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NOMENCLATURE 

used exclusively to denote functional relations; D{x} thus implies that x is an argument  of  the 

Activity of  i in phase at 
Constant  defined in eq. 5.19b 
Constant  defined in eq. 5.23 
Mobility constants  in interface-controlled growth, eq. 6.2 
Concentrat ion of  component  i, moles per unit  volume, also taken to be the concentration in the matrix 
at infinity 
Average concentration of  i in alloy, moles per unit volume 
Concentrat ion of  i in ~/at y/at interface, moles per unit  volume 
Concentrat ion of  i in at at at/~, interface, moles per unit volume 
Concentrat ion of  i in homogeneous  phase ct, moles per unit volume 
Concentrat ion of i in homogeneous  phase 7, moles per unit volume 
Concentrat ion of  i in 7 which is in equilibrium with ct, moles per unit volume 
Concentrat ion of  i in a which is in equilibrium with ?, moles per unit volume 
Euler's constant,  0 .5772 . . .  
Height of  an isolated ledge or the leading ledge of  a train 
Height of  trailing ledge divided by d 
Critical height of  ledge for successful nucleation 
Intrinsic diffusivity of  component  i 
Chemical or interdiffusion coefficient for a binary solution 
Chemical or interdiffusion coefficient for ternary solution 
Wagner  interaction parameter  (eq. 5.8) 
Funct ion of  z, D and t, eq. 5.18c 
Funct ion of  z, D and t, eq. 5.20f 
Funct ion of  z, D and t, eq. 5.20g 
Exponential  integral function, Abramowitz  and Stegun (1964) 
Functions arising in diffusion-controlled growth theory, eq. 5.14 
At tempt  frequency for atomic jumps  across interface, eq. 6.1 
Fractional supersaturat ion of  i 
Functions of  concentration, eqs 5.23e,f 
Molar Gibbs free energy of  phase at 
Molar Gibbs free energy change G~-G ~, for composit ion-invariant t ransformation 
Molar  Gibbs activation free energy 
Molar  Gibbs free energy dissipated in interface processes 
Molar  Gibbs free energy dissipated in diffusion of  solute ahead of interface 
Molar  Gibbs free energy of  interaction between interface and solute 
Molar  Gibbs free energy change accompanying the 7 ~ at t ransformation in pure Fe 
Molar  Gibbs free energy corresponding to a point x on a tangent at point  2 on the 7 free energy curve 
for Fe -C  
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Molar  Gibbs free energy change accompanying the transfer of  a small amount  of  material of  
composit ion x, from ~, of  composit ion 2, to ~ of  composit ion x in Fe C 
Gibbs free energy change per unit volume 
Planck's constant  
Separation of leading and trailing ledges in a two-step train, divided by the height of  the leading 
ledge 
Function arising in diffusion-controlled growth theory, eq. 5.13b 
Function arising in diffusion-controlled growth theory, eq. 5.20c 
Function of  p, arising in theory of ledge growth, eq. 7.2h 
Function of  p, for ledge growth in a finite medium, eq. 7.9a 
Function of  L, for ledge growth in a finite medium, eq. 7.9a 
Subscript identifying element; i = 1, 2, 3 for C, substitutional alloying element and Fe respectively 
Flux of  solute across boundary,  eq. 6.2 
Diffusion flux of i, relative to Kirkendall frame of reference 
Diffusion flux of i, relative to the volume-fixed, number-fixed or laboratory frame of  reference 
Boltzmann's  constant  
Modified Bessel function of  zero order 
Phenomenological coefficients of  the Onsager theory, relative to the Kirkendall frame of reference 
Extent of  ), in direction of interface mot ion 
Phenomenological coefficients of  the Onsager theory 
Interface mobility, eq. 7.2b 
Martensite-start  temperature 
Time exponent in the relation Z = cqt" 
Number  of ledges per unit length 
Prclet number,  a dimensionless velocity, eq. 7.2c 
Drag force in solute-drag theory 
Interface mobility parameter,  eq. 7.6b 
Tip radius of  ferrite plate 
Critical tip radius for ferrite plate, at which V, = 0 
Gas constant  
Time 
Time at the onset of  carbon soft impingement,  eq. 5.23c 
Time for completion of second stage of  soft impingement,  eq. 5.23b 
Absolute temperature 
T at which a thermal arrest is observed during cont inuous cooling 
Temperature at which parent and product phases of  identical composit ion have the same free energy 
Rate at which a planar interface moves 
Velocity of  Kirkendall markers 
Step velocity 
Lengthening rate of  Widmanst~itten ferrite 
Molar volume of  ferrite 
Partial molar volume of component  i 
Number  of nearest-neighbour octahedral interstitial sites surrounding a given octahedral interstice 
in y 
Mole fraction of component  i 
Average mole fraction of  component  i in alloy, also taken to be the concentration in the matrix 
at infinity 
Mole fraction of  component  i in phase ,,, at 7/~ interface 
Mole fraction of  component  i in phase c¢ at ~,/c¢ interface 
Mole fraction of  component  i in homogeneous  phase 
Mole fraction of component  i in homogeneous  phase 7 
Mole fraction of  i in c¢ which is in equilibrium with 7 
Mole fraction of i in 7 which is in equilibrium with 
Composit ion difference between c~ and 7 remote from interface 
xi x', ~ 
xi '~ x ?  
S ' I  - -  Xi  
Mole fraction of  carbon in 7 which is in constrained equilibrium with ~w whose plate tip radius 
is r 
Substitutional alloying element 
Generalised force of  Onsager 's  theory 
Co-ordinate normal  to step face 
Moving co-ordinate attached to s t ep ,  normal  to step face 
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Co-ordinate normal to interface plane 
Moving co-ordinate attached to step, normal to stationary part of a stepped interface 
Effective diffusion distance for component i 
Position of interface along co-ordinate z 
Ferrite 
Widmanst/itten ferrite 
Parabolic thickening rate constant for one, two and three dimensional growth, respectively 
Austenite 
Activity coefficient of i 
Activity coefficient arising in absolute reaction rate theory, eq. 5. I 1 
Function of carbon concentration in 7, eq. 5.11 
Rate constant for growth controlled by diffusion of i 
Interstitial to substitutional atom ratio x~/(1- x~) 
Thickness of interface 
Spacing of {002}~ planes 
Ensemble average interstitial site exclusion parameter 
Interface energy per unit area 
Chemical potential of i in phase ~t 
Nearest-neighbour carbon-carbon interaction energy in austenite 

BCC 
FCC 
IPS 
IC 
IV 
KS 
NPLE 
NW 
PLE 
THEEM 
TTT 
Ae3 
Ael 

ABBREVIATIONS 

Body-centred cubic 
Face-centred cubic 
Invariant-plane strain 
Interface composition contour 
Interface velocity contour 
Kurdjumov-Sachs orientation relationship 
Negligible partitioning, local equilibrium 
Nishiyama Wasserman orientation relationship 
Partitioning, local equilibrium 
Thermionic electron emission microscope 
Time-temperature-transformation 
Upper temperature limit of the ~t + 7 phase field 
Lower temperature limit of the c~ + 7 phase field 

1. INTRODUCTION 

A t  a tmosphe r i c  pressure  and  at  t empera tu re s  between 1185 K and  1655 K,  pure  i ron  exists 
as a face-cent red  cubic  ( F C C )  a r r angemen t  o f  i ron  a toms.  Unl ike  o ther  F C C  metals ,  lowering 
the t empe ra tu r e  leads to the f o r m a t i o n  o f  a less dense,  body-cen t r ed  cubic  (BCC) a l lo t rope  
o f  i ron.  This  change  in crys ta l  s t ruc ture  can occur  in at  least  two different  ways.  Given 
sufficient a tomic  mobi l i ty ,  the F C C  lat t ice can  undergo  comple te  reconstruction into the BCC 
ferri te form,  with cons ide rab le  unco -o rd ina t ed ,  diffusive mix ing-up  o f  a t o m s  at  the t rans-  
f o r m a t i o n  interface.  On  the o ther  hand ,  i f  the F C C  phase  is rap id ly  cooled  to a very low 
tempera tu re ,  well be low 1185 K,  there m a y  no t  be enough  t ime or  a tomic  mobi l i ty  to faci l i tate  
dif fusional  t r ans fo rma t ion .  The  dr iv ing  force for  t r a n s f o r m a t i o n  nevertheless increases with 
unde rcoo l ing  be low 1185 K,  and  the diffusionless f o r m a t i o n  o f  BCC mar tens i te  eventua l ly  
occurs,  by  a displacive or  ' shear '  mechan i sm involving the sys temat ic  and  co -o rd ina t ed  
t ransfer  o f  a t o m s  across  the interface.  This  f o rma t ion  o f  B C C  mar tens i te  is ind ica ted  by a 
very special  change  in the shape  o f  the t r ans fo rmed  region,  a change  o f  shape which is beyond  
tha t  expected  on the basis  o f  a vo lume change  effect alone.  The  shape change  is in fact an 
inva r i an t -p l ane  s t ra in  (IPS) with a significant shear  c ompone n t .  

W h e n  inters t i t ia l  and  subs t i tu t iona l  a l loying  add i t ions  are m a d e  to pure  iron, many  subtle  
var ia t ions  o f  the displacive  and  diffusional  mechan i sms  arise, toge ther  with the poss ibi l i ty  o f  
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other phases and morphological variations. The versatility of steels depends to a large extent 
on this wide variety of microstructures that can be obtained by transformation from austenite 
(7). The microstructure varies not just in morphology, but in phase composition, defect 
structure, stored energy and thermodynamic stability. This review deals specifically with the 
ferrite (~) which forms from ~ by a diffusional transformation mechanism. The aim is to 
present a reasonably complete account of the theory and experimental data on the diffusional 
formation of ferrite in low-alloy steels. It is hoped that this work complements and updates 
the classical reviews of Aaronson (1962), Aaronson et al. (1970), Coates (1973b), Honey- 
combe (1976) and De Hoff (1981). 

2. CLASSIFICATION OF FERRITIC MICROSTRUCTURES 

Ferrite which grows by a diffusional mechanism can be classified into two main forms: 
allotriomorphic ferrite and idiomorphic ferrite (Dub6, 1948; Aaronson, 1955; Dub6 et al., 
1958). The term 'allotriomorphic' means that the phase is crystalline in internal structure but 
not in outward form. It implies that the limiting surfaces of the crystal are not regular and 
do not display the symmetry of its internal structure (Christian, 1975). Thus, allotriomorphic 
ferrite (Fig. la) which nucleates at prior austenite grain boundaries tends to grow along the 

boundaries at a rate faster than in the direction normal to the boundary plane, so that its 
shape is strongly influenced by the presence of the boundary and hence does not necessarily 
reflect its internal symmetry. Of course, allotriomorphic ferrite need not form just at "/ 
boundaries, but it invariably does so, presumably because there are no other suitable 
(two-dimensional) heterogeneous nucleation sites in austenite. 

The term idiomorphic implies that the phase concerned has faces belonging to its crystalline 
form; in steels, idiomorphic ferrite is taken to be that which has a roughly equiaxed 
morphology (Fig. lb). Idiomorphic ferrite usually forms intragranularly (Dub6, 1948), 
presumably at inclusions or other heterogeneous nucleation sites. 

Both of these morphological definitions are subject to the condition that neither hard 
impingement (physical impingement between adjacent grains) nor soft impingement (overlap 
of diffusion or temperature fields of nearby grains) effects exist. The definitions also have to 
be loosely interpreted. In particular, they refer to a macroscopic scale of observation, such 
as by optical microscopy. For example, allotriomorphic ferrite is sometimes crys- 
tallographically facetted even though this may not be apparent on an optical scale. Similarly, 
with idiomorphic ferrite we do not really know whether the morphology reflects the internal 
form of ferrite--it is more likely to reflect the symmetry of the ~-~ bicrystal (Cahn and 
Kalonji, 1981). In fact, the ability of any growing precipitate to form facets depends not just 
on the orientation dependence of interface energy but also on the driving force for 
transformation (Cahn, 1960). In principle, ~ formed at high temperatures (low super- 
saturations) could appear facetted while that formed at lower temperatures may not. 

Since both idiomorphic and allotriomorphic ferrite grow by a diffusional transformation 
mechanism, their growth is not restricted by austenite grain boundaries. The extent of 
penetration into particular grains may vary since interface mobility can change with the ~/7 
orientation relationship. Massive ferrite, which also grows by a diffusional transformation 
mechanism, has the distinction that it inherits the composition of the parent austenite. The 
ability to cross parent austenite grain boundaries is particularly pronounced during massive 
transformation; the final ferrite grain size can be larger than the initial grain size of the ~. 
The lack of a composition change allows the transformation to proceed until all of the 
austenite is consumed. These factors combine to give a single-phase microstructure of large 
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FIG. 1. Optical micrographs of allotriomorphic ferrite (a) and idiomorphic ferrite (b) in 
Fe--5.0W-O.23Cwt.% alloy, partially transformed at 800°C before water quenching (after Sahay, 

1985). 

grains of ferrite which have an approximately equiaxed morphology due to impingement 
between neighbouring grains. The transformation may begin with the growth of idiomorphs 
or allotriomorphs and massive ferrite cannot strictly be regarded as a separate morphology 
in the classification scheme. Ferrite growth without a change in composition can only occur 
below the To temperature at which ~ and 7 of identical composition have equal free energy. 
The To temperature lies between the Ae3 and Ael temperatures which in turn define the upper 
and lower limits respectively of the two-phase ct + ~ field. For the range Ae3 --* To, growth 
is only possible if the ~ has a different composition from the 7 whereas between To and Ael, 
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growth of ferrite of equilibrium or unchanged composition is in principle possible. Below the 
Ael temperature, only massive growth is possible if the transformation mechanism is 
diffusional. 

The original Dub6 classification was for plain carbon steels, but is also applicable to alloy 
steels; in such cases, the ferrite sometimes contains carbide dispersions (e.g. Honeycombe, 
1976). Due to the high rates of transformation in pure iron, the Dub+ classification has not 
been established for pure iron. In spite of these difficulties, morphological classifications serve 
a useful purpose in the investigation of structure-property relationships. 

2.1. Other Transformations in Steels 

Allotriomorphic, idiomorphic and massive ferrite can only be fully appreciated in the 
context of the other microstructural constituents which also arise in steels. The formation of 
pearlite in steels involves the co-operative, diffusional growth of ferrite and cementite from 
austenite. In two-dimensional sections, this eutectoid mixture appears to consist of alternate 
lamellae of ferrite and cementite, which together form a pearlite colony. In reality, the 
cementite and ferrite within a given colony are single crystals, the lamellae of each phase being 
connected in three dimensions (Hillert, 1962). With the exception of the ferrite found within 
pearlite, all other ferrite morphologies involve plate or lath shapes. If a plate or lath is 
idealized as a rectangular parallelopiped with sides of length a, b and c, then a = b>>c for 
a plate, and a>>b>>c for a lath. 

Martensite is a product of diffusionless transformation and can occur in the form of thin, 
lenticular plates which often extend right across the parent 7 grains, or as packets of 
approximately parallel, fine laths whose size is generally less than that of the 7 grains. In both 
cases, the parent and product crystals are related by an atomic correspondence and the 
formation of martensite causes the shape of the transformed region to change; this shape 
change is macroscopically an invariant-plane strain, the invariant-plane being the habit plane 
of the martensite. The nucleation of martensite is generally athermal (but can be isothermal) 
and is believed to be diffusionless in nature. Martensite can occur at very low temperatures 
and its interface with the parent phase necessarily has to be glissile. Martensite forms at high 
undercoolings where the chemical free energy change for transformation is generally very 
large, well in excess of that required to accomplish diffusionless transformation even when 
the stored energy of the martensite is taken into account. 

Widmanstfitten ferrite (~w) can form at low undercoolings below the Ae3 temperature 
where the driving force for transformation is small, so that the partitioning of carbon during 
transformation is a thermodynamic necessity. On an optical scale, Widmanst/itten ferrite has 
the shape of a thin wedge, the actual shape being somewhere between that of a plate and 
a lath (Watson and McDougall, 1973; King and Bell, 1974). The formation of Widmanst~itten 
ferrite is also accompanied by a change in the shape of the transformed region; the shape 
change due to a single wedge of Widmanst/itten ferrite consists of two adjacent and opposing 
invariant-plane strain deformations. These IPS deformations each have large shear com- 
ponents (~  0.4) and imply the existence of an atomic correspondence between the parent and 
product phases as far as the iron and substitutional solute atoms are concerned. Interstitial 
atoms, like carbon can diffuse during growth without affecting the shape change or the 
displacive character of the transformation. The co-operative growth of a pair of adjacent 
mutually-accommodating crystallographic variants allows the elastically accommodated 
strain energy accompanying plate formation to be rather small, of the order of 50 J/mole. This 
is consistent with the low undercoolings at which Widmanst/itten ferrite forms and with the 
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wedge morphology which arises because the adjacent variants have slightly different habit 
planes. The shape change indicates that the ~,./y interface is glissile and the plates therefore 
grow at a constant rate controlled by the diffusion of carbon in the y ahead of the plate tip. 
Widmanst/itten ferrite clearly cannot be regarded as a product of diffusional transformation 
since there is no diffusion involved in the actual lattice change; iron and substitutional atoms 
do not diffuse during transformation. A discussion of the growth kinetics of ~w is nevertheless 
included as an appendix to this review, on the grounds that it provides an interesting example 
of diffusion-controlled linear growth. Finally, we note that when ~,. nucleates from grain 
boundary aliotriomorphs of ferrite, it is called a 'Widmanstfitten ferrite side-plate' but when 
it nucleates directly from y boundaries, it is referred to as a 'Widmanst~itten ferrite primary 
side-plate'. 

