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Abstract 
A quasichemical model is one type of statistical models of solutions. 
It is more realistic than the ideal and regular models. The solutions 
in a quasichemical model have a finite enthalpy change and non-
random atomic configuration of mixing. Two improvements to the 
previous ternary interstitial quasichemical model3 have been made 
in this work. The new model is more general and rigorous, which 
means it could deal with more solutions and the predictions from 
the model should be more accurate. Besides, the consistency 
between the current quasichemical model and the previous binary 
and ternary models has been approved. 

Introduction 
In a solution, atoms prefer like or unlike atoms as their neighbours, 
if the binding energy can be lowered. A completely random solution 
can only be found at very high temperature where heat overwhelms 
any tendency for ordering or clustering. Therefore, the ideal and 
regular solution models are not realistic because both of them 
assume a random distribution of atoms. The quasichemical model 
has a better approach to deal with the non-zero Enthalpy and 
Entropy change. The name of the model comes from two mass 
action equations derived from the model, which describes the 
number of various pairs in the equilibrium state. 
 
The binary quasichemical model was firstly introduced by 
Guggenheim in his book ‘Mixtures’1. McLellan and his colleagues 
applied this method on the Fe-C binary2 and then the Fe-X-C (where 
X represents any substitutional solute atom) ternary3 system. Those 
models can be used to interpret the Thermodynamic data from the 
experiment and to predict the carbon-carbon interaction energy in 
ferrite. 
 
To make a quasichemical model, the major work is to construct the 
partition function Ω of the system, because most other 
thermodynamic functions can be easily deduced from the partition 
function. For example, Helmholtz free energy F can be obtained by 
the equation 

Ω−= lnkTF  
where k is the Boltzmann constant and T is the absolute 
temperature. 



Previous ternary quasichemical model 
The solution Alex and McLellan concerned consists of Nv solvent 
atoms (v), Nu substitutional solute atoms (u) and Ni octahedral 
interstitial solute atoms (i) (Fig.1). The empty squares represent 
the empty interstitial gaps (e).  

 
Figure 1 Schematic diagram of the Fe-X-C solution 

 

Parameter definitions 
 

vN  Number of solvent atoms 

uN  Number of substitutional solute atoms 

iN  Number of interstitial solute atoms 

ε  
Pair energy. Use subscripts v, i, u, and e to indicate the 
solvent, interstitial, substitutional solute atoms and the 
empty interstitial gaps respectively 

1W  Coordination number, the number of nearest-neighbouring 
interstitial sites around any given interstitial site 

2W  Coordination number, the number of nearest-neighbouring 
main lattice atoms around any given interstitial site 

β  Number of interstitial sites per one main lattice atom 

11λW  Number of ei −  pairs 

22λW  Number of ui −  pairs 

iθ  ( )uvi NNN +  

uθ  ( )uvu NNN +  

Solvent Atoms 
(v) 

Substitutional Solute 
Atoms (u) 

Interstitial Solute 
Atoms (i) 

Interstitial Sites 



Table 1 the definitions of the parameter used in the ternary solution 
Therefore, the total number of these interstitial sites is (Nv+Nu)β=M. 
Suppose the number of i-e and e-i pairs is W1λ1 and the number of 
i-u pairs is W2λ2. Consequently, the remaining various pair-number 
equations are listed together in the Tab.2 
 

Kinds of 
pairs 

Number of pairs Pair energy 
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Table 2 Equations of numbers of various pairs in the ternary solution and 
the corresponding interaction energies. The pairs having e are assumed 

to be at the ground-level energy. 

Subtle problem 
There is a subtle problem with these definition equations of pair 
numbers. To illustrate it, let’s simply calculate the total number of 
main_lattice_atom − e pairs. Because e can only pair with u and v, 
according to the last two equations in Tab.1, the total number of 
such pairs equals 

)(2 iuveveu NNNWNN −+=+  
Another way to get the number of main_lattice_atom − e pairs is to 
count how many main lattice atoms surrounding e. This simply 
equals the number of sites e times W2 (give the number of nearest-
neighbouring main lattice sites to any given interstitial site). 

