cell. 
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Fig. (A.18-1) Variation of lattice parameter 
as a function of mole fraction in β- NiAl 
phase [39]. 
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Ni-rich part of the homogeneity range. Note that small absolute changes in the molar 
volume near the “equiatomic” composition have a dramatic effect on the vales of the 
partial molar volume of the components in β-NiAl phase. 
 
However, in most cases, the details of the lattice parameter and/or vacancy 
concentration, over the whole homogeneity range of the phases are not available. In 
that case, we generally can use the molar volume calculated at stoichiometric 
compositions from available data in reference as the average molar volume of the 
phase. There are two options regarding the partial molar volume of the components in a 
phase. One can assume, VA = VB = Vm and use the molar volume of the phases as the 
partial molar volume of the components in that phase. In our study we have taken this 
assumption in the case of line compounds on the conjecture that the molar volume does 
not change with composition in that phase.   In the case of a system containing phases 
with wide homogeneity range, we have considered the molar volumes of the pure 
components as the partial molar volumes of the elements (i.e. by assuming VA ≠ VB, but 
constant following Fig (A.6-1a)) in a phase.  
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A.19 Initial contact plane, xo in the case of change in total volume with 
reaction/mixing 
 
To determine interdiffusion coefficients by the Matano-Boltzmann analysis (A.5), it is 
necessary to find the initial contact plane, xo. If the total volume does not change, one 
can find the position graphically through the Eq. (A.5-8). If, however, the total volume 
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does change, one might wonder whether the same procedure can be followed using 
Y/Vm or (1-Y)/Vm vs. x plot, as given in Eqs. (A.19-1 and A.19-2). 
 

The initial contact plane positions are found at  and  as shown in Figs. (A.19-1 

and A.19-2) by equalizing the areas A and B. 

−∞
ox +∞

ox

 

 ∫ ∫
+∞

∞−

+∞

∞+

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

+

o

o

x

l

l

x mmm
dx

V
Y

V
dx

V
Y 01

        (A.19-1) 

( ) ( )
∫ ∫
−∞

∞−

+∞

∞−

=
−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−

o

o

x

l

l

x mmm

dx
V

Ydx
V

Y
V

0111
       (A.19-2) 

where  and  are the coordinates at the right- and left-hand unreacted part of 
end-members. 

+∞l −∞l

From the fact that A and B (in Fig. (A.19-1) and (A.19-2)) are equal, we can write  
 A+C = B+C            (A.19-3) 
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 Fig. (A.19-1) Schematic representation of the 
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Considering Fig. (A.19-1), after rearranging 
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Eq. (19-3) can be written as  
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∫
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YVxl           (A.19-4) 

So by this integration of Y/Vm vs. x one finds the initial contact position,  fixed with 

respect to the right-hand end of the couple.  
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In the same way from Eq. (A.19-3) and Fig. (A.19-2) after rearranging we can write 
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and we find the initial contact position  fixed with respect to the left-hand end of 

the couple.  

−∞
ox

The molar volume in a system can be written as: 

 ( ) VYVVVV mmmm ∆±−+= −+−          (A.19-6) 

where Vm is the molar volume,  and  are the molar volumes at the left- and right 

hand unreacted end of the diffusion couple where . The term 

−
mV +

mV
−+ 〉 mm VV V∆± gives the 

deviation of molar volume from the ideality. 
Adding Eq. (19-4 and -5) and rearranging leads to 
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With the help of Eq. (A.19-6), Eq. (A.19-7) can be written as 
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In the ideal condition, if the partial molar volumes are constant,  and  will be 

found at same location since  will be equal to zero. However, when there is a 

deviation of molar volume from the ideality, the locations of  and  will be 

different. This difference will be equal to the integral in Eq. (A.19-8), which is in fact 
equal to the expansion or shrinkage 

+∞
ox −∞

ox

V±
+∞
ox −∞

ox

x∆ of the couple, depending on the positive or 
negative deviation of the molar volume from ideality, respectively. 
 