Bainite occurs at a higher undercooling relative to Widmanst~itten ferrite and grows in the 
form of sheaves originating from y grain boundaries. The sheaves consist of much smaller 
platelets ('sub-units') of ferrite. The sheaf itself has a wedge shaped plate morphology on a 
macroscopic scale (Bhadeshia and Edmonds, 1980). When carbon is present, cementite 
precipitation occurs from the austenite between the sub-units in the case of upper bainite; 
in lower-bainite, the cementite (or e carbide) can also precipitate from within the bainitic 
ferrite. Unlike tempered martensite, the carbides within lower bainitic ferrite usually 
precipitate in a single crystallographic variant. Lower bainite occurs at a lower temperature 
compared with upper bainite. In both cases, the formation of a sub-unit is accompanied by 
an IPS shape change of the transformed region. The sub-units within a given sheaf have the 
same habit plane, orientation relationship with the ~, and shape deformation. 

There is little evidence on the nucleation of Widmanst~itten ferrite and bainite, but the 
nucleation is isothermal and should involve the partitioning of carbon during the nucleation 
event (Bhadeshia, 1981). There is some evidence to suggest that the activation energy for 
nucleation is directly proportional to the chemical free energy change accompanying 
nucleation, and this can be interpreted to imply that the nucleation is displacive in character 
(Bhadeshia, 1981). 

3. MECHANISM OF DIFFUSIONAL TRANSFORMATION TO FERRITE 

3.1. The Influence of  Interface Structure 

The Ehrenfest (1933) classification of phase transformations is based on the successive 
differentiation of a thermodynamic potential (e.g. Gibbs free energy) with respect to an 
external variable such as temperature or pressure. The order of the transformation is given 
by the lowest derivative to exhibit a discontinuity. In a first order transformation, the partial 
derivative of the Gibbs free energy with respect to temperature is discontinuous at the 
transition temperature. There is thus a latent heat of transformation evolved at a 'sharp' 
transformation interface which separates the co-existing parent and product phases. In a first 
order transformation, the phase change occurs at a well defined interface, the interface 
separating perfect forms of the parent and product phases. In these circumstances, interface 
structure must dominate the mechanism of  transformation and the formation of a new phase 
involves a nucleation and growth processt. 

The 7 ~ ~ transformation is a first order transformation which occurs by the motion of 
well defined interfaces. The structure of the interface influences the way in which the atoms 

t in  a second order transformation the parent and product phases do not co-exist; when such a transformation 
involves a lattice change, the change occurs continuously throughout the parent phase until its lattice is gradually 
changed into that of the product. There is no identifiable interface. 



D I F F U S I O N A L  F O R M A T I O N  OF F E R R I T E  IN I R O N  329 

of the parent lattice move in order to generate the ~ lattice. It can be shown (Christian, 1975) 
that two arbitrary crystals can be joined by a stress-free coherent interface only if one of the 
crystals can be generated from the other by a homogeneous transformation strain which is 
an invariant-plane strain (IPS). This condition in turn requires that two of the principal 
strains of the pure strain part of the transformation strain be of opposite sign, the third being 
zero. By the addition of a suitable rigid body rotation, a pure strain like this can be converted 
into an IPS. The pure deformation which converts a FCC crystal to a BCC crystal, and which 
seems to involve the smallest atomic displacements, is the Bain strain (Bain, 1924). In steels, 
all of the principal strains of the Bain strain have finite values, two of them being positive 
and the third negative. Combination of the Bain strain with a rigid body rotation cannot 
therefore give a transformation strain which is an IPS. It follows that ~/y interfaces must be 
semi-coherent or incoherent, except at the nucleation stage where the ~ may be forced into 
coherence. For larger areas of contact, the structure of the interface will in general consist 
of coherent patches separated periodically by discontinuities which prevent the misfit in the 
interface from accumulating over large distances. 

3.1.1. Glissile interfaces 

There are two kinds of semi-coherency (Christian, 1965, 1969, 1975)--if the discontinuities 
discussed above consist of a single set of screw dislocations,t or dislocations whose Burgers 
vectors do not lie in the interface plane, then this semi-coherency is of the kind associated 
with glissile interfaces. A glissile interface also requires that the glide planes (of the misfit 
dislocations) associated with the ~ lattice meet the corresponding glide planes in the 7 lattice 
edge to edge in the interface, along the dislocation lines (Christian and Crocker, 1980). A 
glissile ~/7 interface can move conservatively and when it does so, the interface dislocations 
inhomogeneously shear the volume of material swept by the interface in such a way that the 
macroscopic shape change accompanying transformation is an IPS even though the homoge- 
neous lattice transformation strain is an invariant-line strain. Conservative motion of a glissile 
interface leads to martensitic transformation. 

3.1.2. Epitaxial semi-coherency 

If the intrinsic interface dislocations have Burgers vectors which lie in the interface plane, 
not parallel to the dislocation line, then the interface is said to be 'epitaxially semi-coherent' 
(Fig. 2). The normal displacement of such an interface necessitates the thermally activated 
climb of the misfit dislocations, so that the interface can only move in a non-conservative 
manner with relatively restricted mobility at low temperatures. 

The nature of the shape change that accompanies the motion of an epitaxially semi- 
coherent interface is difficult to assess. As discussed by Christian (1965, 1969, 1975), the 
upwards non-conservative motion of the boundary AB (Fig. 2) to a new position C'D'  should 
change the shape of a region ACDB of the parent crystal to a shape AC'D'B of the product 
phase. The shape change thus amounts to a uniaxial distortion normal to AB together with 
a shear component parallel to the interface plane (i.e. an IPS). Because of the dislocation 
climb implicit in the process, the total number of atoms in regions ACDB and AC'D'B will 
not be equal, the difference being removed by diffusion normal to the interface plane. Atom 
movements are therefore necessary over a distance (at least) equal to that moved by the 

t I f  the t ransformation strain is an invariant-line strain (consisting of  the Bain strain and an appropriate rigid body 
rotation), and if the invariant-line lies in the interface, then the latter need only contain a single set of  misfit 
dislocations. For martensitic t ransformations,  the t ransformation strain has  to be an invariant-line strain in order 
to ensure a glissile interface. 
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FIG. 2. Diagram illustrating the nature of the shape change accompanying the movement of an 
epitaxially semi-coherent interphase interface (after Bhadeshia, 1982a). 

boundary, corresponding to the thickness of the transformed region. If this constitutes the 
only diffusional flux that accompanies interface motion, then the shear component of the 
shape change will not be destroyed, and the transformation will exhibit surface relief effects 
(and corresponding strain energy) normally associated with displacive transformations. The 
mobility will, of course, be limited by the climb process. A situation like this in effect amounts 
to an orderly removal of atoms as the interface migrates (i.e. removal of the extra half-planes 
of the misfit dislocations) so that a partial atomic correspondence is still maintained between 
the parent and product phases. 

However, Christian (1965) has pointed out that since atoms have to migrate over large 
distances when an epitaxially semi-coherent interface moves, they should also be able to 
produce a net flow parallel to the interface, thus eliminating the shear component of the shape 
change and its associated strain energy. Referring to Fig. 2, this would involve the diffusion 
of matter contained in the region BF'D' to region AFC', in a direction parallel to the 
interface. Hence, it has been considered improbable that atomic correspondence can be 
maintained during non-conservative interface motion. Bhadeshia (1982a) has suggested that 
this may not be true if the flow parallel to the interface has to occur through a distance much 
larger than that normal to the interface--after all, the length to thickness ratio of plates is 
always large. This argument would fail if the dislocation climb process draws vacancies from 
a large distance normal to the interface. 

3.1.3. Reconstructive diffusion 

From the above discussion it is evident that diffusion both parallel and normal to the 
interface plane is necessary if the migration of an epitaxially semi-coherent interface is to 
produce diffusional transformation. The diffusion processes have been described phenom- 
enologically, but in reality, they should occur as the interface moves. Such diffusion is 
henceforth referred to as 'reconstructive diffusion', to describe the atomic mixing necessary 
to accomplish the lattice change without causing the macroscopic displacements characteristic 
of martensitic transformations in steels. It is emphasized that in diffusional transformations, 
reconstructive diffusion is necessary even if the parent and product phases have identical 
composition, or if the transformation occurs in a pure element. Diffusional transformation 
in effect represents transformation and recrystallisation occurring simultaneously, and 
reconstructive diffusion is the recrystallisation part of the process. 

During the formation of martensite, much of the driving force is used up in accommodating 
the elastic strains due to the shape change. Such strains are absent for diffusional 
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transformations which can consequently occur at lower driving forces. The conservative 
motion of a glissile interface leads to martensitic transformation. If circumstances arise where 
a glissile interface exists but only diffusional reaction is possible, then the interface can move 
if reconstructive diffusion accompanies its motion (Bhadeshia, 1984). The displacive for- 
mation of bainite from austenite stops when the carbon-enriched austenite can no longer 
support such transformation; Bhadeshia (1982a) has shown that continued holding at 
isothermal transformation temperature causes the interfaces which initially led to displacive 
bainite growth to move at a much slower rate, as the residual austenite continues to 
diffusionally transform. 

During diffusion-controlled growth, the compositions of the two phases in contact are 
approximately in equilibrium; it is sometimes assumed (e.g. De Hoff, 1981) that deviations 
from this equilibrium can only occur if the kinetic process by which solute is transferred 
across the interface is slow in comparison with its diffusion in the matrix ahead of the 
interface. This ignores the existence of reconstructive diffusion since the transfer of solvent 
(Fe) atoms can also be restrictive. 

3.1.4. Incoherent interfaces 

As the misfit between adjacent crystals increases, the dislocations in the connecting 
interface become more closely spaced. They eventually coalesce so that the boundary consists 
of closely spaced 'vacancies' or 'dislocation cores'. Such a boundary is said to be incoherent; 
there is little correlation of atomic positions across the boundary. The motion of incoherent 
boundaries can only cause diffusional transformation, with no atomic correspondence 
between the parent and product phases. For incoherent boundaries, the free volume and 
diffusivity within the boundary may be sufficiently high to confine reconstructive processes 
to the close proximity of the boundary itself (unlike semi-coherent interfaces). 

Incoherent, coherent and semi-coherent boundaries can co-exist around a particle which 
has grown diffusionally; only semi-coherent and coherent boundaries can exist around a 
particle which has grown displacively. This is because if an atomic correspondence exists 
across a particular interface of a particle, then it necessarily does so across any other interface 
(Christian, 1975; Christian and Edmonds, 1983). 

3.1.5. Experimental evidence on the 7/~ interface 

Experimental evidence on the structure of interfaces responsible for the diffusional growth 
of ~ from 7 simply does not exist, but evidence on the reverse transformation points towards 
the interface being semi-coherent. Rigsbee (1979) has studied the diffusional formation of 7 
by intercritically annealing a low-alloy steel in the (~ + 7) phase field; subsequent cooling to 
ambient temperature led to the retention of austenite. High-resolution transmission electron 
microscopy of the retained-7/c~ interfaces revealed regularly spaced linear discontinuities in 
the interface. The spacing of these discontinuities varied as a function of interface orientation. 
The results are consistent with the interfaces being partially coherent, although no detailed 
identification of the discontinuities or the 7/c¢ orientation relationship was presented. 

Howell et al. (1981) examined ?/c~-ferrite interfaces in a duplex stainless steel, in which the 
was diffusionally precipitated from supersaturated 6-ferrite. The interfaces examined were 

suggested to be at equilibrium, the orientation relationship being: 

(111)~11 (110)~ 

[01 i]~, 11 [111]a. 
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Howell et al. claimed that an interface parallel to (102)~ contained at least two sets of  intrinsic 
dislocations, with Burgers vectors parallel to [ll0]~ and [101]~ respectively, making the 
semi-coherent interface sessile. 

In an earlier study also on a duplex stainless steel, Howell et al. (1979a) tentatively 
concluded that for ~ and 6-ferrite related approximately by the above orientation re- 
lationship, interfaces parallel to ( l l l )y  contained no dislocation structure and this was 
confirmed by the absence of  certain electron diffraction effects, associated with periodic strain 
fields due to interface dislocations. However, the evidence presented is weak since such 
diffraction effects were not found at some other interface orientations where dislocation 
arrays were clearly resolved. The implied fully-coherent (l l l)~ interface extending over 
approximately 1 # m  is unlikely; since the two lattices cannot be related by a transformation 
strain which is an IPS, only forced coherence is possible. This should in turn lead to 
characteristic strain field contrast in the transmission electron microscope, contrast which 
does not seem to have been detected by Howell et al. (1979). 

4. INTERFACE MOTION: RATE-CONTROLLING PROCESSES 

The rate at which an interface moves depends both on its intrinsic mobility (related to the 
process of  atom transfer across the interface) and on the ease with which any alloying 
elements partitioned during transformation diffuse ahead of  the moving interface. The two 
processes are in series so that interface velocity as calculated from the interface mobility 
always equals the velocity calculated from the diffusion of  solute ahead of  the interface. Both 
of  these processes dissipate the free energy (AG') available for interface motion; when AG' 
is primarily used up in driving the diffusion of solute ahead of  the interface, growth is said 
to be diffusion-controlled. Interface-controlled growth occurs when most of  AG' is dissipated 
in the process of  atom transfer across the interface. 

These concepts can be illustrated in terms of  the formation of  ~ from supersaturated 7 in 
a Fe-C alloy isothermally transformed in the e + 7 phase field at a temperature T. The 
notation used is defined as follows: the mole fraction of  an element i (i = 1, 2, 3 for C, X, Fe 
respectively, where X is a substitutional alloying element) in a phase e at the e/7 interface 
is written x~, with x~ ~ representing the mole fraction of  i in e, when e is in equilibrium with 
7"2i refers to the average mole fraction of  i in the alloy concerned. 

For  isothermal growth of  ferrite of  composition x~ ~ involving the movement of a flat e/y 
interface, the total composition difference between the ferrite and austenite remote from the 
interface may be written: 

Ax = Ax~ + Axl + Axo (4.1 a) 

where 

Ax~ = x~" - x7 ~' 

Ax/=  x~ - x~ ~ 

Ax,  = ~ - x~. 

AXl and AXD are related to the free energies G~ and GD dissipated in the interface and diffusion 
processes respectively, such that Gv = 0 when Axo  = 0 and G/=  0 when Ax~ = 0. Similarly, 
AG' is related to (Ax~- Ax) and is zero when X~l'= Yc~. 

It is emphasized that the rate of  interface motion is always under mixed control (since the 
two processes are in series) but is said to be diffusion controlled if [AxD[ >> [Ax~l and because 
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variations in interface parameters have virtually no effect on velocity. Similarly, interface- 
control implies that ]Axvl<<[AXl[ and variations in diffusion parameters then have a 
negligible effect. True mixed control implies that Axo and Axl are of comparable magnitude. 

The diffusional growth of e during transformation in the e + 7 phase field involves the 
partitioning of  carbon and we consider a case where the interface moves at a rate which is 
under mixed diffusion- and interface-control. A possible carbon concentration profile 
developed at the e/7 interface is illustrated in Fig. 3, where xi' # x} '~ and x~ need not equal 
x~ ~'. Displacement of a flat e/7 interface to produce e is phenomenologically equivalent to 
taking a small amount of material of composition x~ from 7 of composition 21, and after 
transformation at constant composition, adding it to e of composition x~. The molar Gibbs 
free energy change AG'{x~, 2t } for this process is the driving force for interface motion and 
is given by (see for example, Hillert, 1969; or Baker and Cahn, 1969): 

AG'{x~, 2, } = x ~ b ~ { x ~ }  - ~ { ~ 3 } ]  + x ~ b ~ { x ~ }  - #i{21 }1 

= x~(AG~ ~ + RTln{a~{x~}/a'~{Yc3}}) 

+ x~'RTln { a]' {x~}/a~ {21 }} (4. lb) 

where #}' and a}' represent the chemical potential and activity respectively, of component i 
in the 7 phase. 

a~ and a~ are defined with respect to pure a-iron and pure ?-iron as the respective standard 
states while the activities of  carbon are defined relative to pure graphite as the standard state. 
AG~ ~ is the molar Gibbs free energy for the V--,e transformation in pure iron. 

AG' is irreversibly dissipated in driving the diffusion of carbon ahead of the interface and 
in the process of transferring atoms across the interface. If  Go and G1 are the dissipations 
due to diffusion and interface processes respectively, then 

Gl = AG'  - G o 

= x~(AG~ ~ + RTln{a~{x~}/a'~{x'~}}) 

+ x]' RTIn {a~ {x~ }/a~ {xi' }}. (4.2) 

It follows that when x~ - 2 t  (so that IAxol>>lAx~l), most of AG' is dissipated in interface 
processes and the reaction is interface-controlled; if x~ ~ x] '~ then most of AG' is dissipated 
in driving the diffusion of C ahead of the interface which moves at a rate controlled by the 
diffusion of carbon in the 7 ahead of the interface. 

A reasonable approximation for diffusion-controlled growth is that the compositions of  the 
phases in contact at the interface are in equilibrium. This is because AXl is relatively small 
for diffusion-controlled growth. Subject to this approximation, local equilibrium is said to 
exist at the interface. This involves the assumption that the whole of  the concentration 
gradient can be divided up into a large number of  thin slices (or sub-systems), each of which 
has a definite concentration, so that each of  the sub-systems can be considered as if it were 
in local equilibrium, even though free energy dissipation occurs in the diffusion process itself 
(there are gradients of  the thermodynamic variables). These assumptions are valid if 
perturbations from equilibrium are not too large (Miller, 1960) and they allow the application 
of classical equilibrium thermodynamics to steady-state situations like the irreversible process 
of diffusion which actually arises due to the lack of  equilibrium. It is a common assumption 
that we may apply equilibrium thermodynamics locally (Darken and Gurry,  1953). 