[ ]iuveveu NNNWNN −+=+ β)(2  
These two equations can only be equal when β=1, corresponding to 
austenite. But in ferrite, β=3. To summarize, the problem in the 
1971’s model comes from presuming the number of main lattice 
atoms around a given interstice is the same as the number of 
interstices around a given main lattice atom, but actually, they can 
be different. A correct set of the definition equations of pair 
numbers has been given in the work, which can be applied on both 
austenite and ferrite. 



Results 
The chemical potential µ of an interstitial solute atom i of this 
1971’s ternary Fe-X-C quasichemical model takes the form 
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where 11λW , 22λW represent the numbers of i-e and i-u pairs in an 
equilibrium solution respectively. 

Simplified assumption 
A simplified assumption was made in the previous model. In the 
deduction of the above chemical potential equation from the 
partition function, variables 1λ  and 2λ are assumed to be constant 
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∂
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∂
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although they are not. Bhadeshia found this assumption is avoidable. 
An improved the binary Fe-C quasichemical model is proposed in 
19984. 
 
Compared with the chemical potential equation obtained in the 
previous binary quasichemical model  
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the new equation in the modified binary model in 1998 has one 
more term. 
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Improved ternary quasichemical models 
New model will deal with the same solution, but a correct set of pair 
number equations and more sophisticated mathematical treatment 
has been used. 

Solution for the problem 
To remove that problem mentioned before, we could define W2 (the 
number of nearest-neighbouring main lattice atoms around an 
interstitial site) and the number of nearest-neighbouring interstitial 
sites around a main lattice atom separately, say nW2. Because of 
that, the number of e-u pairs equals 

222 )( λWNnW u − = )( 22 λ−unNW    (1) 

In a similar manner, the number of e-v pairs has the form 
)()( 222 λ−− iv NWNnW = )( 22 λ+− iv NnNW    (2) 

 
The new variable n can be proved to equal β. As we know, the total 
number of interstices is 

β)( uv NN +  
Using the new coordination number nW2, this number can be 
obtained by another route 
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The reason of dividing )(2 uv NNnW +×  by the factor W2 is because the 
interstitial sites’ number has been over-counted W2 times. These 
two equations should be equal 
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Hence, we got the prove 
β=n  

New pair equations 
Replay n in equations (1) and (2) by β, we establish the correct set 
of equations of pair numbers Tab.3 

Kind of pair Number of 
pairs 

Pair energy 
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Table 3: The new set of pair-number equations, for austenite β=1 

and for ferrite β=3 
 

The partition function 
To make a quasichemical model, the major work is to construct the 
partition function Ω of the system 
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where gi is the degeneracy number (number of states within the 
same energy), Ei is the energy of the system at the state i. 
 
The energy of each configuration of the solution is given by 
summing up the interaction energies between pairs, where the 
assumption that atoms at rest in vacuum is at the ground-level 
energy is taken 
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If pairs are treated as independent entities (although they are not. 
If three out of four pair types have been determined on the sides of 
a square, the last one is also determined), the degeneracy number 
at λ1 and λ2 is 
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which is proportional to the real degeneracy number. 
 
The correct estimation of the degeneracy could be obtained using 
normalization method firstly introduced by Guggenheim1. Since the 
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where Nii are the number of i-i pairs, similar with the other Ns 
 
Because the summation in the denominator is a vast number, it can 
be replaced by its largest term, in which λ1 and λ2 are denoted by 
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The *λ s can be obtained by substituting equations in the Tab.3 into 
equation 5. Note that these are the same values in an ideal solution, 
where atoms are randomly mixed. 
 