The problem is: which is the position of xo of the original contact plane between the 

end-members? It cannot, of course, depend on the choice of the reference point  or 

. 

−∞l
+∞l
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This problem might better be understood from examples on hypothetical systems. Let 
us consider two compounds in A-B system, α (A0.75B0.25) and γ (A0.25B0.75), which react 

to produce 2 moles of β (A0.4B0.6). If we consider the molar volumes of α and δ as 
being 1 and 2 units, respectively, then in the ideal condition when the partial molar 
volumes of the species are constant, the molar volumes of β will be 1.7 units. 
In terms of reaction equations we can write: 
 ( ) ( ) ( )βγα 6.04.075.025.025.075.0 4.16.0 BABABA =+          (A.19-9) 

In terms of volume balance: 
 ( ) ( ) ( )βγα 7.1224.116.0 ×=×+×             (A.19-10) 

From the volume balance it is clear that 0.6 units of α will react with 2.8 units of γ to 

produce 3.4 units of β, which means that there is no change in total volume after 
reaction.  
 
Next, we consider a positive deviation of molar volume from the ideality by choosing for 
the molar volume of β 1.85 units. Then the volume balance for Eq. (A.19-9) will be 
 ( ) ( ) ( )βγα 85.1224.116.0 ×=×+×           (A.19-11) 

which means that from total 3.4 units of reactants a total of 3.7 units of product will be 
formed, i.e. there will be expansion by ∆x = 0.3 units as shown in Fig. (A19-3a and       
-3b). 
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Fig. (A.19-3) Schematic illustration of the effect of a positive deviation of the molar volume from the 
ideality after interaction for the ideal and non-ideal cases: a) fixing from left-hand side, and b) fixing from 
right-hand side. 
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In the ideal case, the initial contact planes,  (determined from the (1-Y)/V−∞
ox m vs. x 

plot) and  (determined from the Y/V+∞
ox m vs. x plot) are found to be at the same 

location of 0.6 units from α/β interface as shown in Fig. (A.19-3a and -3b). In the non-

ideal case, the locations of  and  are found to be at 0.6 and 0.9 units, 

respectively from α/β interface and the difference in the locations between these two 

planes ( - ) is, in fact, exactly equal to the expansion of the diffusion couple, ∆x 

after interaction as shown in Fig. (A.19-3a and -3b). In the case of a positive deviation 

of the molar volume from ideality > , whereas in the case of negative deviation of 

molar volume from ideality < , if we take the position of α/β interface as        x 

= 0. 
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So the “real” position of xo is somewhere in between the values of  and . In the 

case of homogeneous expansion or contraction, one can calculate its position from the 

equation 
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⎛ ∆
−= ∞−

d
xxx oo 1 , where ∆x is the expansion/shrinkage of the couple and d 

is the total layer width. In the example given above, this leads to a value of 0.65 units 
from the α/β interface. By assuming homogeneous expansion/shrinkage, we consider 
that the ratio of partial molar volumes of the species, VB/VA is constant over the entire 
diffusion zone. In real situations considering this assumption is more or less realistic if 
one line-compound grows in a diffusion couple, but might fail in more complex systems. 
On the other hand it should be mentioned that we are dealing with a second-order 
effect: the expansion/shrinkage of a couple is mostly below a few percent of the layer 
thickness. Therefore, the possible error in the position of xo is mostly within the limits of 
error.  
 
Sauer-Freise [23], Wagner [24], Den Broeder [25] and van Loo [27] circumvented the 
problem and derived the relations for interdiffusion and intrinsic diffusion coefficients, 
where finding the position of xo is not necessary for calculations. However, in these 
equations, the values of VA and VB required for calculations are often unknown. Besides, 
to construct the velocity diagram, one still needs to calculate the position of initial 
contact plane.  
          
In fact through the Sauer-Freise treatment adopted by Wagner as explained in A.9 one 
can find the initial contact plane. If inert markers are used before interaction, one can 
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calculate the value of 2tvK at the Kirkendall marker position after interaction provided 
that the values of VA and VB are known. This gives the displacement of Kirkendall 
marker plane from the initial contact plane and it is possible to find the accurate position 
the initial contact plane from the known position of the Kirkendall marker plane position. 
 