Another interesting consequence of the assumption of local equilibrium is that the 
diffusion-controlled growth and dissolution of  a precipitate must proceed at the same rate. 
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FIG. 3. Carbon concentration profile at a ~/7 interface moving under: (a) diffusion-control; (b) 

interface-control; and (c) mixed interface and diffusion-control. 

The principle of  detailed balance implies that for a reaction proceeding in the environs of  
equilibrium, the forward rate along any one reaction path must equal the reverse rate along 
that path (Purdy and Kirkaldy, 1962; Christian, 1975, p. 81). 

5. DIFFUSION-CONTROLLED GROWTH 

5.1. Diffusion Coefficients 

The problem of  representing diffusion during the growth of ferrite in steels does not lend 
itself to simple treatments because elements like carbon and nitrogen diffuse interstitially 
while Fe and substitutional alloying elements diffuse by a vacancy mechanism. The diffusion 
coefficients are often concentration dependent. Most steels are usually higher than binary 
alloys so that several diffusion coefficients have to be known and the interdependence of  fluxes 
also has to be taken into account. In certain circumstances, the composition gradients of 
solute in the matrix ahead of  the interface can be very large, in which case the dependence 
of  the diffusion coefficient on the gradient itself may be significant. We therefore briefly 
consider the nature of  and relations between diffusion coefficients before embarking on the 
treatment of  diffusion-controlled growth. 

In a binary system, an empirically defined diffusion coefficient is simply the proportionality 
constant relating the rate of  transfer of  a diffusing substance through a unit area of  a section, 
and the concentration gradient measured normal to the section (Fick, 1855). Because the 
chemical potentials of  the two components of  a binary system are related by the 
Gibbs-Duhem equation, the flux of any element can be described in terms of  just one 
empirical diffusion coefficient if the latter is defined in a volume-fixed frame (Miller, 1960); 
the significance of  the frame of reference will be discussed later. 

The tracer diffusion coefficient represents the diffusivity of radioactively labelled isotopes 
in an otherwise chemically homogeneous solution. When the tracer atoms are of the same 
species as the non-tracer atoms, the tracer diffusion coefficient is called the self-diffusion 
coefficient. 

Tracer and self-diffusion coefficients do not properly represent diffusion in concentration 
gradients, since in the presence of  a chemical composition gradient, an additional virtual force 
acts on the diffusing species. This virtual force is due to the chemical potential gradient 
associated with the composition gradient. An intrinsic diffusion coefficient DA takes account 
of  this and hence represents the flux of  component A of  a binary A - B  substitutional solution 
in a concentration gradient of A (and hence of  B). However, when the two species in an 
interdiffusion experiment have unequal intrinsic diffusion coefficients and when diffusion 
occurs by a vacancy mechanism, there is a net flux across any plane in the diffusion zone. 
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If  one end of  the specimen is chosen as a reference plane, then inert markers  within the 
specimen move relative to this reference plane-- this  is the Kirkendall effect (Kirkendall, 
1942). This bulk flow obviously contributes to composit ion change at any point, but is not 
accounted for in the definition of  intrinsic coefficients. 

The chemical or interdiffusion coefficient D does take account of  the Kirkendall effect and 
represents the rate at which free energy gradients in the solution level out, or the rate at which 
mixing or unmixing occurs (Crank, 1975; Christian, 1975). I f  DA = De, there is no Kirkendall 
effect and DA ---- De = D. We have thus separated bulk flow from true diffusion resulting from 
the random motion of  non-uniformly distributed A atoms. Intrinsic coefficients account for 
true diffusion only, whereas interdiffusion coefficients also account for bulk flow. 

Because intrinsic diffusion coefficients do not take account of  bulk flow arising due to the 
Kirkendall effect, the substitution of  these coefficients into Fick's first law defines fluxes Ji 
relative to the 'lattice-fixed' or 'Kirkendall '  frame of reference. In other words, the fluxes Ji 
occur through a section fixed so that no bulk flow occurs through it. The Kirkendall frame 
thus moves (with the velocity of  the inert markers) relative to the laboratory frame (to which 
the specimen is fixed). D, on the other hand, is defined with respect to the laboratory frame. 

It is often convenient to define D relative to other frames of reference. In the volume-fixed 
frame, the fluxes Ji occur across a section defined such that the total volume on either side 
of  the section remains constant as diffusion proceeds. It follows that EJi Pi = 0, where Pi refers 
to the partial molar  volume of  component  i in an n component  solution. I f  V~/V, = 1 for all 
i, then the volume-fixed frame coincides with the laboratory frame. Miller (1960) states that 
with few exceptions, most experimental determinations of  interdiffusion coefficients assume 
constant volume, and hence refer to the volume-fixed frame. 

D relative to a number-fixed frame is such that the fluxes J~ occur across a section defined 
such that the total number  of  atoms on either side of  the section remains constant, so that 
EJi = O. 

Diffusion data for steels have been reviewed by Fridberg et al. (1969). 

5.1.1. Dif fusion in mu l t i componen t  s y s t ems  

Fick's law for a binary system can be formally stated as: 

Ji = - D grad c~, (5.1) 

where c~ is the concentration of  i in moles per unit volume, and the flux is referred to a 
volume-fixed frame of  reference and D is the chemical diffusion coefficient. For a system of 
n components,  where the flux of i may also depend on the concentration gradients of  other 
components,  Fick's law may be generalized as follows (Onsager, 1945; Kirkaldy, 1970): 

n - I  

Ji = -- ~ Dik grad ck (5.2) 
k = l  

the flux again being defined with respect to the volume-fixed frame of reference; D~k form a 
matrix of  empirical chemical diffusion coefficients. Fick's law is based on a hypothesized 
relation between the flux and chemical concentration gradient and this is why the diffusion 
coefficient is sometimes called empirical. The form of  the equation is nevertheless convenient 
and is historically well established. I f  the flux actually depends on the chemical potential 
gradient rather than the concentration gradient, then the failure of  the law is prevented by 
making D concentration dependent. It is on this basis that Darken ' s  equations (Darken, 1948) 
relating activity and diffusion are derived. The virtual force (Xi) acting on a diffusing species 
should really depend on the negative gradient of  its chemical potential (Einstein, 1905; 



336 P R O G R E S S  IN M A T E R I A L S  S C I E N C E  

Hartley, 1931); in a multicomponent system this force is also a function of the chemical 
potential gradients of the other species. 

To find a relation between J~ and X,. we rely on the assumptions of the thermodynamics 
of irreversible processes (reviewed by Miller, 1960; Christian, 1975), the major results of which 
were obtained by Onsager (1931). The theory assumes that if there is more than one 
irreversible process occurring (and diffusion in a multicomponent system is such a case), then 
each 'flow' J; is not only linearly related to its conjugate 'force' X,, but it is also linearly related 
to all the other forces which lead to dissipation (or entropy production). For the case of 
diffusion in an isotropic medium, referred to a volume-fixed frame, and for an n-component 
system, this may be expressed mathematically as: 

n--I 
Ji = ~ LikXk (5.3a) 

and if the forces are taken to be chemical potential gradients (obeying the Gibbs-Duhem 
equation) then the n-1 independent forces are given by (Kirkaldy, 1970): 

Xk = -g rad  [#k - (~'~/~',)#,] (5.3b) 

where the Lik are phenomenological coefficients of the various linear 'force-flux' relations. 
Comparison of eq. 5.3 with eq. 5.2 gives (Kirkaldy, 1970): 

D,t = ~ L,j qjk, (5.4) 

J 
with 

nj~ = ,~[l*j- ( L I L ) m ] l & k .  

The on-diagonal diffusion coefficients have always been found to be positive, although 
Kirkaldy (1970) has shown that this need not be the case. Onsager's theory also states that 
as long as the J~ and X~ which contribute to dissipation are independent, then for diffusion 
processes, L o = Lji. 

5.1.2. Diffusion in ternary F e - X - C  alloys 

For a ternary Fe-X-C alloy, 

Jl = LnXl + LI2X2 (5.5a) 

"12 = L22X2 + L21Xl (5.5b) 

where the fluxes are referred to a volume-fixed frame of reference. Using the Gibbs-Duhem 
relations, and assuming that ~'l/V 3 = 0 and V2/~'3 = 1, we get (for diffusion in one dimension 
along a co-ordinate z): 

Y 1 = - -  Ol.~l/~Z (5 .5c)  

x2 = - ( 1  + [xJx,]) (a~tJ& ) - (x2/x,) (&,,/& ). (5.5d) 

The assumptions concerning the partial molar volumes are considered reasonable (Kirkaldy, 
1970) as long as the volume change of mixing is insufficient to significantly influence the 
diffusion profiles. It follows that: 

Dl l  : -  L l l ( d ~ l / O C  I ) -F L,2 ( X I / X 3 )  (O/-21/{~C,) 

+ Ll2(1 + [x:/xd) (at, JOe,) (5.5e) 
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D,2 = L,,(~#,/c9c2) + L,2(1  + [x2/x3]) (c~]-t2/c~c2) 

-I- LI2(XI/X3) (~]./1/~C2) (5 .5 f )  

022 = L21 (O/tl/0C2) n t- Lz2(x l /x3)  (0//i/63¢2) 

+ L22(1 + [x2/x3]) (c9/x2/0c2) (5.5g) 

D2~ = L21 (OI, q/3c~ ) + L22(Xi/X3) (~#1/~¢1) 

+ L21 (1 + [x2/x3]) (~#2/~c~). (5.5h) 

Values of Dti and D22 a r e  readily available and eqs 5.5e-h can be used to obtain the ratios 
D~2:D, and D21:D22; with certain approximations, these ratios can be expressed in terms of 
accessible thermodynamic parameters (Purdy and Kirkaldy, 1962; Brown and Kirkaldy, 1964; 
Kirkaldy, 1970). To illustrate the approximations involved, it is necessary to obtain a relation 
between the coefficients L¢ defined in the laboratory frame and the corresponding Onsager 
coefficients K 0 defined in the Kirdendall frame. Kirkaldy (1970) has shown that for dilute 
solutions (x~, X2<<X3) where all components diffuse independently in one dimension along a 
co-ordinate z, 

L,, = K , , -  x2 K~ 

L12 = xIK22 -- xIX2K33 = L21 

L22 = (1 - -  2x2)K22 - x~K33. 

(5.6a) 

(5.6b) 

(5.6c) 

Assuming that interstitials do not significantly contribute to the Kirkendall effect, the velocity 
of the Kirkendall markers (Vk) is then given by (Kirkaldy, 1970): 

Vk = (RT/[c: + c3]) ([( K2d x2) - K~3] [~?x2fiVz ] - K33 [c3xl/ c3z ]). 

If Oxl/~Vz is small, then the Kirkendall effect vanishes when K:: = x:K33 or Lj2 = 0; in this limit, 

Ol2/Oll  = (Opl/cgx 2)/(cgl.h/~x ~ ), (5 .7a )  

[X1 (~#l/{~Xl) + X 3 (~2 / (~Xl)  + X 2 (~/-/2/~XI)] 
D21/D22 = [X I (~#l /~X2) -I- X3(~]A2/~X2) "]- Xa(~[,.la/~X2) ]. ( 5 7 b )  

For dilute solutions, these equations may be expressed in terms of the Wagner interaction 
parameters eik (Wagner, 1952): 

eik = c31n Fi/c3x k = eki (5.8) 

where Fi is the activity coefficient of i relative to the standard state at infinite dilution. 
Equations 5.7a, b can thus be simplified as follows: 

D~z/Dll = el2xl/(1 + e l jx l )  (5.9a) 

D2,/D22 = x2(1 + e ,2) /2 .  (5.9b) 

Equations l la, b differ slightly from those quoted by Kirkaldy (1970); they are better 
approximations to eq. 5.7. Equation 5.9a is in exact agreement with the work of Kirkaldy 
and Purdy (1962) and Brown and Kirkaldy (1964). Brown and Kirkaldy (1964) have 
experimentally verified the validity of eq. 5.9a for ternary steels containing Mn, Co, Cr, Ni 
or Si as the substitutional addition. 

Kirkaldy (1970) has shown that for dilute ternary iron alloys containing two substitutional 
alloying elements, similar simplification of the diffusion matrix can only be made if the 

JP M.S. 294~B 
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diffusivity of one of the solutes is relatively large. Since this is usually not the case, Kirkaldy 
suggests that the direct measurement of the chemical diffusion matrix is the easiest approach. 

5.1.3. The diffusion o f  carbon in austenite 

The diffusion coefficient of carbon in austenite is known to be strongly concentration 
dependent (Wells et al., 1950; Smith, 1953) and this causes complications in the kinetic 
analysis of carbon diffusion-controlled reactions in steels. The existence of substantial carbon 
concentration gradients at the transformation interfaces involved in such reactions makes it 
imperative to account for the variation of D~ with x~, and it has been demonstrated (Trivedi 
and Pound, 1967) that, for most purposes, a weighted average diffusivity D,  can adequately 
represent the effective diffusivity of carbon that is needed for the application of the theory 
of diffusion-controlled growth. Trivedi and Pound (1967) first considered this problem in 
detail and found that for diffusion-controlled growth occurring at a constant rate, the 
weighted average diffusivity is given by: 

f; D,, = D,, dx~/(Yq - x~). (5.10) 
1 

Although this equation is strictly only valid for steady-state growth, Coates (1973c) has 
suggested that it should be a reasonable approximation for parabolic growth as well, although 
no detailed justification was presented. 

It is clearly necessary to know D~{x~} at least over the range ~l~x] ' ,  although 
experimental determinations of D u {x I } do not extend beyond xl = 0.06. Kaufmann et al. 
(1962) attempted to overcome this difficulty by assuming a relationship between the activation 
energy for the growth of a ferrite plate in austenite and that for the diffusion of carbon in 
?. It was additionally assumed that the pre-exponential factor of the diffusion coefficient can 
be satisfactorily extrapolated beyond the range of experimental observations. This empirical 
extrapolation of D~I cannot in general be taken to be satisfactory. 

Siller and McLellan (1969, 1970) have developed a theoretical representation of Du which 
is compatible with both the kinetic and thermodynamic behaviour of carbon in austenite. The 
model takes account of two important factors: the concentration dependence of the activity 
of carbon in austenite (Smith, 1946) and the existence of a finite repulsive interaction between 
nearest neighbouring carbon atoms situated in octahedral sites (McLellan and Dunn, 1969). 
Smith (1953) has demonstrated that the composition dependence of activity cannot alone 
account for Du. Siller and McLellan realized that the repulsive forces between neighbouring 
carbon atoms should effect diffusivity by acting to reduce the probability of interstitial site 
occupation in the vicinity of a site already containing a carbon atom. In a concentration 
gradient, a carbon atom attempting random motion therefore 'sees' an exaggerated difference 
in the number of available sites in the forward and reverse direction, so that diffusion down 
the gradient is enhanced. Using these ideas, Siller and McLellan obtained: 

D,, {x,, T}  = (k r /h ) (exp { - AF* /k  T } ) (22/3rm). {0} (5.11) 

with 

q{O}/a~ = 1 + [W(1 +0)/(1 - - (0 .5W+ 1)0 +(0.25W z+ 0.5W)(1 - ~b)O 2] 

+ (l/a]) (1 + O) (da~/dO) 

where k and h are the Boltzmann and Planck constants respectively, W is the number of 
octahedral interstices around a single such interstice, AF* is an activation free energy, 
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I "  m is an activity coefficient and 2 is the distance between (002) austenite planes. 
49 = 1 -  e x p ( - e ) / k T ) ;  o)~ is the nearest ne ighbour  c a r b o n - c a r b o n  interaction energy in 
austenite, taken to be 8250 J /mole  (Dunn  and McLellan,  1970). 0 is the ratio o f  the number  
o f  ca rbon  a toms to the total number  o f  solvent atoms,  given by 0 = xt/(1 - X l ) .  Bhadeshia 
(1981) found  AF*/k = 21230 K and ln(F~/22) = 31.84. 

5.2. Diffusion-Controlled Growth o f  Ferrite in Fe -C  Alloys 

The simplest t reatment  for the growth  o f  ferrite f rom austenite is a one-dimensional  growth  
model,  involving the movemen t  o f  a planar  c~/y interface; if ~ growth  occurs at a rate 
controlled by the diffusion o f  ca rbon  in the 7 ahead o f  the moving interface then it is a good  
app rox ima t ion t  that  local equilibrium exists in the phases in contact  at the interface. It 
follows that  c]' -~ c'~ ~ and c]' = c7~; it is assumed that  the concentra t ion o f  ca rbon  in the 7 far 
away f rom the interface remains ?1, so that  the austenite effectively has a semi-infinite extent 
in the region normal  to the interface. 

Since c~ < c'~, ca rbon  is part i t ioned during the format ion  o f  ferrite and the excess ca rbon  
progressively builds up in the y ahead of  the interface, subject to the constraint  that  the 
max imum level o f  C in the y at the interface is c~ ". The extent o f  the ca rbon  diffusion field 
thus increases with the volume fraction o f  ferrite so that  the growth  rate o f  the ~ must  decrease 
with time. F r o m  dimensional  arguments  (Christian, 1975) it can be demonst ra ted  that  the 
thickness Z of  the layer o f  ferrite is related to time t as follows: 

Z = cq t °s (5.12a) 

where Z = 0 at t = 0 and Z defines the posit ion o f  the interface along the co-ordinate  z which 
is normal  to the interface (and is positive in the 7). ~1 is called the parabolic- thickening rate 
constant  (for one-dimensional  growth)  and can be deduced by applying Fick 's  laws o f  
diffusion and the principle o f  conservat ion o f  mass. F r o m  Fick 's  laws, the differential 
equat ion for the matrix is given by: 

Ocl/Ot = O(D1, {cl } (Oc,/Oz))/Oz (5.12b) 

subject to the boundary  condit ions c I = C~ ~ at z = Z {t}; t = t and c~ = ?j at t = 0. Conser-  
vation o f  mass at the interface requires that  

(c7 r -- c~ ~) (a, t°5/2) = D,~ {c~ ~ } (Oc,/az)z=z. (5.12c) 

Equat ion  5.12c simply states that  the a m o u n t  o f  solute part i t ioned f rom the ~, per unit time, 
equals the solute flux away f rom the ~/~ interface. 