So far, the degeneracy has the expression 
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Inserting equation (4) and (6) in the partition function (3). To make 
the equation even more compactable, we play the same trick to 
replace the summation in the partition function by its largest term. 
To find it 
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These result the following two equations, which has the form of 
mass action law in Chemistry 
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quasichemical solution 
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Figure 2 Proportion of various pairs in the solution 

Finally, by plugging the equation (), () and (), () into the partition 
equation, it becomes 
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Chemical potential µ 
Because of the difference between Gibbs free energy G and 
Helmholtz free energy (i.e. pressure times volume) is very small in 
the solid or liquid, the Gibbs free energy almost equals 

Ω−≈ lnkTG . In the ternary solution, the chemical potential of an 
interstitial solute atom µ has the form 
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Verification 
To verify the new model, we compared the chemical potential 
equation derived from the improved model in several scenarios with 
those from the previous models. 

Consistency with the previous ternary quasichemical model 
Both the current and previous models are constructed for the same 
ternary solution, but they use different sets of the pair number 
equations. Hence we can exam whether the improved model were 
equivalent to the old one, when the βs in all the terms describing e-



u, e-v pair numbers (simply terms having W2) are set to be β=1 
and the variables 1λ  and 2λ are assumed to be constant. First of all, 
set β=1 
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Secondly, if we add two unrealistic assumptions, which were 
assumed in Alex and McLellan’s model 
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Applying these terms, equation (11) thus becomes identical to the 
chemical potential equation in the previous ternary model. 

Consistency with the improved binary quasichemical model 
The first scenario one could imagine is that the solvent atoms v 
have no energy difference from the substitution atom u to the 
interstitial atoms i, iviu εε → .  
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The third and forth terms of the new equation become 
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Substituting these two terms back to the new equation, it becomes 
identical to that in Bhadeshia’s paper. 
 



The second scenario one could imagine is that the concentration of 
the substitutional solute atoms becomes infinitely sparse, 0→uθ . It 
results in  
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if 2φθβ i+  is positive, which can be always satisfied by carefully 

defining the solvent and substitutional solute atoms. As scenario 
one, the third and forth terms also become 
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So far, it has been verified that the new model are completely 
consistent with the old version ternary and the binary models. 
Logically, because these two previous models had been proved to 
be consistent with zero order quasichemical models, the new 
ternary model should also be consistent with them. 
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Abstract 

 
The carbon-carbon interaction energy in ferritic steel has been calculated from first 
principles, for two different pairs, the first when the carbon atoms are separated by the 
lattice parameter of ferrite and the second when the separation is reduced to half this 
value. In each case the carbon atoms were located in octahedral interstices within the 
body-centred cubic arrangement of iron atoms. There is a strong repulsion between 
the carbon atoms located in close proximity, whereas the pair separated by a lattice 
parameter has an attractive interaction. These results are discussed in the context of 
quasichemical thermodynamic models for the solution of carbon in iron and the 
tetragonality of martensite in steels.  
 

Introduction 

 
Carbon dissolves in octahedral interstices in ferritic iron. A particular feature of such a 
solution is that the number of Fe-Fe and Fe-C pairs does not, for a given composition, 
change as a function of the disposition of the carbon atoms. Whether the carbon atoms 
arrange randomly on the sub-lattice of interstitial sites or whether they order or cluster 
depends on the carbon-carbon interaction energy.   
 
Experimental data on the activity of carbon in ferrite have in the past been used in 
conjunction with quasichemical thermodynamic solution models in order to deduce 
the interaction energy [1-6]. Some of these deductions were based on incorrect 
equations, which unfortunately, continue to appear in the published literature. The 
problem has been reviewed recently [7]. It seems that because of the very small 
equilibrium solubility of carbon in ferrite, it is not possible to reliably deduce the 
magnitude of the interaction energy although evidence suggests that the interaction 
should be strongly repulsive for carbon atoms in nearest neighbouring sites. The 
probability of finding carbon atoms in near—neighbour sites is in any case small 
when the concentration is small, as is usual for ferrite. However, this is not the case 
when carbon is trapped in large concentrations in bainitic ferrite or martensite. The 
problem is also important when extrapolating phase boundaries to domains where 
equilibrium data do not exist, as is often the case when steels are transformed to 
highly metastable phases [8]. 