It is possible to show that the expression for the ratio of diffusivities (Eq. (A.10-6)) at 
the Kirkendall plane in β-phase can be given by 
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             (A.19-12) 
Here, no values of VA and VB are needed; the expression is valid for the cases where VA 
= VB, VA ≠ VB but constant and for the case where homogeneous expansion or 

shrinkage occurs. In fact, comparison between Eqs. (A.10-6 and A.19-12) shows the 
relation between the value of VA/VB and the position of the initial contact plane xo in the 
laboratory frame of reference.    

 
A.20 Diffusion based approach to predict the thickness of the layers, 
Kirkendall marker position and marker velocity 
 
We shall illustrate this approach by using examples of the interaction in the Co-Si 
system. The experimental data required for the calculation can be found from Table 
(4.1-1) (Chap. 4). 
 
Lets consider the case when Co and Si are coupled at 1100 °C for 100 hours. According 
to phase diagram (Fig. (4.1-1)) three phases, Co2Si, CoSi2 and CoSi2, with narrow 
homogeneity range should develop and grow during interdiffusion. A schematic diagram 
in Fig. (A.20-1) shows the diffusion zone developed after annealing for time t at      
1100 °C and the thickness of the layers are assumed to be u, v and w µm for Co2Si, 
CoSi2 and CoSi2, respectively. First we consider that in all the phases Kirkendall marker 
planes are present, so that they divide each layer into two parts, u = u1 + u2, v = v1 + v2 
and w = w1 + w2.  
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Calculation of the thickness of the layers: 
 
First, from the relation for integrated diffusion coefficients, int

~D  we can calculate the 

thickness of the layers using the schematic composition profile shown in Fig. (A.20-1). 
Data required for molar volumes are listed in Table (4.1-1). Three equations can be 
written for the integrated diffusion coefficients of three phases developed following Eq. 
(A.11-2) as, 
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     (A.20-1) 

From Table (4.1-1), we know the experimentally determined values of the integrated 
diffusion coefficients for different phases and we can find the thickness of the layers by 
solving the three equations in Eq. (A.20-1) for an annealing time of 100 hrs. The 
thickness of the layers are found as SiCoxu

2
∆=  = 131 µm, CoSixv ∆= = 321 µm and 

= 6.8 µm.  CoSixw ∆=

 
 Co2Si CoSi CoSi2
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Fig. (A.20-1) Schematic diagram 
of the diffusion layers grown in a 
diffusion couple Co/Si after 
annealing at 1100 °C for 100 hrs. 
The white dots represent the 
inert markers in assumed 
positions of the Kirkendall 
marker planes. 
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Kirkendall marker positions: 
 
Kirkendall marker position(s) can be found from the ratio of diffusivities of the phases at 
Kirkendall marker positions. Let us consider the layer for Co2Si-phase. The ratio of 
diffusivities DSi//DCo in this phase can be written with the help of Eq. (A.12-1) as 
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 Fig. (A.20-2b) The Kirkendall velocity diagram 
calculated for the diffusion couple Co/Si for the 
annealing time of 100 hrs at 1100 °C. Note the 
presence of two Kirkendall planes. A virtual 
Kirkendall plane position, Kvirt, is shown for the 
phase CoSi2. 

 
 
 

Fig. (A.20-2a) The calculated profile of the 
diffusion couple of Co/Si at 1100 °C after 
annealing for 100 hrs along with details of 
the Kirkendall marker position and the initial 
contact plane, xo. 

 
 

We know from Table (4.1-1) the ratio of diffusivities in the Co2Si phase and the 
thickness of the layers as u = u1 + u2 = 131 µm, v = 321 µm and w = 6.8 µm (see 
above). Solving Eq. (A.20-2), we find the value of u1 = 40 µm and u2 = 91 µm which 
gives the location of the Kirkendall plane in this phase.  
 