I f  the diffusion coefficients do not  depend on concentra t ion,  eq. 5.12 can be solved (Zener, 
1949; Dub6,  1948; Atkinson,  1967) to give an implicit relation for ~1 as follows: 

fl = H, {D,, } (5.13a) 

where 

Ht {D.} = (0 .25n/D.)  °5 cq [erfc {0 .5~/ (D. )  °5 }] exp{~ ~/(4D;~)} (5.13b) 

tWe emphasized earlier that all interfaces strictly move under mixed-control, but that IAxll<<lAxol for 
diffusion-controlled growth so that the assumption of local equilibrium is reasonable. In all subsequent treatments 
we assume the existence of local equilibrium at the interface during diffusion-controlled growth, bearing in mind 
that this is an approximation since Ax I is never zero. 
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where f~ is a fractional supersaturation given by, 

fJ = (cl -- c~')/(c~ ~ -- c]'~) • (5.13c) 

When D~l is a function of concentration, Atkinson (1967) has shown that the following 
equation can be used to approximately define ~l when growth is diffusion-controlled: 

ft = H, {D,, {?1 }} [Dr, {~, }/D,l  {c~'}]. (5.13d) 

Atkinson (1967), following a method due to Philip (1960a, b) has shown that when 
one-dimensional diffusion-controlled growth is parabolic with respect to time, and when the 
diffusion coefficient is concentration dependent, it is possible to obtain exact solutions to eq. 
5.12 subject to the boundary conditions stated earlier. However, such solutions only arise for 
special forms of D.  {el }. The solution to eq. 5.12b subject to the boundary conditions of eq. 
5.12 can be written (Atkinson, 1967): 

z / t  °5 = F{[(c, - ~l)/(c~" - ~ ) l f  {~, }} (5.14a) 

where F is any single-valued function of el such that 

f0 1),, {cl } = 0 . 5 ( d f / d c ,  ) F dcl (5.14b) 

and 

c, = f { z / t ° 5 } ,  

where F = f - 1 .  Exact solutions like eq. 5.14a can only be obtained if corresponding pairs of 
the functions D,l and F can be found which satisfy eq. 5.14b. While this is not difficult to 
do (Philip, 1969), the functions D ,  obtained are in general complex and are not well adapted 
to fitting experimental data on D,, (Crank, 1975). 

Atkinson (1968) has circumvented this problem by presenting a numerical method for 
solving eq. 5.12, a method which will work for any given diffusion coefficient represented as 
a function or as a graph or table. Grain boundary allotriomorphs sometimes have an initial 
shape which approximates that of an oblate ellipsoid, and Atkinson (1969) has developed a 
similar numerical method for this morphology, given that the shape is preserved during 
growth. An analytical solution to the same problem, for a constant diffusion coefficient, has 
been given by Horvay and Cahn (1961). 

5.3. Dif fus ion-Contro l led  Growth  o f  Ferrite in F e - X - C  Al loys:  
Loca l  Equi l ibrium 

The diffusion-controlled growth of ferrite in Fe-X-C alloys is complicated by the fact that 
both interstitial and substitutional diffusion occurs during transformation; the respective 
diffusion coefficients differ substantially and this combined with the assumption of local 
equilibrium at the interface leads to a variety of possible growth modes (Hillert, 1953; 
Kirkaldy, 1958; Purdy et al., 1964; Coates, 1973c). 

If it is assumed that local equilibrium exists during the diffusion-controlled growth of 
from 7, the compositions of the phases at the interface are connected by a tie-line of the ~t + 
phase field in the equilibrium Fe-X-C phase diagram. For the discussion that follows, we 
choose X = Mn (identified in concentration terms by the subscript i = 2); Mn is an austenite 
stabilizing elements but the concepts discussed are general to all substitutional alloying 
elements which dissolve in austenite. 
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FIG. 4. Schematic isothermal sections of  the F e - M n - C  system, illustrating ferrite growth occurring 
with local equilibrium at the c~/7 interface. (a) Growth at low supersaturations (PLE) with bulk 
redistribution of Mn, and (b) growth at high supersaturations (NPLE) with negligible partitioning of  
Mn during transformation. The bulk alloy compositions are designated "A"  and "B" in Figs 4a and 
b respectively, and (c) division of  the e + 7 phase field into domains where either the PLE or the NPLE 

mechanisms can operate. 

Schematic isothermal sections of the F e - M n - C  phase diagram are presented in Fig. 4. For  
an alloy of composition c~, c2, it might seem that the tie-line defining interface compositions 
should pass through the point ~j, ~2, but this is not correct because Mn and C diffuse at very 
different rates. Conservation of  mass at a planar interface moving with a speed v in the 
direction z (normal to the interface plane) requires that 

(c~ ~ - c~': ) v = - -  D i l  grad cl - DI2 grad c2 (5.15a) 

(c'~ ~ - e~ "~) v = - - D 2 2  grad c2 - D2t  grad c~, (5.1 5b) 

where all the concentration gradients are in the austenite and are evaluated at the position 
of the interface (z = Z). Since D12 and D21 are relatively small, these equations reduce to: 

(ci ~ -  c~ ~) v = --Dll grad cl (5.15c) 

(C2 ~ - -  C~ "/) V = - -  022 grad c2.  (5.1 5d) 

Because D t ~ > > D 2 2  , these equations cannot in general be simultaneously satisfied for the 
tie-line passing through the alloy composition q,  % It is however possible to choose other 
tie-lines which satisfy eq. 5.15; if the tie-line is such that c~ ~ ~ ~1 (e.g. line cd for alloy A of 
Fig. 4a), then grad c] will become very small, the driving force for carbon diffusion in effect 
being reduced, so that the flux of carbon atoms is forced to slow down to a rate consistent 
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with the diffusion of  Mn. Ferrite growing by this mechanism is said to grow by a 'Partitioning, 
Local Equilibrium' (or PLE) mechanism, in recognition of  the fact that c~ ~ can significantly 
differ from c2, giving considerable partitioning of Mn into Y, with consequent long-range 
diffusion of  Mn in ? (Coates, 1973c). 

An alternative choice of  tie-line could allow c ~ 2  (e.g. line cd for alloy B of  Fig. 4b), 
so that grad c2 is drastically increased since only very small amounts of  Mn are partitioned 
into the ~. The flux of  Mn atoms at the interface correspondingly increases and Mn diffusion 
can then keep pace with C, satisfying the mass conservation conditions of  eq. 5.15. Growth 
of  ~ in this manner is said to occur by a 'Negligible Partitioning, Local Equilibrium' (or 
NPLE) mechanism, in recognition of  the fact that the Mn content of  ~ approximately equals 
~2, so that little if any Mn partitions into ? (Coates, 1973c). 

The exact choice of  tie-line will be discussed quantitatively at a later stage; we first consider 
some general points concerning tie-line choice. In a F e - M n - C  alloy, both C and Mn are 
austenite stabilizers and tend to partition into ?. It follows that c~ ~ and c~ ~ must always be 
greater than or equal to 71 and 52 respectively, c~ r and c~ ~ will always be less than or equal 
to ?~ and 72 respectively. Tie-lines such as 'ef '  (Fig. 4a, b) are therefore inappropriate and this 
leads to the division of  the 7 + ~ phase field into regions where either the PLE or NPLE 
mechanism can operate (Fig. 4c) in a mutually exclusive manner. 

These restrictions additionally imply that for an alloy lying close to the ?/? + ct phase 
boundary (i.e. transforming at a low degree of  supersaturation), c~ ~ will be significantly lower 
than 72 so that the alloy can only transform by the PLE mechanism. Similarly, for an alloy 
lying close to the ct/~ + 7 phase boundary (i.e. transforming at a high degree of  super- 
saturation), c~" will be significantly higher than ?~, so that only the NPLE mechanism can 
operate. 

In summary, given that the growth of  ct from ternary V occurs at a rate which is 
diffusion-controlled, with local equilibrium at the moving interface, the tie-line of the ~ + ? 
phase field which defines the interface compositions does not in general pass through the point 
in the ~ + 7 phase field which identifies the alloy composition. This is because the diffusivities 
of  interstitial and substitutional alloying elements in ? are significantly different. The 
appropriate tie-line must be chosen to satisfy mass conservation conditions at the moving 
interface and must be consistent with the partitioning behaviour of  the alloying elements. 
Hence, the tie-line for an alloy transforming at a low supersaturation is such that there is 
considerable partitioning and long-range diffusion of  substitutional alloying element, while 
the driving force for carbon diffusion is reduced to a level which allows the substitutional 
element flux to keep up with the carbon flux at the interface. This is the PLE mode of  
transformation. 

At higher supersaturations, the determining tie-line causes negligible partitioning of 
substitutional alloying element between the ~ and ? lattices, so that the gradient of  the X 
element in the ? near the interface is very large. This drastically increases the driving force 
for X diffusion in ? and allows the flux of  X to keep pace with the long-range diffusion of  
C in ?. This is the NPLE mode of  transformation, where the diffusion of  X in ~ is short-range, 
being confined to the immediate vicinity of  the interface. 

We note that both of  these modes of  transformation involve local equilibrium at the 
interface and are therefore equally favoured on thermodynamic considerations alone. Both 
C and X diffuse during growth and their fluxes satisfy the equations for conservation of  mass 
at the interface; it follows that v calculated from the diffusion of  C in V will be identical to 
that calculated from the diffusion of  Mn in ?. Both elements control the growth rate and 
neither can be said to restrict the interface motion on its own. 
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5.3.1. Q u a n t i t a t i v e  d e t e r m i n a t i o n  o f  the  t i e - l ine  a n d  in t e r face  ve loc i t y  

For Fe -X-C alloys it seems reasonable to assume that the distribution of carbon in 7 has 
an insignificant effect on the flux of X in y (Coates, 1973a, b). This is because D ,  >>D22, so 
that [grad c2[>>[grad cl [. The D21 term of eq. 5.2 can thus be neglected, so that: 

J l  = --DII grad cl - DI2 grad cz (5.16a) 

J2 = --D22 grad c2. (5.16b) 

From eq. 5.16 and Fick's second law of diffusion it can be shown (Coates, 1973c) that for 
one-dimensional growth along a co-ordinate z, the differential equations for the matrix are: 

(Ocl/Ot ) = O11 (~2Cl/~Z2) 'F D12(~2c2/~z 2) (5.17a) 

(~C2/~t) = D22(¢~2c2/~t 2) (5 .17b)  

assuming that the diffusion coefficients are concentration independent. 
Kirkaldy (1958) has given solutions of the multicomponent diffusion eq. 5.17 for the growth 

of linear, cylindrical and spherical precipitates (1, 2 and 3 dimensional growth, respectively) 
of uniform composition in an infinite medium, for constant diffusion coefficients. For the 
boundary conditions corresponding to the one-dimensional, diffusion-controlled growth of 
ferrite of uniform composition along the co-ordinate z, Kirkaldy's solutions show (see Coates, 
1973a) that provided D,l does not equal D22, the concentrations in the matrix as a function 
of time and distance are given by: 

c, {z, t} = ~, + D,2(c~  ~ --  ~2)E1 {z, D22}/(D22 - D I , )  

--F [(C'~ ~ - -  ?1 ) - -  [012(C~ ~ - -  ?2)/(022 --  Oll )]]El {z, 0jl  } (5.18a) 

and 

where 

C2{Z , t} = C2 "~ ( eTe - -  ~2) El  {Z, 022 } (5.18b) 

where 

B,  = (c~ ~ - c ~ ) / ( c ~  ~ - c~ "/) (5.19b) 

f2 = Hi {022}. (5.19c) 

We note that if DIE = 0, then eq. 5.19a becomes equivalent to eq. 5.13a. 
For transformations occurring under conditions of local equilibrium at the interface, only 

o n e  o f  "~7 " ~  ~1, ~1, c~ ~, c~" is independent, since they are all linked by a tie-line of the a + 7 phase 

E1 {z, t, D, } = [erfc {z/(4D,t) °s }]/[erfc { Z / ( 4 D , t )  °5 }] (5.18c) 

where z = Z defines the position of the interface, so that 

Z = oq t °5 = ~h(Dil  00.5 = l h ( D 2 z t )  °5 (5.18d) 

where ~h are growth constants, related to ~l, the parabolic rate constant for one-dimensional 
growth. Equation 5.18a can be applied to Fe-C alloys if DI2 is set to zero. 

On combining eq. 5.18a-d with the mass conservation conditions (eq. 5.15a, b with 
O21 = 0), Coates (1973b) shows that: 

f l  = H1 {011 } - -  [BI012/(011 -- O22)] [HI {022 } - -  H1 {011 }] (5 .19a)  
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field of the equilibrium phase diagram. The equations (5.19) therefore contain only two 
unknowns and can be simultaneously solved to determine the growth velocity and the tie-line 
governing interface compositions during growth. 

5.3.2. Two- and three-dimensional growth with local equilibrium 

Coates (1972), using the general solutions of Kirkaldy (1958), has solved the diffusion 
equations for two-dimensional and three-dimensional growth (radial growth of cylinders and 
growth of spheres, respectively) involving local equilibrium at the 7/~ interface in Fe-X-C 
alloys. The assumptions involved are the same as those used in the analysis of one- 
dimensional growth, with the additional approximation that capillarity effects may be 
neglected. Coates found that for two-dimensional growth, 

f l  = H2 {D,l } -- [B,Dn/(D,~ - D22)] [H2 {D22} - -  H 2 { D I ,  }] (5.20a) 

f 2 = HE {022 } (5.205) 

where 

H 2 {D, } = (0.25z 22/D,) (exp {0.25~ ~/Di, }) Ei {0.25~ Z/D, } (5.20c) 

where Ei is the (tabulated) exponential integral function (Abramowitz and Stegun, 1964). 
For three-dimensional growth, 

f t  = (0.5~]/Dtt) [1 -- H~ {D~t }] - 0.5B, (D,2/(D,! - -  D22))~32[((1 - -  H, {D22} ) /D22  ) 

-- ((1 - H, {D,, })/D,,)] (5.20d) 

f2 = (0.5a ]/D2z)[1 - H, {Dz2 }], (5.20e) 

~2 and as are the parabolic rate constants for two- and three-dimensional growth respectively. 
The concentration distributions in 7 during two- and three-dimensional growth can be 

obtained by substituting the functions E2 or Es (respectively) for El into eq. 5.18a, b where 

E 2 {z, t, Dii } = [Ei {zZ/(4D,,t)}]/[Ei {Z2/(4D,,t)}] (5.20f) 

and 

E3 {z, t, D,} = [exp {zZ/(4D, t)}/z 

- (4n)°5 erfc {z 1(4D, t) °'5 }]/[exp {Z21(4D,, t)}/Z 

- (4n)°'5 erfc {Z/(4Dii 00.5 }]. (5.20g) 

Equations 5.20a, 5.20d and all the equations giving the concentration distributions in the 
matrix can also be used to calculate two- and three-dimensional growth rates in binary alloys 
(e.g. Fe-C), if D~2 is set to zero. The equations for binary growth were first obtained by Zener 
(1949) and Frank (1950). 

5.3.3. Concentration dependent diffusion coefficients 

The above theory for diffusion-controlled growth is based on the assumption that the 
diffusion coefficients are concentration independent and this is recognised to be an unrealistic 
assumption. Coates (1973c) has suggested that the concentration dependence of D ,  can be 
taken into account by substituting the weighted average diffusivity D .  (eq. 5.10) for D~, even 
though eq. 5.10 is strictly only valid for steady-state growth situations. 
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The ratio D~2/D~ is also concentration dependent, but the numerical calculations of Bolze 
et al. (1969) suggest that the use of a constant D~2/D~I, evaluated at the composition (c'~ ~, c~ ~) 
gives an adequate approximation to the problem (Coates, 1973c). 

5.3.4. Interface composition (IC) contours for diffusion-controlled growth 

The interface compositions \t. I/',~?,t.2,o:t7 C~ :~, C~ :t) for a ternary alloy of composition (?1, 52) are 
connected by a tie-line of the equilibrium phase diagram when ferrite growth occurs under 
conditions of diffusion-control with local equilibrium at the interface. When DH = D22, all 
alloys which lie on a given tie-line transform at different rates, but with identical compositions 
at the moving interface. If  an 'interface-composition contour' (Coates, 1973b) is defined as 
a curve straddling the two phase ct + 7 phase field, identifying all alloys which transform with 
the same compositions at the interface, then the tie-line corresponds to an interface- 
composition (IC) contour for all binary alloys and also for ternary alloys where Dll = D~2. 
When Djl does not equal D22, the tie-line determining the interface compositions does not 
in general pass through the point defining the average alloy composition and IC contours 
no longer coincide with tie-lines. The derivation of an IC contour depends on the ratio D~/D22 
and on the nature of interactions between components 1 and 2. 

By substituting eq. 5.18d and eq. 5.13d into eq. 5.19a, b the following functions can be 
derived: 

~ = ?, {~/, } (5.21a) 

~2 = c2{th }. (5.21b) 

Elimination of ~/~ gives 

~2 = 52 {~, }. (5.22) 

Equation 5.22 defines an IC contour joining the points (c~r, c~ r) and (c] '~, c~'); the straight line 
joining these points is the tie-line defining interface compositions during the local equilibrium 
growth of ~ from y whose composition lies on the IC contour. With these interface 
compositions, the flux balance equations (5.15) are automatically satisfied for all alloys on 
the IC contour. Every point lying on this IC contour represents a bulk composition which 
transforms with the same interface compositions. The functional relation of eq. 5.22 will in 
general be complex but can be numerically solved to yield IC contours (Coates, 1973b). 
Figure 5 illustrates some IC contours (Coates, 1973b) for various ratios D1,/D22 and 
BiDi2/Di1, for a given tie-line. 