 
The purpose of the work presented here was to calculate the carbon-carbon interaction 
energy using a first-principles method (density functional theory) implemented in the 
CASTEP software [9] on the Cambridge-Cranfield High Performance Computing 
Facility (CCHPCF). The theory itself is widely used and has been described fully in 
the published literature [e.g., 10]. 
 

First-Principles Methodology 

The calculations presented here were carried out using the CASTEP program. 
CASTEP is based on density functional theory, which in principle expresses the total 
groundstate energy of a material as a unique functional of the electron density [11], 
plus ionic contributions. In practice a set of single-particle wavefunctions [12] are 
used to construct the electronic density, and in CASTEP these are expressed in a 
plane-wave basis, where the plane-wave states are chosen to have the same 
periodicity as the simulation cell. This basis set is semi-infinite, but the coefficients 
associated with the high-energy basis states are negligible so a cut-off energy is 
defined and only plane-wave states with lower energies are accepted into the basis. 
Since the core electrons are relatively inert, CASTEP treats these as frozen and 
concentrates the computational effort on the valence electrons only. 
 
In principle, the total energy of the ground state is a functional of the density, but this 
functional is not known. Although most of the energy contributions can be calculated 
exactly the exchange-correlation energy cannot, and so we must use an approximation. 
In the calculations presented here both the local density approximation (LDA) and the 
generalised gradient approximation of Perdew, Burke and Ernzerhof (PBE) have been 
used, and both sets of results are presented. 
 
The Brillouin zone of the simulation cell is sampled at a finite number of points in 
reciprocal space, and integrals over the Brillouin zone are approximated by a 
weighted summation over these points. This sampling must be accurate in order to 
determine the Fermi surface, and hence the occupation of the single-particle states. In 
the calculations presented here the states are assumed to be spin-polarised, and so the 
maximum occupation of any state is 1. The Fermi surface of a metal such as iron is 
discontinuous at the ground state (i.e. 0 K) so a high density of sampling points is 
required; it is common to introduce a small thermal-like smearing to reduce the 
number of sampling points, at the cost of introducing an electronic entropy 
contribution to the total energy. 
 
The calculation of the ground state proceeds as follows: first the ionic positions and 
cell vectors are kept fixed, whilst the wave function for the valence electrons is 
relaxed. This relaxation is performed by improving the wave function iteratively until 
the energy converges to the ground state. Once the grounds state electronic wave 
function has been found the electronic contributions to the forces and stresses are 



computed. The ionic positions and lattice vectors are then adjusted according to a 
quasi-Newton (BFGS) geometry optimisation scheme [13], and the electrons are 
relaxed for this new configuration to obtain the new forces and stresses. The entire 
procedure is repeated until the forces and stresses are negligible and the system has 
reached the ground state. 

 

Calculations 

The system of atoms selected is in calculations like these a compromise between 
accuracy and computing time. A “supercell” of 333 ××  body-centred cubic cells was 
selected, consisting of 56 atoms in total, with two of these atoms being carbon and the 
rest iron. Calculations were carried out with the carbon atoms located in three 
different arrangements. In the first (Fig. 1), the pair was spaced the 3aα apart, where 
aα is the lattice parameter of the ferrite, taken to be 0.2866 nm. This state serves as a 
reference state in which the carbon atoms are assumed to be sufficiently far apart in 
order to have a negligible interaction. In the second configuration the carbon atoms 
were located in nearest neighbour interstitial sites, spaced 0.5aα. 