In the same way, from the ratio of diffusivities at assumed marker planes in the CoSi 
and CoSi2 phases, we find v1 = 313.8 µm, v2 = 7.6 µm, w1 = -209 µm and w2 = 215.8 
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µm. The negative value of w1 reflects that there will be no Kirkendall marker plane in 
the CoSi2-phase (for further clarification, see Chap. 4.1). 

 
Initial contact plane, xo and velocity diagram construction: 
  
The initial contact plane, xo to plot the velocity diagram can be found from the Sauer-
Freise treatment as explained in the section A.19. This position was found to be at 250 
µm from the Co/Co2Si interface. The details of the calculated positions are shown in Fig. 
(A.20-2a). From the initial contact plane position, xo, Kirkendall plane positions, xK (= xK 
– xo) were found to be at -210 and 195 µm in the Co2Si and CoSi phases, respectively.  
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 Fig. (A.20-3a) The Kirkendall velocity 
diagram calculated for the diffusion couple 
Co/CoSi2 for the annealing time of 100 hrs at 
1100 °C. Note the presence of Kirkendall 
plane in both the phases. 

Fig. (A.20-3b) The Kirkendall velocity 
diagram calculated for the diffusion couple 
Co2Si/CoSi2 for the annealing time of 25 hrs 
at 1100 °C.  

 
 
 
 
 
Another way of finding the velocity of the phases (and the Kirkendall marker plane in 
those phases) is from Eq. (A.17-9) with the help of data available on the integrated 
diffusion coefficients, thickness of the layers and the ratio of intrinsic diffusivities of the 
species as listed in Table (4.1-1). The values for VSi and VCo are taken equal to the 
molar volume of the relevant phase: VSi = VCo = Vm. The values are calculated              
-2.9×10-10, 2.7×10-10 and 0.4×10-10 m/s for the phases Co2Si, CoSi and CoSi2, 
respectively. Now, we can construct the velocity diagram by plotting 2tv vs. x from the 
velocity data calculated by Eq. (A.17-9), which gives a stepwise plot and by the straight-
line 2tvK = xK, from the Kirkendall marker position found as shown in Fig. (A.21-2b). 
Note that the straight line, 2tvK = xK intersects the velocity diagram only twice, in the 
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phases of Co2Si and CoSi, which reflects the presence of two Kirkendall planes in the 
system. The virtual Kirkendall plane, Kvirt [40] for the CoSi2 can be found from the 
intersection of the extension of the velocity line for that phase and the line 2tvK = xK. 
 
Same way one can calculate the details of the other couples, such as for Co/CoSi2 and 
Co2Si/CoSi2. In the Co/CoSi2 diffusion couple two phases, Co2Si and CoSi will grow, 
whereas in the Co2Si/CoSi2 couple only one phase CoSi will grow, according to the phase 
diagram. The calculated values for all the diffusion couples are listed in Table (4.1-2). 
The velocity curves constructed are shown in Fig. (A.20-3a and 3b). The positions of the 
Kirkendall planes were found to be in good agreement with the experimental results as 
shown in Fig. (4.1-2, -3 and -4), after taken care of the pores present in the layers.   
 
A. 21 Some special notes 
 
i) According to the phase rule, (F = C–P+2, where F is the degree of freedom, C is the 
number of components and P is the number of phases) the presence two-phase regions 
are forbidden, in a binary diffusion couple, having three degrees of freedom: pressure, 
temperature and composition. However, in many cases the phase interfaces of the 
layers are found wavy resulting from the anisotropy in the crystal orientations having 
different rates of diffusion.  
 
ii) In the derivation of the equations we assumed that at the interface two adjacent 
phases are in thermodynamic equilibrium. In practice this requirement is fulfilled if the 
annealing time is sufficiently long. It is verified by the parabolic time dependence of the 
penetration plot. 
 