We note from Fig. 5 that as the ratio (DI1/Dz2) becomes large, the IC contour essentially 
consists of two straight segments which, together with the tie-line, form a triangle within the 
two-phase field. In the horizontal segment, f2 = 1 whereas in the near vertical segment, 
f ,  = -BID~2/D~j with f2 - 0. For all alloys lying on the vertical segment, the fast diffuser has 
its driving force for diffusion reduced to nearly zero, so that it is forced to slow down to the 
pace of the slow diffuser; there is also considerable partitioning of component 2, giving PLE 
growth. 

On the other hand, for all alloy compositions falling on the horizontal segment, the amount 
of partitioning of component 2 is reduced to negligible levels so that growth occurs by the 
NPLE mode. The transition between these two modes of growth is logically taken to be the 
point (f2 = 1,f,  = -B~D,2/DI~), the vertex of the triangle formed by the tie-line and the two 
segments of the IC curve. This is of course, an approximation, since the vertex is not sharp, 
but rounded. By joining all such points on the phase diagram, the latter can be divided into 
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FIG. 5. Typical IC contours for a substitutionally alloyed steel, given that the tie-line slope B~ is unity 
(after Coates, 1973c). (a) IC contours for a system where Du/D22 = 10, DI2/D I = --0.1, 0, 0.1 for curves 
1, 2 and 3 respectively, and (b) IC contours for a system where Du/D22 = 106, Dt2/D ~ = 0.3, 0, 0.3 for 

curves 1, 2 and 3 respectively. 

two regions, one involving growth with negligible partitioning of 2 (NPLE), and the other 
in which the fast diffuser is forced to keep pace with the slow diffuser (PLE). 

Given that DIJDll is evaluated at c2 = c~ ~, and assuming that eq. 5.7a applies, Coates 
(1973b) has shown that the line f l  = -BjD~2/DH corresponds to the carbon isoactivity line 
passing through (c~ ~, c~); this was first deduced by Hillert (1953) on the basis of qualitative 
arguments. We note, however, that the model of Kirkaldy and Coates is quite general and 
is not restricted to cases where DI~ >>D22, as is that of Hillert. 

5.3.5. Interface velocity (IV) contours 

Coates (1973b) has also defined interface velocity contours; every point on an IV contour 
defines a bulk composition for which precipitate growth proceeds at the same rate. The 
ct/ct + ? and ?/y + a phase boundaries represent two such contours since the interface velocity 
will be infinite and zero respectively for all alloys falling on these boundaries, assuming that 
interface motion remains diffusion-controlled under all circumstances. 

0 . 0 6 ~  V 

011~ . \ . \ . ~  
0 0.01 002 003 

x I 
FIG. 6. Typical IV contours for the Fe-Mn~C (after Coates, 1973c). Curves 1, 2, 3, 4, 5, 6 and 7 

correspond to 100r/i=0.01, 0.05, 0.1, 10, 100 and 500 respectively. 
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For  large DI~/D22, the boundary between the PLE and NPLE regions is also an IV contour. 
All other contours in the ~ + 7 phase field can be derived using eq. 5.19. Of course, the 
velocity is a function of time, so that the contours really represent say lines with a constant 
~ values from which the velocity may be derived for any given value of  time. 

The contours are in general curves, which for DH - D 2 2 ,  follow roughly parallel paths to 
the two phase boundaries. As the ratio D~/D22 increases, there is a progressively increased 
tendency for the IV contours to radiate from the pointf~ ~ 0 on the c, axis in the PLE region, 
and from the point f2 = 1 on the c2 axis in the NPLE region. Typical IV contours are 
illustrated in Fig. 6. 

5.3.6. Tie-line shifting due to soft impingement 

In the kinetic treatments presented earlier, the austenite was assumed to have a semi-infinite 
extent in the region beyond the ~/7 interface, so the composition of the 7 at a large enough 
distance from the interface does not change with precipitate size or with time during 
isothermal transformation. The boundary conditions for diffusion-controlled growth there- 
fore remain constant; it follows that the composition of the ferrite also remains constant 
during transformation and there is no diffusion within the ferrite (since x~ do not change with 
time). 

The assumption of constant boundary conditions is not valid for real systems where the 
7 has a finite extent, since the diffusion fields of  particles growing from different points must 
eventually interfere. Even if transformation involves the growth of  just one precipitate, its 
diffusion field must eventually collide with the limiting surfaces of  the finite specimen. This 
interference is called 'soft impingement' and leads to changing boundary conditions with time. 
The tie-line appropriate for local equilibrium growth must therefore also shift as a function 
of time. As discussed earlier, the tie-line representing interface compositions during trans- 
formation does not pass through the bulk alloy composition in F e - X - C  alloys, but the effect 
of soft impingement is to gradually shift the operative tie-line closer to the bulk composition, 
until it eventually passes through the latter, causing reaction to cease, This also implies that 
the ~ composition at the interface changes with time and the resulting concentration gradients 
formed within the ferrite (extending from the interface in the - z  direction) cause diffusion 
within the ferrite. The diffusion-controlled growth problem than has to be treated by setting 
up diffusion equations (like eq. 5.16, 5.17) for both ~ and 7; the mass conservation eq. 5.15 
also has to take account of  the additional flux at z = Z, due to diffusion in ~ (Tanzilli and 
Heckel, 1968; Randich and Goldstein, 1975; Goldstein and Randich, 1977). 

Goldstein and Randich (1977) have used numerical methods to study tie-line shifting 
during isothermal transformation as a function of precipitate size in Fe Ni-P  alloys (P = 1, 
Ni = 2, Fe = 3). In this alloy, D1~ ~ 100D22. Their results indicate that the major part of the 
precipitate growth occurs during the initial stages of transformation, prior to significant soft 
impingement of the faster diffusing P. During this period, the interface tie-line remains 
constant, and does not significantly alter even after the onset of P impingement. Furthermore, 
precipitate growth is parabolic with respect to time, prior to the beginning of  Ni impingement. 
Growth slows down considerably with the onset of Ni impingement and the tie-line shifts 
towards the tie-line passing through the bulk composition. The precipitate hardly grows 
during this stage, and the phases tend to homogenize during this process. When the interface 
tie-line actually passes through the bulk composition, growth ceases. Goldstein and Randich 
point out that in a real system, where impingement distances may vary, it should not be 
surprising to find precipitates which have different compositions in the same alloy for the 
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same growth time; this implies lack of  equilibrium, but equilibrium in this sense may take 
too long in practice. 

Goldstein and Randich's  numerical treatment becomes extremely expensive in terms of  
computing time, when Du >> 100D22. Gilmour e t  al. (1972b) have presented an approximate 
but analytical treatment (for ~ formation by the NPLE mechanism) of  the soft impingement 
problem in F e - X - C  alloys. Gi lmour  e t  al. consider the movement  of  a planar ~/? interface 
in a direction z which is normal to the interface plane; z is positive in the austenite, and z = Z 
defines the position of  the interface at any time t, with Z = 0 at t = 0. The austenite has a 
finite size L in the z direction, and the one-dimensional growth of  ~ is assumed to begin by 
the N P L E  mechanism. Any diffusion fields in the 7 should follow an error function relation 
(eq. 5.18a, b) but the field can be approximated by assuming the concentration to vary linearly 
with z. The concentration profile is approximated as a straight line, whose end point lies a 
distance Zid ahead of  the interface. The concentration gradient in ? is therefore assumed to 
be uniform, given by (c~ ~ - -gi)/Z~d, where Z~d is an effective diffusion distance for component  
i, defining the region of the austenite in which the concentration differs from ?g. This is the 
Zener (1949) linearised gradient approximation and implies that the diffusion field (of element 
i) extends only a finite distance Zid into the 7, instead of the infinite distance implied by an 
error function. 

Gilmour e t  al. considered the soft impingement process to occur in three fairly distinct 
stages (Fig. 7). In the first stage, the interface moves as if there is no soft impingement, with 
Zld < ( L  - -  Z )  and c~ {L } = ~i, and Z varying parabolically with time (eq. 5.18d). The parabolic 
rate constant ~1 during this stage is obtained by solving eqs 5.19a, d. 

During the second stage, impingement of  the carbon diffusion field with the boundary at 
z = L occurs since Z~d > ( L -  Z ) .  The position of  the interface at the onset of  carbon 
impingement is defined by Z = Z~, and the second stage begins at t = h. During this stage, 
the carbon concentration rises everywhere in the ? ahead of  the interface and C 1 {L} > 71, 
although c2 {L } = c2 since impingement of  component  2 has not occurred. When the carbon 
reaches uniform activity (i.e. when Z = Z2, t = t2) in the austenite, c~ {L} = c~ ". By balancing 
the amount  of  carbon enrichment of  the austenite against the carbon depletion of  the ferrite 
(assuming c7 ~ = 0), it can be demonstrated that for Z2 > Z > Zl, 

Cl {L} ~ [2L~, -- c ~ ( L  - Z ) ] / ( L  - -  Z ) .  (5.23a) 

×7 

O, 
0 Z 1 Z 2 L 

FIG. 7. Diagram illustrating the soft-impingement process described by Gilmour et al. (1972b). The 
carbon concentration of the ferrite is assumed to be zero, and xy" refers to the paraequilibrium carbon 
concentration of the ?. Since Mn does not redistribute during the first two stages of soft-impingement. 

The first stage is completed when Z = Z~, and the second when Z = Z 2. 
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On combining this with eq. 5.15c, and integrating the resulting differential equation gives the 
interface position as a function of time, during stage 2: 

t - - t l ~ _ D , ~ [ ( Z 2 - - Z 2 ) + ( 4 B z + Z Z 2 ) - 2 B ~ l n ( ( Z 2 - Z ) / ( Z z - Z , ) ) ] ,  (5.23b) 

where B2 = L?~/c[ ~ and Z > Z1. We note that eq. 5.23b does not represent a parabolic relation 
between Z and t, and is in this sense inconsistent with the results of the finite element method 
of Goldstein and Randich (1977). Gilmour et  al. also derived t~ by a similar procedure: 

tl ~- L 2?lCi'~/[O,l (ci '~ - ?, )2]. (5.23c) 

For  both of the above equations, D~L = DI~ {c]'~}; t2 can be obtained by substituting say 
Z = 0.99Z 2 into eq. 5.23b. 

For  an F e - M n - C  alloy, Gilmour et al. found t~ + t 2 to be relatively small compared with 
the time required for subsequent Mn diffusion, and hence suggested that the tie-line governing 
interface compositions does not shift at all during the first two stages. 

At the end of the second stage, the chemical potential of the carbon is uniform throughout; 
the third stage involves the slow partitioning of  X from e to y. Gilmour et al. dealt specifically 
with the Fe -Mn C system, and since Mn diffuses much faster in e then in 7, they assumed 
that concentration gradients in e are negligible. During the third stage, the interface tie-line 
shifts such that the rapidly adjusting carbon distribution remains very close to the conditions 
of uniform activity. Using similar methods to those used in deriving eq. 5.23b, they showed 
that the time (t - t2) taken for c~ ~ to change from C~'{t2} to any subsequent value c~;'{t}, is 
given by 

I FIlCh7 It}} 
(t -- t2) = (L2/D22) d[F 1 {c~;{t}}12/r2{c~~'{t2}}, (5.23d) 

,) Fl{@'It}} 

where 

and 

F, {e7  } = (ci '~ - ? , ) / c 7  (5.23e) 

F2 { c ~'~ } = (c ~ - 72)2/[(72 - c ~') (c ~ - c ~' )]. (5.23 f ) 

We note that Fl and F2 can be defined to be functions of just c3 ~ because the other three 
interface compositions are not independent, being specified by a tie-line. The maximum time 
for the third stage depends on the equilibrium X content of the ~, as determined by the 
equilibrium tie-line passing through the bulk composition. Gilmour et al. have shown that 
their model is in reasonable agreement with experimental evidence on F e - M n - C  alloys. 
Finally, we note that eqs 5.23a-c can be used to treat soft impingement in Fe-C alloys after 
making appropriate substitutions for the various concentration terms. 

5.4. Di f fus ion-Con t ro l l ed  Growth  o f  Ferr i te  in F e - X - C  Al loys:  Paraequi l ibr ium 

Kinetic factors often prevent transformations from occurring under equilibrium condi- 
tions; Gibbs (1961), Darken (1949), Darken and Gurry (1953), Baker and Cahn (1971) and 
Cahn (1980) have discussed the different kinds of kinetically constrained equilibria that arise 
naturally. One example of a constrained phase equilibrium is when a phase change is so rapid 
that one or more of  the components cannot redistribute among the phases in the time scale 
of  the experiment. For  transformations in steels, the diffusion coefficients of substitutional 
and interstitial components differ so greatly that it is possible to imagine circumstances where 
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the sluggish substitutional alloying elements may not have sufficient time to redistribute 
during transformation of 7 to e (Hultgren, 1951; Hillert, 1952; Rudberg, 1952; Aaronson et  
al., 1966), even though carbon may partition into the austenite. 

Hultgren introduced the term 'paraequilibrium' to describe the constrained equilibrium 
between two phases which are forced to have the same substitutional to iron atom ratio, but 
which (subject to this constraint) achieve equilibrium with respect to carbon. 

We first consider the thermodynamic definition of  paraequilibrium for a F e - X - C  alloy. 
Equilibrium between austenite and ferrite (of homogeneous compositions x~ and xi~ 
respectively, with i = 1, 2, 3) is said to exist when 

pT{x,~, x2~, x3,} = p~{x,,, x2v x3,} (5.24) 

for i = 1, 2, 3. When eq. 5.24 is satisfied, x~ = x7 ~ and X~y = x~ ~. Austenite and ferrite are said 
to be in paraequilibrium when 

X2a/X3a = X2y/X37 = 2 2 / 2 3  (5.25a) 

and 

#~ = / ~ .  (5.25b) 

The Gibbs free energy change AG per mole reacted for reactions in a closed system, when 
an infinitesimal amount  of  material of composition x~ is transferred from 7 of composition 
x~r to e of  composition x~, is given by: 

AG = xi~(#~ - p~) + x2,(p~ - p~,) + x3,(p~ - #~), (5.25c) 

where the chemical potentials in the ~ and e are evaluated at the compositions xi~ and xi~ 
respectively. 

AG clearly equals zero when e and ~ are in equilibrium, since the chemical potential 
differences are zero (eq. 5.24). The paraequilibrium state is also specified by setting AG -- 0 
(subject to the constraint of  eq. 5.25a), so that on combining eq. 5.25a, b with eq. 5.25c we 
get: 

/A~ - -  ,//2 - -  (,/23 - -  ]23)  ( 2 3 / 2 2 ) -  ( 5 . 2 5 d )  

Equation 5.25c is another description of  the paraequilibrium state and was first derived by 
Gilmour et  al. (1972a). 

We note that during the equilibrium formation of  a from 7, the chemical potential of  
carbon is identical in both phases at the interface, and this remains the case when a forms 
from 7 by a paraequilibrium mechanism. However, the equilibrium and paraequilibrium 
concentra t ions  of  carbon in ct or in ~ will in general differ because the chemical potential of 
carbon is a function of  all elements in solution. The substitutional element concentrations 
are different for the two cases. The equilibrium phase diagram cannot be used to specify 
interface tie-line compositions for paraequilibrium. The paraequilibrium phase diagram is 
constructed on the basis of  eq. 5.25 rather than eq. 5.24 and Hillert (1952) has shown that 
the paraequilibrium phase boundaries lie within the a + ~ phase field of the equilibrium phase 
diagram. Furthermore, the tie-lines of  the paraequilibrium a + 7 phase field all satisfy eq. 
5.25a, and hence represent lines along which the substitutional to iron atom ratio is constant. 
Typical paraequilibrium and equilibrium F e - M n - C  diagrams are illustrated in Fig. 8. It is 
clear that for any given alloy, a critical undercooling below the equilibrium transformation 
temperature is necessary before paraequilibrium transformation becomes feasible. This is 
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FIG. 8. Typical calculated isothermal sections of  the equilibrium and paraequilibrium phase diagrams 
of  the F ~ M n  C system (after Bhadeshia, 1983b). The tie-lines for the paraequilibrium diagram are 
virtually horizontal since the Fe/Mn ratio is constant everywhere during paraequilibrium trans- 

formation. 

simply a reflection of the fact that a relatively lower free energy change accompanies the 
formation of  ferrite which is forced to accept a non-equilibrium substitutional alloy content. 

Ferrite formation under conditions of  paraequilibrium essentially implies that the substi- 
tutional lattice is configurationally frozen and the transformation occurs at a rate controlled 
by the diffusion of  carbon in the austenite; the driving force for paraequilibrium trans- 
formation is dissipated in this process alone. The substitutional alloying elements influence 
kinetics only through their effect on the limiting carbon concentrations at the interface, since 
they alter the thermodynamics of  the 7 ~ transformation (i.e. the phase diagram). There may 
also be a smaller effect on the diffusion coefficient of  carbon through the influence of X 
elements on the activity of  carbon in 7 (eq. 5.11). Having established the paraequilibrium 
phase diagram, the diffusion-controlled growth rate for ferrite can be calculated using the 
theory relevant for Fe-C alloys, after substituting the paraequilibrium carbon concentrations 
for x~ ~ and x~ ~'. This involves the assumption that paraequilibrium exists locally at the 
interface. 