 

 There are three octahedral interstices per iron atom in the ferrite crystal structure; 
there are therefore three interstital sub-lattices. Martensite in high-carbon steels is 
tetragonal when the carbon atoms order into one of the three sub-lattices. This 
ordering occurs because a carbon atom place on a cell-edge causes the parallel edge at 
distance aα to expand and orthogonal edges to contract; the parallel edge therefore 
becomes more accommodating for carbon. Notice that the ordering is opposed by 
entropy, so the evidence on martensite proves that there is a reduction in enthalpy 
when a pair of carbon atoms is spaced aα apart; this effect must be reproduced in the 
first-principles calculations and hence was the third configuration tested. 
 

 
Fig. 1: The configurations of super cells. The carbon atoms are the black circles. 
 
 
The interaction energy of a pair of carbon atoms is in this work defined relative to 
carbon atoms spaced 3aα. It follows that for the pair located in nearest neighbour 
interstices (spacing 0.5aα), the interaction energy is  

∆Ea 2 = Ea / 2 − E3a  



where E is the system energy for a particular configuration. Similarly, the binding 
energy of carbon atoms spaced one lattice parameter apart is 

∆Ea = Ea − E3a  

 

Results 

 

The calculations were carried out in two ways, the first where the iron atoms were not 
allowed to relax when carbon was introduced into the lattice, and a second calculation 
in which the iron lattice was allowed to relax. It was anticipated that this would help 
understand the reason for the tetragonality of martensite. 
 
In the first case, in the absence of relaxation, the interaction between carbon atoms 
spaced aα would also be repulsive because of the coulombic forces between carbon 
atoms. 
 

 

 

Fig 1 The convergence of the energy differences of when two carbons are put in the closest 

(0.5aα) and second closest distance (aα) from when they are 3aα apart with successive 

iterations. The iron atoms in the calculations are not allowed to relax when carbon is inserted 

into the lattice. Temperature is 0 K. 

 

The results give ∆Ea 2 = 2.4566815 eV and ∆Ea = 0.43630675 eV per pair of carbon 

atoms. 
 
The second set of calculations treated a more realistic scenario in which the iron 
atoms are allowed to relax whilst keeping the supercell fixed. The initial configuration 
of atoms is not stable because carbon distorts the octahedral interstice. At the end of 
every total energy calculation, the atoms adjust their positions to reduce the forces on 



them. The system therefore iteratively rearranges its configuration, which results in a 
global decrease of total energy. Figure 2 illustrates that the total energy difference 
converges quite well along with the successive iterations of the optimisation 
algorithm, which indicates that the systems have reached the equilibrium 
configuration with the minimum global energy. 
 

 

Fig. 2 The convergence of the energy differences of when two carbons are put in the closest 

and second closest distance from when they are about 3aα apart with successive iterations of 

the geometry optimization procedure of the total energy (each iteration here in fact consisting 

of a complete set of iterations in the atom-fixed case). Temperature is 0 K. 

 

The carbon-carbon interaction energy at 0.5aα is found to be strongly repulsive, at 

∆Ea 2 = 2.16579 eV per carbon pair, a value only slightly smaller than that calculated 

without allowing the iron atoms to relax. This is expected since the coulombic 
repulsion is expected to dominate the interaction at such a close approach distance. By 

contrast, the value of ∆Ea = −0.16921 eV not only has changed substantially in 

magnitude, but also in sign. There is a mild attraction between the carbon pair spaced 
aα. This result gives confidence in the calculations since the tetragonality of 
martensite due to carbon-atom ordering is not possible without this attractive 
interaction since entropy always opposes ordering. 
 
 

Summary 

 
First principles calculations of the carbon-carbon interaction energy in ferritic iron 
suggest that there is a strong repulsion between carbon pairs located in nearest 
neighbouring octahedral sites which are separated by a distance 0.5aα.  
 



On the other hand, there is a mild attraction between a pair of carbon atoms are placed 
a distance aα apart. This is expected since the frequently observed tetragonality of 
martensite in steel relies on the ordering of carbon atoms on one set of octahedral 
interstices.  
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