According to the parabolic law of diffusion, all the compositions in a diffusion zone move 
parabolically in time in the laboratory fixed frame of reference (initial contact plane). 
Before proceeding to calculate diffusion parameters one should make experiments for at 
least two different annealing times with the same end-member compositions and plot 

 to check whether the plots coincide.  One can also make diffusion couples 

for different annealing times and for different combinations of end-members and then 
calculate the interdiffusion coefficients. The interdiffusion coefficient is a material 
constant and the value at a particular composition and annealing temperature should be 
the same. 

2/1/. txvsci
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In the case of a system with line compounds, one should conduct experiments for 
different annealing times and plot ∆x2 vs. t. All data points should fall in a straight line 
according to Eq. (A.17-3).  
 
iii) Vacancy diffusion can operate through the lattice (called volume diffusion), grain 
boundary or dislocations (called pipe diffusion). At high homologous temperature (T/Tm, 
Tm is the melting point) lattice diffusion is more favourable whereas at low homologous 
temperature short circuit can take place, i.e. the diffusion rate through grain boundaries 
or dislocations is higher. Both the activation energy, Q and frequency factor, Do in 
Arrhenius equation D = Doexp(-Q/RT)  for the short circuit diffusion is less than the 
lattice diffusion and one gets the deviation in the slope when the diffusion coefficient is 
plotted versus temperature, because of changing on the diffusion mechanism as shown 
in Fig. (A.21-1). R is the gas constant (8.31 J/mole.K) and T is the temperature in 
Kelvin. 
 
iv) The bonding face may sometimes be covered by a very thin layer of, for example, an 
oxide film. If the oxide film acts as a diffusion barrier, one may find an incubation time 
before the diffusion takes place. This problem was found in a Ti-Al system [41]. 
 
v) Small amounts of impurities e.g. carbon and phosphorus may affect the diffusion 
behaviour. With the presence of impurities, the system may change to ternary system 
and boundaries of the layers need no longer be straight. Besides, different compounds 
may also form in the layer [42]. The impurities may also affect the diffusion process by 
interacting with vacancies or by segregation to dislocations and grain boundaries.  
 
   

logD

1/T

T

lattice diffusion

grain boundary diffusion

 
 
 
 

Fig. (A.21-1) Schematic diagram of 
logD vs. 1/T for polycrystal sample is 
showing domination of   volume 
(lattice) diffusion at high 
temperatures and of grain boundary 
diffusion at low temperatures. 
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vi) The reaction between elements to form a new compound may be the rate-limiting 
step, specially in thin-film condition, but after reaching a certain thickness the diffusion 
process eventually becomes rate limiting. This is extensively discussed in Ref. [43, 44]. 
In fact, in bulk diffusion couples at high temperatures, no clearly proven case of 
reaction limited growth is known to the author although an insufficient number of data 
points and the spread in the plot of ∆x2 vs. t can make it difficult to find the exact 
relation between the layer thickness and time.  
  
vii) Sometimes the extension of the curve ∆x2 vs. t to time, t = 0, shows a positive value 

of ∆x, instead of zero. That may happen by fast grain boundary diffusion in the initial 
stage, because of the presence of small grains. However, in later stage, when by 
recrystallisation large grains are formed with increasing annealing time, the growth will 
be parabolic.  
 
The same behaviour also can be found because of the growth of the layers during the 
heating stage.  
 
viii) Sometimes one or more phases seem to be missing in the diffusion zone. In thin-
film experiments or after short annealing times this can occur and may be the result of a 
competition between the linear and parabolic stage during growth [43]. After long 
annealing times in a bulk diffusion couple it may happen because of the very high 
difference in the growth rate (i.e. interdiffusion or integrated diffusion coefficient) of the 
phases. In fact, layers could be present as very thin layers and not easy to detect. In 
the Au-Sn diffusion couple, the phase Au5Sn was thought to be missing according to 
literature (as discussed in Chap. 6.3). After careful etching, we found the presence of 
this layer, which was not visible without an etching treatment. 
  