5.4.1. Solute and solvent trapping 

Considering paraequilibrium transformation in F e - M n - C  alloys, with the substitutional 
lattice configurationally frozen, the chemical potential of  Mn in the ferrite that forms is higher 
than in the parent austenite (Mn is an austenite stabilizer). Ferrite formation therefore leads 
to an increase in the chemical potential of the Mn (and, by eq. 5.25d, to a decrease in the 
chemical potential of  Fe); the Mn is therefore passively trapped in the ~ by the advancing 

/7 interface. Baker and Cahn (1969) called this effect 'Solute-Trapping', where a component 
is said to be trapped when it experiences an increase in chemical potential due to the passage 
of the transformation interface. 

If a Fe-Si -C alloy undergoes paraequilibrium transformation to ~, then Si is a ferrite 
stabilizer and its chemical potential decreases on entering the ~ lattice, while that of the major 
component Fe increases; this amounts to 'Solvent-Trapping'. 

Equilibrium transformation involves no solute or solvent trapping. 
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As a general rule (Baker and Cahn, 1971), 

AI~ = #~ - I~ = R T  In [(x~x~)/(x~x~O]. (5.26) 

Component i is said to be trapped when Akti is positive--i.e, when [(x~,x!')/(xi~x~r)] > 1. 
Although ferrite growth is usually considered to occur by either paraequilibrium or 
equilibrium transformation, an infinite number of other possibilities exist. All compositions 
of ~ which allow AG of eq. 5.25c to be zero or negative constitute possible 0~ compositions 
that can in principle form from ~ (Baker and Cahn, 1971). 

For a binary alloy, this implies that ct formation can involve: (1) equilibrium trans- 
formation; (2) transformation in which one of the species is trapped (with A/~ = 0 for the other 
element); and (3) non-equilibrium transformation in which neither solute nor solvent is 
trapped (with A# < 0 for both elements). For a ternary alloy, the following possibilities arise: 
(1) equilibrium transformation; (2) transformation in which one of the species is trapped, with 
another species having equal chemical potential in both phases (e.g. paraequilibrium); (3) 
transformation in which one of the species is trapped, with no species having equal chemical 
potential in both phases; (4) transformation in which two components are trapped; and (5) 
non-equilibrium transformation in which none of the components are trapped. 

Finally, Baker and Cahn (1971) have pointed out that in circumstances where some 
components are trapped, the transfer of components across the interface cannot be 
independent if there is to be a net reduction in free energy. 

5.4.2. The transition f r o m  local equilibrium to paraequifibrium 

When Dl~ >> D22, ferrite growth with local equilibrium at the interface can occur in two fairly 
distinct ways. At low supersaturations, there is bulk partitioning of the slow diffuser, the 
activity gradient of the fast diffuser (in the ?) being reduced to a negligible level. At high 
supersaturations, there is negligible partitioning of the slow diffuser, so that its activity 
gradient in the ~ is large enough to allow it to keep pace with the faster diffusing element. 

Paraequilibrium transformation involves zero partitioning of substitutional elements 
during transformation, the ratio x2/x3 being constant across the interface, even on the finest 
conceivable scale. 

Hillert (1969), and Coates (1973b) have considered the conditions leading to the onset of 
paraequilibrium transformation. Coates has shown that for one-dimensional growth occur- 
ring at high supersaturations, with local equilibrium at the interface, the approximate extent 
(z2a) of the diffusion field of component 2 in the austenite ahead of the interface is given by: 

z2a _~ 2D22/v, (5.27) 

Zzd is therefore a function of  temperature, driving force and particle size Z. As Zzd decreases, 
either due to an increase in v or a decrease in D22, the composition perturbation in the ? ahead 
of the interface becomes smaller in extent until z2d becomes small compared with atomic 
dimensions and loses physical significance. Indeed, Coates (1973b) has suggested that the 
perturbation then becomes a part of the interface, since the dependence of the diffusivity on 
concentration gradient becomes significant, giving rise to a soft-interface energy term as in 
spinodal decomposition. These considerations led Coates to suggest that when z2d ~ 1 nm, 
growth switches from local equilibrium to the paraequilibrium mode?. Since z2a increases with 
particle size, Coates suggests that under suitable conditions, the particle may begin isothermal 

~'Karlyn et al. (1969) used a similar criterion to define the onset of  the massive transformation in binary alloys. 
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growth by a paraequilibrium mechanism and then given way to growth by the local 
equilibrium mechanism. 

Hillert (1969) has applied similar reasoning to the problem and has concluded that with 
increasing undercooling below the equilibrium transformation temperature, local equilibrium 
growth gives way to paraequilibrium; this depends on the unlikely assumption that interface 
velocity increases monotonically with decreasing temperature. Bhadeshia (1983a) has pointed 
out that because of this assumption, Hillert's attempt at explaining the bay in steel 
time-temperature-transformation (TTT) curves is also not correct. 
~While it seems intuitively reasonable that deviations from local equilibrium must arise when 

Z2d becomes comparable to atomic dimensions, Hillert (1981) has pointed out that this 
reasoning fails in the case of pearlite and massive transformations. A large amount of data 
on the effect of alloying elements on pearlite growth can be understood by assuming the 
existence of local equilibrium during transformation, even though calculated values of z2d are 
in most cases less than 0.1 nm (Hillert, 1981). It seems therefore that the criteria governing 
the transition to paraequilibrium are not well established. Coates (1973b) first raised the 
possibility that gradient energy terms may become significant when Z2d becomes small. The 
gradient energy coefficient, which has prominence in the theory of spinodals (Cahn, 1961, 
1962), only becomes significant in diffusion theory when composition gradients are estab- 
lished over very short distances. In the present context, the influence of the gradient energy 
coefficient should be to reduce interface velocity, thereby leading to an increase in Z2d. This 
may be an important factor in the apparent failure of the present criteria for the breakdown 
of local equilibrium, although a detailed analysis is not yet available. 

6. INTERFACE-CONTROLLED GROWTH 

6.1. Pure Iron 

In pure iron, the only factor limiting the growth of ct by the continuous motion of a flat 
~/7 interface is the transfer of atoms across the interface. If the activation free energy (per 
mole) for this process is AG*, absolute reaction rate theory can be used (Christian, 1975) to 
show that 

v = 6b f *  exp{- A G * / R T }  [1 -- exp {-AG~/RT}] (6.1a) 

where 6b is the thickness of the interface, and f *  is an attempt frequency for atomic jumps 
across the interface. For small undercoolings below the equilibrium transformation tem- 
perature, this equation simplifies to 

v = ( 6 b f * / R )  exp{ -- AG * / R T }  [AG~/T], (6.1b) 

so that the velocity is proportional to AG~; the free energy is entirely dissipated in interface 
processes, since AG~ ~ = G, according to eq. 4.2 for pure iron. If the interface is curved then 
the net free energy change accompanying interface motion is reduced in proportion to the 
increase in interface area due to the growth process (Machlin, 1969), leading to a reduction 
in growth rate. 

We note that for the more general case of mixed interface and diffusion-controlled growth, 
eq. 6.1b becomes 

v = ( 6 b f * / R )  exp{-AG*/RT} [GILT] (6.1c) 

J . P M S  2 9 ; ~ "  
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where 

GI = AG'  - GD = AG] ~ - Go. 

Go being the free energy dissipated in driving the diffusion in the matrix ahead of  the interface. 
Equation 6.1a has been derived on the basis of  a specifc model for the interface, but 

Christian has pointed out that there is in general no fundamental justification for expecting 
a l inear relation between driving force and the interface velocity. 

6.2. Iron Alloys 

Local equilibrium does not exist at the interface during interface-controlled growth in 
alloys, the transport of  atoms across the boundary being the rate-controlling factor. Growth 
occurs with virtually no concentration gradient in the matrix at the interface since solute can 
diffuse at a rapid rate compared with interface velocity. It follows that the chemical potential 
of  one or more element is discontinuous at the phase boundary and the flux Jb of  solute across 
the boundary is some function of  the chemical potential discontinuity A#~ (Nolfi et al., 1969). 
For  binary alloys, the simplest assumption takes this flux to be directly proportional to the 
chemical potential difference. Considering interface-controlled growth of  a from metastable 
? in a Fe42  alloy, 

Jb = B3 A/~l = B3 (kt ]~ {c~ } - kt~ {c~ }) (6.2a) 

where B 3 is a proportionality constant. If the a grows with its equilibrium composition, then 
it follows that 

Jb=B3(i t~{c~ ~} - # ~ { c ~ } ) = B 3 ( l t ~ { c ~  ~} - k t~{c~} )~-B4(c~ ' - - c~) .  (6.2b) 

If  v is taken to be linearly related to Jb, then 

v = M (c~ ~ -- c~) (6.2c) 

where M is called the interface mobility. When growth is interface-controlled, c~ ~ ?~ and eq. 
6.2c becomes 

v = M (c~" - ~,). (6.2d) 

Given that the various assumptions made above can be justified experimentally, eq. 6.2c 
implies that v is proportional to the deviation of  the concentration in the matrix at the 
interface, from the equilibrium concentration. Since the chemical potentials of  the two species 
in a binary alloy are related by the Gibbs-Duhem relation, eq. 6.2c can also be written in 
terms of  the concentration difference of  iron atoms. For  higher order alloys in which the 
elements diffuse at significantly different rates, it would be necessary to identify the particular 
element controlling interface velocity. 

Other models (Hillert, 1975) of  interface-controlled growth in steels assume that the 
velocity is some function of  the free energy G1 (eq. 4.2) dissipated in interface processes. If 
the latter is assumed to be proportional to velocity, then 

v = B5 GI (6.2e) 

where B5 is a proportionality constant. For  dilute Fe-C alloys in which the ferrite grows with 
the equilibrium composition, G~ is approximately proportional to (c~ " -  ?~) so that eq. 6.2e 
is similar to eq. 6.2d. 
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7. THE LEDGE MECHANISM OF INTERFACE MOTION 

7.1. Movemen t  o f  an Isolated Ledge 

An interface can move in two ways: atoms may cross all parts of the interface, causing it 
to move as a whole, or they may attach themselves to the product phase only at favourable 
sites such as steps, in which case only the steps move. The normal displacement of the 
stationary part of the boundary then occurs by the passage of such steps across the boundary, 
the amount of displacement depending on the step height. 

It has long been recognised that interfaces whose orientations correspond to sharp minima 
in interfacial free energy (i.e. singular interfaces) will tend to move by a step mechanism, 
rather than by the continuous displacement of every element of the interface (Gibbs, 1961; 
Burton et al., 1950; Aaronson, 1962). Cahn (1960) has presented a general condition for 
predicting whether growth will be continuous or stepped; the occurrence of stepped growth 
depends on the existence of periodic equilibrium interface configurations whose spacing 
determines the height of the steps. Cahn showed that the existence of equilibrium interface 
configurations also depends on the driving force for transformation, so that stepped growth 
becomes less likely at high undercoolings. 

In this section, we consider the rate of motion of an isolated step, noting that theory has 
only been formulated for binary diffusion; it follows that for steels, the theory can only be 
applied to F e ~  and Fe-X alloys and also Fe-X-C alloys which transform by the 
paraequilibrium mechanism. 

If the steps are linear then they are called ledges; Cahn et al. (1964) have shown that for 
a series of ledges of height d, the velocity v with which the stationary part of the interface 
is normally displaced (by the motion of steps) is given by: 

v = dn,. Vs (7.1) 

where ns is the number of steps per unit length and vs is the mean step velocity. Equation 
7.1 assumes the absence of soft-impingement between the diffusion fields of neighbouring 
ledges. 

Jones and Trivedi (1971) first considered the problem of determining Vs for solid-state 
transformations. They considered the steady-state motion of a square ended ledge (moving 
in the direction y, the normal to the interface being in the direction z, Fig. 9). Their method 
involves the approximation that the concentration gradient in the matrix at the step face is 
constant; although this is inconsistent with the steady-state growth assumption (both the 
concentration and its gradient should vary along the step face), the approximation is not too 
severe (Atkinson, 1981). 

Z s 
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FIG. 9. Diagram illustrating the step geometry: (a) single step; and (b) two-step train. 
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For  solid-state transformations, step motion can be controlled by the diffusion of  atoms 
to the step or by the transfer of  atoms across the step or by some combination of  the two 
processes. The dependence of  vs on diffusion in the parent phase can be obtained by 
performing a flux balance across the step face (cf. eq. 5.15): 

vs = Dj l  (OCl/OY)step (C~ --  C~) 1 (7.2a) 

If  growth occurs under interface-control, then c~ ~ c~ ' and if it is assumed that vs is linearly 
proportional to the deviation of  c~ from equilibrium, then: 

vs = M (c~ ~ - c~). (7.2b) 

Since the step is assumed to move at a constant speed, the concentration (c~ {y', z '}) 
distribution with respect to a moving co-ordinate system (y ' ,  z ' ,  Fig. 9) attached to the step 
cannot change with time, c~ {y', z '}  must therefore obey a time-independent diffusion 
equation in two-dimensions. By analogy with Rosenthal's (1946) work on the temperature 
distribution around a moving heat source, the normalised diffusion equation is given by: 

div(Dll grad c~ {y', z '}) + 2p~c~/t~y' = 0 (7.2c) 

where p is the P6clet number (a dimensionless velocity), given by 

p = vsd /2Dl l  (7.2d) 

and the normalised, moving co-ordinates are defined by 

y '  = ( y  - vs t ) /d  (7.2e) 

z '  = z / d ,  (7.2f) 

c't is a dimensionless solute concentration in the matrix, given by 

c~ = [el {y ' ,  z '  } - "~]/(c~ - 7 , ) .  (7.2g) 

Using eq. 7.2g, a function H3{p} can be defined as follows: 

H 3 { p }  ' ' - '  = : - - ( O C l / O Y  )step (-(, - -  C~)/[d(Ocl/OY)step].  (7.2h) 

By combining eqs 7.2a, b and 7.2h, Trivedi and Jones derived the following relation for v: 

vs = M ( ~  - c~') [1 + M ( c ~  ~ - c~ ~) ( d / D t ~ ) H 3 { p  } - 2pH3 {p }] -~. (7.3) 

The equation takes account of  both matrix diffusion and interface kinetics effects and it 
remains to obtain the function H 3 (which is the negative of  the reciprocal of  the concentration 
gradient at the step), by solving the differential equation 7.2a subject to boundary conditions 
which allow the concentration gradient at the step face to be constant, and which include the 
condition that the step progresses without change of  shape. Equations expressing these 
boundary conditions are (Jones and Trivedi, 1971; Atkinson, 1981): 

Oc'J~3z' = 0 on z '  = 1 ,y '  < 0 (7.4a) 

OC'l/OZ' = 0 on z '  = 0 , y '  > 0 (7.4b) 

OC,i/t~ 2, = _(H3 ) 1 on y '  = 0, 0 < z '  < 1. (7.4c) 

The first two boundary conditions ensure that the isoconcentration contours around the 
ledge (in the matrix) are always normal to the stationary parts of  the interface. Equation 7.4c 
specifies a constant concentration gradient at the step face. Trivedi and Jones (1971) 
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determined/-/3 by using numerical techniques, but their calculations do not seem to be correct 
(Atkinson, 1981). Atkinson used two methods to solve for H3: the more rigorous method was 
based on the numerical solution of eqs 7.2, 7.4. The other method involved a singular 
perturbation technique (valid for p << 1) in which an 'outer'  solution is obtained for the region 
where step geometry in unimportant and an 'inner' solution is obtained for the region near 
the step where details of step geometry are all important. The two solutions are then matched 
to provide a complete solution. Atkinson's solutions for H3 are shown in Fig. 10, but for 
p < 0.01, singular perturbation theory gives: 

H3{p} = (1/~) [1 -- C - ln(47t/p)] (7.4d) 

where C is the Euler constant approximately equal to 0.5772. 
Both Atkinson, and Jones and Trivedi found the concentration distribution around the 

ledge to be assymetrical in y ' ,  the type of assymetry differing in detail, since in Jones and 
Trivedi's treatment c~ becomes zero at some finite distance from the ledge. According to 
Atkinson, c~ should only be zero at infinity, the concentration distribution (in the 'outer'  
region) being defined by: 

c ' { y ' ,  z'} = [1/(H3~)] exp{-py '}Ko{p[ (y ' )  2 + (z'):] °'5 } (7.5) 

where K0 is a modified Bessel function of  zero order. 
The diffusion profile decays exponentially to zero in front of the step, but decays as 

p [(y,)2 + (z ,)2 ]o.5 behind the step. The fact that the extent of the field is larger behind the ledge 
contradicts the results of Jones and Trivedi. Equation 7.5 is obtained using the singular 
perturbation method and is valid for p < 0.01. A diagram illustrating the diffusion field of  
an isolated step has been published by Enomoto et  al. (1981), but it seems inconsistent with 
eqs 7.4a, b since the isoconcentration contours do not end normally on the stationary parts 
of the stepped interface. 

10 0 

10_ 1 '~k~b  

10 4+ , i 
0 2 z~ 6 

H3tP] 

P 
10-2 

10-3 

_ C  

FIG. 10. The functions H3{p}; curves (a) and (b) represent a numerical solution, and an approximate 
solution using singular perturbation theory (after Atkinson, 1981) respectively and curve (c) is due to 

Trivedi and Jones (1971). 
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A useful form of eq. 7.3, relating f~ to p, has been given by Jones and Trivedi: 

f l = 2pH3 + (p /q)  [1 - 2pH3] (7.6a) 

q = M(c~ ~ - c~')/(2DH/d). (7.6b) 

As interface mobility tends to infinity, eq. 7.6a reduces to 

f l = 2pH3 (7.6c) 

while if M---,0, then 

v ~ M ( c ~  ~ - ~ ). (7.6d) 

7.2. Multistep Interactions 

An analysis of the growth characteristics of trains of steps was first considered by Jones 
and Trivedi (1975), but because it was based on an incorrect evaluation of H3, Atkinson 
(1982a) re-analysed the problem for the case where volume diffusion in the parent phase is 
assumed to be rate-controlling. 

If trains of steps exist in which the steps all have equal heights, then they cannot have 
identical speeds. In a two-step train, the leading step always advances into fresh parent phase, 
whereas the trailing step moves in a region influenced by the back diffusion field of the leading 
step. Hence, for steady-state motion, the trailing step has to have a smaller height in order 
to keep up with the leading step (Atkinson, 1982a). 

For the purposes of kinetic theory, a two-step train can be characterised in terms of 
dimensions normalised relative to the height d of the leading ledge. The normalised height 
of the leading ledge is then unity. The height of the trailing step divided by d is its normalised 
height dj and the normalised separation of the ledges is written hi. When hi >> 1, the diffusion 
field of a two-step train, in the 'outer' region can be approximated by considering the steps 
as line sources located at ( y ' =  -h~, z ' =  0) and ( y ' =  0, z ' =  0). For diffusion-controlled 
growth, eqs 7.6c and 7.5 give: 

c '{y ' ,  z '}  = [2p/(r~f~ )] [exp{ - p y ' } K o  {p [(y')2 + (z')2]°'5 } 

+ d I exp{ --py" +ph] }Ko{p[(y" + h,)  2 + (z" - 1)21°'5}]. (7.7) 

If the ledges in a two-step train are to move with the same speed, then their heights must 
differ; for a specified separation hi, a value of d~ and p consistent with the two-step train 
moving with constant speed can be obtained by the simultaneous solution of: 

d r e x p { - p h l } K o { - p h z }  + [1 - C -ln{p/47z}] =f]rc/2p, (7.8a) 

exp{phl } K o { - p h l  } + d][1 - C - ln{pdl /47r}]  = f lrt/2p. (7.8b) 

The equations show that for a pair of widely spaced steps moving at the same speed, the size 
of the trailing step is smaller than the leading step for a given value of p. For hi >> 1, dl 
decreases as hi decreases. Extension of the analysis to include closely spaced steps shows that 
d~ goes through a minimum as hi decreases; the value of d~ at the minimum decreases as p 
increases (Fig. 11). The form of the curves in Fig. 11 implies that for values of d~ above the 
minimum, there are two spacings for which the steps travel at the same speed, the larger 
spacing corresponding to the stable configuration of the train. If dt becomes lower than the 
minimum value, then the train is unstable, the trailing ledge catches up and merges with the 
leading ledge. 
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FIG. 11. Plots of normalised height (d I ) of trailing ledge vs. normalised ledge separation (h t ) for a 
two-step train in which the normalised height of the leading ledge is unity (after Atkinson, 1982a). 

Equations 7.8 can also be used to show that if the height of  the two-steps is forced to be 
equal, then the concentration gradient at the trailing step will be reduced due to the dumping 
of solute from the diffusion field of the leading step. The trailing step will then have a smaller 
velocity. 

Atkinson has generalised these results to trains containing many steps, and in all cases 
where h~ >> 1, he finds that vs is reduced as the number of steps in the train increases. Other 
results can be summarised as follows: (i) for closely spaced pairs of steps travelling with equal 
speed, d~ increases as h~ decreases (Fig. 11); (ii) as the separation of steps moving with equal 
speed decreases, so does their velocity; (iii) steps of  equal height tend to separate when h~ is 
large, but tend to coalesce when hj is small, the changeover occurring at a smaller value of 
h~ as p increases. 

7.3. Ledge Motion in a Medium of Finite Extent 

Atkinson (1982b) considered the problem of  steady-state ledge motion during solid-state, 
diffusion-controlled transformation in a phase whose extent is limited to a finite length L in 
the z '  direction. The concentration gradient at an isolated step moving at a constant speed 
is in such circumstances a function of L and for p << 1, L/d>> 1, is given by: 

--(t~c~/Oy')-' = H4{p} = (1/~z) [1 - C +/-/5 + ln(47r/p)] (7.9a) 

where //5 is a complicated function of Lid and p such that Hs---,0 as L/d-oinfinity. H 5 is 
positive as Lid becomes finite and for pL/d<< 1, is approximately given by: 

H5 ~ rrd/2pL. (7.9b) 

It follows that H4-oH3 as L/d-oinfinity (cf. eqs 7.9a, 7.4d). The concentration gradient (and 
velocity) at a step moving in a finite medium is therefore smaller relative to that moving in 
an infinite medium; the concentration distribution around such a ledge, in the 'outer '  region, 
is given by: 

c'{y', z'} = [1/(H4~)] exp{--py'} [Ko{p[(y') 2 + (z')2] °5 } +/ /5] .  (7.9c) 

The concentration at any point in the matrix is therefore higher relative to the case where 
an infinite medium is involved. Atkinson showed that as Lid increases, v s increases but that 
for p > 0.1, L/d > 10, Vs becomes insensitive to further increase in L/d. 
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A surprising result is that v s = 0 if f~ = d/L, because the movement of a ledge in these 
circumstances would force the concentration in the matrix behind the ledge to a level higher 
than c~ ~. 

7.4. Relative Kinetics of  Stepped and Continuous Growth 

Because atoms are only attached to the product phase at a fraction of the boundary, the 
piecewise displacement of the boundary by step motion must initially be slower than 
continuous growth, in which every element of the interface is displaced simultaneously. 
However, for diffusion-controlled growth in the absence of soft-impingement effects, the rate 
of continuous growth decreases with time (eq. 5.2) whereas vs is independent of time. It has 
been argued that for this reason, ledged motion must eventually overtake continuous growth 
(Atkinson et al., 1973b; Enomoto et al., 1981). On the other hand, the movement of a step 
across an interface causes a build up of solute along the interface so that the boundary 
conditions governing the motion of any succeeding step must be altered (i.e. the super- 
saturation reduced). There should therefore be a progressive change in the boundary 
conditions of successive steps and hence a progressive reduction in their velocity (Christian, 
1975). In these circumstances, stepped growth may never give a larger growth rate than that 
for continuous growth, as predicted by the respective linear and parabolic growth laws. 

Another problem with the application of such ideas is the absence of information on factors 
governing the rate of ledge nucleation and ledge height. These determine the geometry of the 
stepped interface and hence the rate of interface motion. 

Bhadeshia (1982b) has considered the problem of ledge nucleation. According to Cahn 
(1960), the occurrence of stepped growth depends on the existence of periodic equilibrium 
interface configurations; the spacing of such configurations should presumably correspond 
to that of the lattice planes parallel to the plane of the interface, so that the steps which 
accomplish growth would be expected to be of atomic height. However, it is now well 
established that the diffusional formation of ferrite in steels often occurs by the movement 
of 'superledges' whose heights can reach several hundreds of lattice spacings (e.g. Honey- 
combe, 1976). Bhadeshia suggested that this may happen due to the difficulty of nucleating 
smaller ledges, the minimum ledge height d* being given by: 

d* = tr/AQ, (7.10) 

where a is the interfacial energy per unit area of the stationary part of the stepped interface 
and AGv is the Gibbs free energy change (per unit volume) for the nucleation process. The 
equation does not set an upper limit to the ledge height, but does seem to correctly predict 
the temperature dependence of d (Bhadeshia, 1982b). 

While nucleation processes must be of importance in determining d, Atkinson's work on 
the stability of ledge trains may provide other clues to this problem. 

8. SOLUTE-DRAG 

Experiments in recrystallisation have convincingly demonstrated the existence of solute- 
induced diffusional drag on grain boundary motion. The addition of small quantities of 
'impurities' can be shown to lead to large changes in the recrystallisation temperatures of 
deformed materials. Such results can be qualitatively rationalised in terms of the association 
of solute atoms with moving grain boundaries (Lueke and Detert, 1957; Cahn, 1962b), the 
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solute-boundary interaction energy Gs being negative or positive, depending on whether there 
is adsorption or desorption (respectively) of the impurity at the boundary. Under certain 
circumstances, the solute atoms can be expected to be 'dragged' along (Gs < 0) with, or pushed 
ahead (Gs > 0) of the boundary, reducing its rate of migration, relative to that expected in 
a pure material. In considering solute-drag during transformation, it is useful to begin by 
emphasizing and briefly reviewing some of the relevant aspects of 'conventional' drag theories 
which deal with the motion of grain boundaries. 

8.1. Conventional Solute-Drag Theories 

8.1.1. Diffusion coefficients for solute-drag theory 

All the conventional theories on solute-drag require the segregation (or desegregation) of 
solute atoms to the interface (to a level which differs from the bulk solute concentration ?i). 
The interface itself is assumed to have a finite width 6b, usually defined as the distance normal 
to the interface plane, over which the solute-interface interaction free energy Gs is non-zero. 
The drag force (P) on the boundary is obviously zero when segregation does not occur, or 
when the composition profile due to the segregation is symmetrical with respect to the centre 
plane of the interface. For a moving boundary, the existence of a finite drag requires the 
diffusion of solute atoms in the direction of boundary motion; one of the major difficulties 
in applying solute-drag theory to real problems is the suitable choice of a diffusion coefficient 
describing this process. 

In his theoretical paper on drag effects, Cahn (1962b) took the diffusivity to be some 
function of the distance from the centre of the boundary, presumably approaching the value 
of the bulk diffusivity at large distances normal to the interface. At the centre plane of the 
boundary, the diffusion coefficient would be given by the grain boundary diffusivity. By 
referring to the results of Turnbull and Hoffman (1954), Cahn suggested that the diffusivity 
would increase typically by a factor of 10 6 a s  the centre of the boundary was approached. 
However, the work of Turnbull and Hoffman was concerned with solute transport along the 
grain boundary, rather than across it--solute drag on the other hand relies on impurity 
diffusion in the direction of boundary motion, and across the boundary itself. The diffusivity 
of an interface must in general be considered to be highly anisotropic, reflecting the nature 
of its defect structure. Hence, it is not surprising that the movement of atoms along the 
interface is easier than that in the bulk of matter--interface dislocations should act as pipes 
for the channelling of atoms. However, the transport of atoms across the interface may be 
a very different problem (Shewmon, 1965); it is now well established that the boundary 
structure can in general be described in terms of areas of good fit (and hence little free volume, 
relative to an ideal crystal) separated by localised regions of higher distortion (e.g. interface 
dislocations). Under these circumstances (at least for coherent and semi-coherent interfaces), 
the diffusion coefficient describing the movement of atoms across the interface, must be more 
closely related to bulk diffusivity. These problems are further emphasized by the fact that the 
boundary width 3 b in the solute-drag theories is usually assumed to be equal to a few 
interatomic distances. Such a large 6b is probably acceptable when 6b is defined as the region 
over which Gs is non-zero. However, it is not obvious that the diffusivity should also vary 
over the same distance 6b. 

Finally, there have been suggestions (Smidoda et al., 1978, 1979) that the diffusivity of a 
moving boundary is higher than that of a stationary one. It is not at all obvious how this 
might influence the concepts of the solute-drag theory. 

I p M S  2 9 ~  
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8.1.2. Interaction free energy 

While Cahn's solute-drag theory is general, in the sense that both D and G~ can be expressed 
as functions of the distance (z - Z), it is usually necessary to make simplifying assumptions 
about the forms of these functions. The way in which the drag force P varies with Gs has 
been considered by Hillert and Sundman (1976). For cases where Gs varies gently from zero 
(at z - Z = __+ (6b/2)) to some other value within the boundary, the drag force P goes through 
a maximum as the interface velocity increases. However, if Gs changes discontinuously from 
a constant value within the boundary to zero at z - Z  = + (6b/2), P never decreases with 
increasing velocity. As Hillert (1969) pointed out, the former choice of Gs is probably more 
realistic, especially when the discrete nature of lattices is taken into account. Nevertheless, 
it is recognised that in the absence of detailed knowledge on solute/interface interactions, the 
choice of Gs must be somewhat uncertain. The form of Gs also determines the region of the 
boundary from which the main component of the drag force originates (Cahn, 1962b; Hillert 
and Sundman, 1976). The value of diffusivity in those particular regions would then control 
the drag effect (Cahn, 1962b). This complication may be minimised if D was always close to 
bulk diffusivity, as suggested earlier for semi-coherent interfaces. 

8.1.3. Composition profile at the boundary 

The drag theories either predict (Cahn, 1962b), or are designed (Hillert, 1969; Hillert and 
Sundman, 1976) so that the solute concentration behind (trailing) the interface, during 
steady-state motion, is always equal to the bulk solute level ?i, as if the boundary did not 
exist. The solute concentration at z -  Z < (--6b/2) is thus always ?i- For a stationary 
boundary, the concentration of solute differs from ?i within the region 
( - - 6 b / 2  ) < z - -  Z < ( 6 J 2 ) .  For a moving boundary, the composition differs from ?~ not only 
within the boundary, but also in front of it, irrespective of whether Gs is less than or greater 
than zero. The extent of penetration into the region beyond z -  Z = (66/2) depends on 
interface velocity amongst other factors. 

8.l.4. Drag at interphase-interfaces 

The theory for solute segregation induced drag on transformation interfaces is not well 
established and the experimental evidence in this area is all the more difficult to interpret. 

Hillert (1969, 1975) and Hillert and Sundman (1976) first extended the concepts of grain 
boundary drag theory to apply to certain special cases of interphase interfaces. They 
considered transformations in which the product (ferrite) formed from the parent (austenite) 
without any change in composition--however, the transformation considered was not 
martensitic, because substitutional solute atoms were allowed to segregate within the 
interface, with a solute concentration spike in the austenite adjacent to the interface. The 
height of this extremely narrow concentration spike was chosen to be consistent with the 
existence of local equilibrium at the interface. Free energy is thus dissipated in driving the 
X atom spike ahead of the interface, and in driving the diffusion of X atoms which have 
segregated in the boundary itself. This dissipation of free energy manifests itself as a drag 
force on the interface. 

As the velocity of the interface increases, the height of the solute spike in the austenite 
deviates from local equilibrium; it follows (Hillert and Sundman, 1976) that less free energy 
is dissipated in driving this reduced spike and so that its contribution to the total drag force 
diminishes. Eventually, at high enough velocities, only the atoms segregated within the 
interface contribute to the drag force. 
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In many ways, the theory relies heavily on the local equilibrium concept, and in addition, 
is acknowledged (Hillert and Sundman, 1976) to be restricted in applicability to trans- 
formations whose parent and product phases have identical compositions. It is not clear 
whether interface segregation induced solute-drag would significantly contribute in circum- 
stances where the parent and product phases differ in composition and hence require the long 
range diffusion and redistribution of solute during transformation. 

Recently, there have been suggestions implying the existence of significant interactions 
between substitutional alloying elements and austenite-ferrite transformation interfaces. 
These have all been referred to as 'special' drag effects, since it is claimed that they operate 
when the transport of solute atoms in the direction of boundary movement can be ruled out. 

8.2. Special Solute-Drag Effects 

8.2.1. Interaction of  carbide-forming elements with interfaces 

One of the first special drag effects was proposed by Kinsman and Aaronson (1967) who 
sometimes found the growth rate of allotriomorphic ferrite (in Fe-Mo-C alloys) to be lower 
than expected from paraequilibrium theory. The observed interface velocities seemed too 
large to be consistent with the dragging of Mo atoms "along with the interface" by any 
"volume diffusion or volume diffusion like process". On the other hand, steels containing 
ternary additions of Mn or Si exhibited allotriomorphic ferrite growth kinetics somewhat 
more consistent with paraequilibrium transformation. This stimulated the suggestion that 
elements which are strong carbide formers have a tendency to 'be bound' to 'disordered' 
austenite-ferrite interfaces, due to the higher carbon concentration that would be expected 
to exist in the austenite at the transformation interface, during growth involving the 
partitioning of carbon between the parent and product phases. Presumably, this binding 
between the Mo atoms in the interface and the C atoms in the adjacent austenite would hinder 
the transfer of the Mo atoms into the ferrite lattice. Kinsman and Aaronson further suggested 
that the Mo atoms may be required to diffuse short distances along the interphase-interface 
before completing their transfer into the ferrite, or alternatively, may simply serve as 'pinning 
points' around which the boundary must bend before it can break away. 

Before discussing these ideas in detail, it seems that in the original version of the proposal 
(Kinsman and Aaronson, 1967), the segregation of Mo (or other substitutional alloying 
elements) atoms to the interphase-interfaces concerned was not implied (although a later 
paper (Aaronson, 1969) mentions the "segregation of certain alloying elements to 
austenite-ferrite interfaces"). However, the time of stay of the Mo atoms in the interface was 
said to be greater than that of weaker carbide formers, so that the iron atoms in the same 
alloy can be expected to move relatively more rapidly into the ferrite. This must lead to an 
enrichment of Mo in the interface. Because of these difficulties of interpretation, it was felt 
necessary to examine the implications of 'special drag effects' both in circumstances where 
the ratio of substitutional atoms to iron atoms is constant throughout the transforming 
material (absolutely no segregation anywhere), and for cases where interfacial segregation of 
X atoms is envisaged. 

8.2.2. The zero-segregation case 

Conventional solute-drag theories are not applicable in such cases and the special drag 
effect (Kinsman and Aaronson, 1967) involves the concept that the Mo atoms (or any other 
carbide forming atoms) should experience a binding force with the high-carbon region in the 
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austenite at the interface. It might intuitively seem reasonable that a strong carbide-former 
such as molybdenum should behave in this manner. Nevertheless, such an approach does not 
take proper account of all the other more subtle interactions that must exist between the Mo 
atoms and the Fe~, F% and C~ atoms, respectively. Bhadeshia (1983a) has shown that despite 
the high carbon concentration in the ~ at the interface, the Mo atoms prefer to be in ~ for 
the experiments reported by Kinsman and Aaronson. 