Another reason for the absence of some phases can occur because of a very high 
Kirkendall effect. Especially when several phases are involved, great difference may 
occur in the diffusion rate of the components. It may cause supersaturation of vacancies 
near a phase boundary. Vacancies will then accumulate to form large number of pores, 
which ultimately may result into a gap at interface. In that case supply of the diffusion 
component stops and phases already developed adjacent to the gap will be consumed 
and vanish. The cracks arising from other sources, like volume effects or a difference in 
the coefficient of thermal expansion can cause the same effect.  
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ix) A non-equilibrium phase may nucleate [45] in a diffusion couple because of surface 
energy contributions [44], especially in thin-film condition. 
 
x) There are some examples when the use of external pressure changes the kinetics of 
the layer growth as well as interface concentrations [46]. Large pressures lead to 
interface concentration values, which are identical with equilibrium bulk phases given by 
the phase diagram. According to our own knowledge an external pressure of typically 
~5 MPa is enough to make a good contact between end members. We never found 
differences between compositions of two phases measured in equilibrated two-phase 
alloys and those at the phase interfaces in long annealed diffusion couples.  
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Summary 
 
Diffusional growth of intermetallic compounds and elucidation of the Kirkendall effect 
accompanying solid-state reactions are subjects of considerable complexity, having 
broad applicability in materials science and engineering.  
 
The migration of inert Kirkendall markers as a result of unequal mobilities of the 
components during solid-state interdiffusion in a binary system can be rationalized using 
the Kirkendall velocity diagram. In a diffusion-controlled interaction the Kirkendall plane 
(identified by inert particles placed at the initial contact surface of a reaction couple), 
need not be unique. Multiple planes can be developed but, on the other hand, the 
Kirkendall plane after interaction can be unstable, i.e. markers can get dispersed into 
the diffusion zone and no unique location of the Kirkendall plane can be defined.  
 
An experimental verification of the phenomenological approach to rationalize possible 
bifurcation of the Kirkendall plane inside one single diffusion-grown compound layer is 
presented. A reaction couple, in which a single layer of β-NiAl intermetallic is growing 
during interdiffusion from its adjacent phases, is used as a model system. The 
corresponding Kirkendall velocity diagram was constructed on the basis of inter- and 
intrinsic diffusion coefficients data obtained with the diffusion couple technique. The 
agreement between the predicted and experimentally determined positions of the 
marker planes was found to be well within the range of uncertainty of the experimental 
results, which demonstrates the validity of the model. 
 
Research into the Ni-Al system was further extended in order to determine the Ni and Al 
tracer diffusivities in the β-NiAl and γ′-Ni3Al phases. Because of lack of suitable Al 
isotopes, measurements of Al tracer diffusivities in these phases were not possible 
directly by the tracer method. In this study the classical diffusion couple technique is 
used to determine tracer diffusivities of both species in these two phases. 
 
For the first time, in a Ti/TiAl3 diffusion couple trifurcation of the Kirkendall plane was 
found and this was rationalized by using velocity diagram construction. 



Summary 

It is observed that the position of a stable Kirkendall plane is characterized not only by 
the presence of inert markers, but also by a different grain morphology at both sides of 
this plane.  A physico-chemical approach is developed which elucidates the role of the 
Kirkendall effect in the morphogenesis of interdiffusion systems. The occurrence of one 
or more Kirkendall planes, characterized by morphology changes in the reaction layer, 
turns out to be related to the different sites where the product grains originate at both 
sides of each Kirkendall plane. The model is demonstrated using the experimental 
results in the Co-Si system, in which only line compounds occur. It is shown that the 
predictions using the physico-chemical approach are in good agreement with the 
experimentally found positions of the Kirkendall plane(s). The presence or absence of 
inert markers at the Kirkendall planes provides insight into the initial stages of reaction 
phase formation.  
 
The application of the phenomenological model was also used in Cu/Sn and Au/Sn 
systems to predict/analyze the characteristic features of a diffusion-grown zone 
consisting of line compounds, which are of great importance for electronics industry. 
The applicability of this model was further validated on the growth of intermetallic 
compounds in Ag-Zn and Ti-Al systems where phases develop with a wide homogeneity 
range.  
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Samenvatting 
 

De groei van intermetallische verbindingen door diffusie en het optreden van het 
daarmee gepaard gaande Kirkendall effect zijn complexe onderwerpen die van groot 
belang zijn in de wetenschap en technologie van Materialen. 

 

De verplaatsing van inerte Kirkendall markers, die het gevolg is van ongelijke 
diffusiestromen tijdens interdiffusie in vaste stoffen, kan worden verklaard via het 
Kirkendall snelheidsdiagram. Daaruit blijkt dat de positie van het Kirkendall vlak 
(gedefinieerd als het oorspronkelijke grensvlak tussen de twee vaste stoffen dat 
gemarkeerd wordt door inerte deeltjes daarin aangebracht vóór het diffusieproces) niet 
uniek is. Meerdere Kirkendall vlakken kunnen zich ontwikkelen gedurende het 
diffusieproces, maar het oorspronkelijke vlak kan ook een diffuus gebied vormen van 
markers: het Kirkendall vlak is instabiel. 

 

In dit proefschrift wordt een experimentele bevestiging van het optreden van bifurcatie 
van het Kirkendall vlak (opsplitsen in twee vlakken) gegeven in een binair systeem 
waarin één diffusielaag van een intermetallische verbinding wordt gevormd. De groei 
van β-NiAl tussen de aangrenzende Ni-Al verbindingen wordt als model gehanteerd. Het 
Kirkendall snelheidsdiagram werd geconstrueerd op basis van interdiffusie- en 
intrinsieke diffusiecoëfficiënten die bepaald werden via de diffusiekoppeltechniek. De 
geldigheid van het ontwikkelde model werd aangetoond door de goede 
overeenstemming tussen de experimentele en voorspelde resultaten. 

 

De research in het Ni-Al systeem werd vervolgd door voor de β-NiAl en γ’-Ni3Al fasen de 
tracer diffusiecoëfficiënten te bepalen van Ni en Al op een indirecte manier via de 
diffusiekoppeltechniek. Op een directe manier is dit onmogelijk door het ontbreken van 
een geschikte isotoop van Al. 

 

Voor de eerste keer werd trifurcatie experimenteel waargenomen in een Ti-Al 



Samenvatting 

 

diffusiekoppel: de oorspronkelijk in het grensvlak aangebrachte markers werden 
teruggevonden in drie vlakken in de diffusiezone. Dit fenomeen kon weer verklaard 
worden via het Kirkendall snelheidsdiagram. 

Het blijkt dat een stabiel Kirkendall vlak niet alleen gekarakteriseerd wordt door de 
aanwezigheid van inerte markers, maar ook door een verschillende korrelmorfologie 
aan weerszijden van dit vlak. Er werd een fysisch-chemisch model ontwikkeld waaruit 
de rol van het Kirkendall effect op de morfologie van de interdiffusiezone helder wordt. 
De vorming van één of meerdere Kirkendall vlakken blijkt samen te hangen met de 
verschillende plaatsen waar nieuw gevormde kristallieten nucleëren. Het model wordt 
verduidelijkt aan de hand van het Co-Si systeem, waarin een aantal zuiver 
stoechiometrische verbindingen voorkomen. De voorspellingen gedaan op basis van de 
fysisch-chemische methode betreffende de posities van de Kirkendall vlakken komen 
goed overeen met de experimentele waarden. De aan- of afwezigheid van inerte 
markers in een Kirkendall vlak verschaft inzicht in het beginstadium van het 
diffusieproces, met name over de gelijktijdige of sequentiële groei van de verschillende 
intermetallische verbindingen. 

 

De experimentele bevestiging van onze modellen op de Cu-Sn en Au-Sn systemen werd 
uitgevoerd vanwege het grote belang van deze systemen in de elektronische industrie, 
met name in verband met microsoldeerverbindingen. Ten slotte werden onze modellen 
ook toegepast op systemen zoals Ag-Zn en Ti-Al waarin fasen voorkomen met een 
breed homogeniteitsgebied. Ook daarin werden onze voorspellingen experimenteel 
bevestigd. 
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