8.2.3. Special drag with segregation at the interface 

More recent developments (Aaronson, 1969; Aaronson et al., 1970; Bradley and Aaronson, 
1981) of the original (Kinsman and Aaronson, 1967) special drag theory have definitely 
involved the segregation of X elements at the austenite-ferrite transformation interface. Such 
segregation is supposed to occur "through a sweeping up" of the X atoms, rather than by 
the diffusion of these atoms through the austenite and/or ferrite to these boundaries. The 
segregated X atoms are then meant to significantly effect the activity of carbon in the austenite 
which is in contact with these interfaces, thereby altering the carbon concentration profile 
(and hence the interface migration rate) in the austenite ahead of the interface. 

X elements which reduce the activity of carbon in austenite are therefore claimed to 
decrease the carbon concentration gradient in the austenite, leading to a drop in the rate of 
boundary movement. On the other hand, X elements which increase the activity of carbon 
in austenite would then have the opposite effect on growth kinetics (referred to as an "inverse 
solute-drag-like effect"; Shiflet et al., 1981a). 

There are a number of difficulties with these concepts. Firstly, the proposal that the 
segregation profile of X elements, at the interface, should be solely confined to the interface 
and not extend into the austenite (since X is not supposed to diffuse through the volume of 
the austenite) may not be correct for a moving interface (for a stationary interface the drag 
force P is zero anyway). Cahn's theory clearly shows, for the grain boundary case, that the 
solute profile in the vicinity of the moving interface always extends into the region beyond 
the interface (i.e. in the region z -  Z > 6b/2). It is interesting that when Gs < 0 in the 
boundary, there is expected to be a decrease in solute concentration, in the austenite just 
ahead of the interface (see Fig. 2; Cahn, 1962b). 

Secondly, the concept that an X element which is segregated into the interface will have 
an effect on the carbon activity in the adjacent austenite is itself doubtful. The proposal 
ignores the fact that the segregation of X will only occur to the extent that the partial molar 
free energy of X in the interface equals that in the austenite, and it fails to treat the boundary 
as a thermodynamically separate phase. Even though the concentration of X in the interface 
may be different from that in the bulk of the austenite, its influence on the activity of carbon 
in austenite will be identical to that of the X atoms present in the bulk of the austenite. 

There is a further difficulty in the concept that the segregating X elements which reduce 
the activity of carbon in austenite would lead to a decrease in the carbon concentration 
gradient ahead of the interface and hence reduce the growth rate. The limiting carbon 
concentrations in each of the phases (c~ r, c~ ~) at the interface during diffusion controlled 
growth are calculated from the condition that the partial molar free energy of carbon in each 
phase is equal. If an X element reduces the activity of carbon in austenite, then to maintain 
this equality of partial molar free energies, the concentration (and hence concentration 
gradient) of carbon (i.e. c~ ~) must correspondingly increase, in contradiction with Kinsman 
and Aaronson's hypothesis. 

Finally, it should be noted that the diffusivity of carbon in austenite is influenced by the 
activity coefficient describing the solution of carbon in austenite, and by the carbon-carbon 
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interaction energy. Both these factors depend on substitutional alloying element con- 
centrations, so that the rate of growth cannot be discussed simply in terms of concen- 
tration gradients ahead of the interface--the effect on diffusivity must also be taken into 
account. 

8.2.4. Interaction of clusters with interfaces 

Sharma and Purdy (1973) proposed that special solute-drag effects may arise if elements 
such as Cr or Mo tended to form clusters in the austenite, such that carbon atoms became 
associated with these clusters. Since ferrite can only accommodate a very limited amount of 
carbon, the motion of the transformation interface would be hindered by the need to strip 
these clusters from their carbon atomspheres. 

In trying to explain various features of TTT curves, Sharma and Purdy went on to suggest 
that since the formation of clusters (by volume diffusion in the austenite) would be most 
difficult at lower temperatures, the proposed drag effect should also be most pronounced at 
low temperatures. This, however, seems illogical since the less easy formation of clusters at 
low temperatures should reduce any hinderence to interface motion. 

Finally, it is appropriate to note that (for low-alloy steels, at least) the activity coefficient 
of both Mo and Cr in austenite (Kirkaldy and Baganis, 1978) are less than unity, implying 
that these elements do not tend to cluster in austenite. 

9. EXPERIMENTAL MEASUREMENTS OF GROWTH KINETICS 

9.1. The Thickening of Ferrite Allotriomorphs 

Aaronson (1962) has exhaustively reviewed the experimental data on the growth rate of 
allotriomorphic ferrite in low-alloy steels; much of the work prior to 1962 was carried out 
on rather impure steels, sometimes containing several substitutional alloying elements. This, 
combined with the indirect techniques used has made the results difficult to theoretically 
interpret (Aaronson et al., 1970). Nevertheless, much of the early data can be interpreted to 
imply that the rate of thickening of allotriomorphic ferrite is approximately proportional to 
the reciprocal of the square root of time (parabolic thickening), indicating 
diffusion-controlled ct/y interface motion. 

Purdy and Kirkaldy (1963) designed an elegant experiment to get around the difficulties 
associated with the earlier work. The experiment involved the construction of a 
diffusion-couple, by decarburizing a high-purity plain carbon steel. The resulting poly- 
crystalline layer of ferrite on homogeneous, polycrystalline austenite was subsequently 
isothermally heat-treated in the (~ + y) phase field, causing the macroscopically planar ~/y 
interface to move. The movement was monitored metallographically by measuring the 
thickness of the ferrite layer after quenching the couple to ambient temperature. The same 
couple was then re-heated to the isothermal transformation temperature to allow the same 
interface to move again. This procedure permits the continuous monitoring, the same 
interface and eliminates certain statistical errors. The simple geometry of the diffusion-couple 
means that the stereological difficulties associated with methods which deal directly with 
ferrite allotriomorphs (randomly orientated with respect to the plane of polish) are also 
avoided. Since the macroscopic interface separating the two parts of the diffusion-couple is 
on a smaller scale composed of many different kinds of 0t/7 interfaces, the experiment really 
monitors the properties of a crystallographically averaged interface. If local equilibrium is 
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assumed, then the parabolic rate constant a~ can be determined from Wagner's diffusion 
solution applicable to the motion of a planar interphase-interface in a binary diffusion-couple 
(Purdy and Kirkaldy, 1963). Purdy and Kirkaldy determined ~l =0.71 +0.05#ms °5 (at 
792°C), in excellent agreement with the value expected theoretically (0.73 pms°5), proving 
that at 792°C the ~/7 interface motion is controlled by the diffusion of carbon in the austenite 
ahead of the interface. 

Purdy, Weichert and Kirkaldy (1964) applied the above method to diffusion-couples 
consisting of electroplated layers of pure iron on various Fe-Mn-C alloys (1.52-3.16 Mn, 
0.21~0.34 C wt.%), transformed between 725-760°C. The solutions to the diffusion problem 
for Fe/Fe-Mn-C diffusion-couples were obtained using Kirkaldy's (1959) general solutions 
for ternary diffusion, for the case where diffusion occurs in both the ferrite and austenite. In 
all the cases investigated, Purdy et al. found the interface position to vary in proportion to 
the square root of time, indicating diffusion-controlled interface motion. Furthermore, the 
resulting parabolic rate constants compared well with theoretical values calculated on the 
basis of local equilibrium at the interface (NPLE). These are important and accurate results, 
but as will be seen later, the current opinion is that Fe-Mn-C alloys transform by the 
paraequilibrium mechanism (thermodynamics permitting), since Z2d is usually found to be so 
small as to appear physically insignificant. 

Aaronson and Domian (1966), made a detailed electron microprobe study of the bulk 
partitioning of substitutional alloying elements during the formation of ~ in Fe-X-C alloys 
(X = Si, Mn, Ni, Cr, Mo, Co, AI, Cu or Pt). Their results indicate that bulk redistribution 
of substitutional elements does not occur during transformation as long as the alloys are not 
transformed at a high temperature where such redistribution is a thermodynamic necessity. 
At higher undercoolings, bulk partitioning was not detected, indicating ~ growth by the 
NPLE or paraequilibrium mechanism. 

Kinsman and Aaronson (1969, 1973) used a hot-stage thermionic electron emission 
microscope (THEEM) to study the growth of individual ferrite grain boundary allot- 
riomorphs in high-purity plain carbon steels, and ternary steels containing one of Mo, Mn, 
Si, A1 or Co as the substitutional alloying element. Isothermal transformation experiments 
were carried out within the temperature range 690-920°C, depending on the alloy concerned. 
THEEM is a powerful technique allowing particular interfaces to be continuously monitored, 
as in the diffusion-couple experiments, but unlike the latter, the ~/7 interface can be at any 
arbitrary angle to the plane of observation. Bradley and Aaronson (1977) have shown that 
this can lead to stereological errors which are difficult to correct, so that absolute values of 
parabolic rate constants obtained using THEEM can be misleading. Significant information 
can nevertheless be obtained about the time dependence of interface position; in all of their 
experiments, Kinsman and Aaronson found the interface to move under diffusion-control, 
although the actual mechanism (PLE, NPLE, paraequilibrium) cannot be clearly deduced in 
view of the potentially large stereological errors, which also seem to account for the large 
scatter in experimental cq values obtained using THEEM (Bradley and Aaronson, 1977). In 
spite of these difficulties, Kinsman and Aaronson were able to show that A1, Si and perhaps 
Co all increase the growth rate of allotriomorphic ferrite (relative to Fe-C alloys), consistent 
with the fact that these elements increase the free energy change accompanying the 7 ~ 
transformation. 

Kinsman and Aaronson also suggested that the presence of relatively low interface energy 
facets on parts of some a/~, boundaries may lead to further scatter in ~1 data. These facets, 
presumably being less mobile, could hinder the progress of the boundary as a whole. It was 
also suggested that if the facets are displaced by a ledge mechanism, then circumstances could 
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arise where the facetted parts of  the boundary could be displaced faster than the unfacetted 
parts, due to the point-effect of  diffusion at the ledge corners. While these ideas seem 
reasonable in principle, it remains to be demonstrated that the presence of facets leads to 
scatter in the parabolic rate constants. Indeed, the facetting seems to be inconsistent with the 
observed parabolic kinetics. If  the process of atom transfer across the interface becomes 
restrictive (as in the low mobility facets) then the rate at which an interface moves is generally 
assumed to be constant with respect to time. This can also be the case when the displacement 
of the facets occurs by a ledge mechanism if the frequency of ledge nucleation is constant. 
Under these circumstances, the position of  the overall interface should not be proportional 
to the square root of time, as is observed experimentally. 

To avoid the sterological problems of  the T H E E M  method, Bradley et al. (1977) used a 
technique developed by Boswell et aL (1968) to study the growth kinetics of ferrite 
allotriomorphs in plain carbon steels (0.11-0.42wt.%C), for the temperature range 
710-840°C. The technique involves the use of very thin steel specimens (~250  # m  thick), 
austenitised at 1300°C for 30 min to develop a very large austenite grain structure in which 
the y boundaries lie normal to the broad faces of the specimen. If the e/7 boundaries formed 
on transformation turn out to be parallel to the original y/y boundaries, then metallographic 
examination of  the broad face of the specimen can yield approximate values of  the true 
allotriomorph thickness. This is assumed to happen and all reported results rely on the 
assumption that the interface is perfectly normal to the plane of observation. Any errors 
should certainly be smaller than those using the T H E E M  method. A disadvantage is that the 
method does not allow the progress of  an individual allotriomorph to be followed, since 
measurements, as a function of time, are taken on different specimens isothermally trans- 
formed for different time periods. In each specimen, it is the thickest allotriomorph that is 
measured. This could lead to significant errors if the incubation period for the nucleation of 

is relatively large. 
Bradley et aL (1977) found that in all cases, the experimental e, values were significantly 

lower than those calculated using the Atkinson's method for oblate ellipsoids (Atkinson, 
1969). These discrepancies were again attributed to the presence of lower interracial energy 
facets. 

Bradley and Aaronson (1981a) applied the same experimental technique to 
Fe-l .73Si-0.40C (725-825°C), Fe-3.28Ni-0.12C (650-715°C), Fe-7.5Ni-0.43C (530 570"C), 
Fe-3.08Mn-0.12C (550-650°C) and Fe-2.99Cr~). 13C (600-800°C), the concentrations being 
in wt.%, with the transformation temperature range indicated in the brackets. In all cases, 
the thickness of the allotriomorphs was found to be approximately proportional to the square 
root of time (0.70 < n < 0.32)# with the experimental ~ values being within an order of  
magnitude of  those calculated assuming paraequilibrium transformation. The Si containing 
steel was in general found to transform at a rate faster than expected from paraequilibrium 
theory, the remaining steels generally showing the opposite behaviour. Bradley and Aaronson 
also compared their experimental data with calculations based on the assumption that growth 
occurs with local equilibrium at the interface (PLE, N P L E ) .  Their local equilibrium 
calculations are however, incorrect; the calculations contradict the fact that the PLE and 
NPLE modes are mutually exclusive and that PLE growth always occurs at a slower rate 
compared with NPLE growth. 

For  many of the reaction temperatures and alloys used, the lack of accounting 
for nucleation time (cf. TTT curves published by Aaronson and Domian, 1966, for 

tn is the time exponent in the relation Z = et t n. 
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the same alloys) must lead to significant errors, since the incubation times are sometimes 
comparable to the time spent by the specimen at the isothermal transformation 
temperature. 

There are significant discrepancies in the data on the Si steel which has poor hardenability 
(TTT curve in Aaronson and Domian, 1966). The results seem to indicate some trans- 
formation during the quench from the isothermal transformation temperature. According to 
Uhrenius (1978), the specimens transformed at 800 and at 825°C should not contain any 
ferrite. Fairly thick layers of ferrite were obtained after only 20 s of transformation, whereas 
TTT curves indicate an incubation period of 100 s at 800°C. 

On the basis of their results, Bradley and Aaronson suggest the existence of a "solute-drag- 
like" effect (somewhat similar to the original proposals of Kinsman and Aaronson, 1967), 
in which misfitting substitutional alloying elements segregate to ~/7 interfaces and then 
influence the carbon concentration gradient in the austenite ahead of the interface. Those 
segregated elements which increase the activity of C in the 7 (e.g. Si, Ni) are supposed to lead 
to faster than expected growth kinetics (a negative solute drag-like effect) whereas others 
which reduce the activity of C in 7 (e.g. Mn, Cr) similarly cause a positive drag-like effect, 
so that transformation kinetics are slower than expected from diffusion-controlled growth 
theory. These ideas are roughly consistent with Bradley and Aaronson's data, but in view 
of the uncertainties in the data and technique, and due to the lack of an adequate comparison 
with local equilibrium theory, the existence of a drag effect cannot be considered established. 
Bhadeshia (1983a) has recently made a detailed assessment of both the available experimental 
data and the various theories on solute-drag at interphase interfaces and has concluded that 
both theory and experiment are far from adequate. 

Shiflet et al. (1981) found carbide precipitation accompanying the formation of some 
allotriomorphs of ferrite in the alloys examined by Bradley and Aaronson (1981a). Not all 
of the allotriomorphs in any given alloy exhibited this precipitation. Precipitation of cementite 
at the ~/7 interface ("interphase precipitation") was occasionally found to occur in the 
Fe-Si-C and Fe-Ni-C alloys and because this occurs at the transformation front, it was 
considered to influence the rate of interface motion. The interphase precipitation is supposed 
to increase the driving force for transformation and the faster than expected ~ values of some 
of the alloys studied by Bradley and Aaronson were partly attributed to this effect. These 
ideas are interesting and need to be quantitatively developed, especially to take proper 
account of any interface pinning (and hence retardation) due to the presence of the carbides, 
as observed by Purdy (1978). The presence of interphase carbides must modify the diffusion 
fields of alloying elements in the proximity of the interface. The long-range substitutional 
element diffusion necessary for the formation of carbides may also influence transformation 
kinetics (Bhadeshia, 1983a). 

Bradley and Aaronson calculated that for virtually every alloy and transformation 
temperature examined, Z2d was much less than 1 nm, indicating that the ferrite probably grows 
by a paraequilibrium mechanism. However, as noted earlier, this may not be a definitive 
method of identifying the breakdown of local equilibrium (Hillert, 1981). 

Romig and Salzbrenner (1981, 1982) carried out high-resolution microanalysis experiments 
on ~ formed by isothermally transforming Fe-I.7Si-0.1V-0.1C wt.% steel. The ferrite was 
found to form without the bulk partitioning of alloying elements, although significant Si and 
V concentration gradients were detected in both the austenite and ferrite at the interface. The 
results were shown to be consistent with the growth of a by the NPLE mechanism, the 
concentration gradients in the ct arising due to tie-line shifting resulting from soft- 
impingement effects. 
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9.2. The Lengthening o f  Ferrite Allotriomorphs 

Grain boundary ferrite allotriomorphs acquire their characteristic shape because the 
transformation rate along the boundary is faster than that in the direction normal to the 
boundary plane. The initial shape of the allotriomorph is approximately that of an oblate 
ellipsoid (Bradley et al., 1977). The lengthening of allotriomorphs was initially thought to be 
linear with time, the process being described in terms of the plate lengthening theory (Mehl 
and Dub6, 1951; Aaronson et al., 1970) but later work (Kinsman and Aaronson, 1973; 
Atkinson et al., 1973a) has shown that the lengthening is parabolic with respect to time. The 
rate constant describing the lengthening process is simply ~1 divided by the thickness to length 
ratio (the aspect ratio) of the allotriomorph. 

Bradley et al. (1977) found the approximate aspect ratio to be about 1/3, independent of 
time at transformation temperature. This is consistent with Horvay and Cahn's (1961) theory 
for the diffusion-controlled growth of oblate ellipsoids. Bradley et al. suggested that the 
experimentally observed aspect ratio is lower than that expected from the balancing of 
interfacial tensions at the allotriomorph edges, as calculated using the relative interfacial 
energy data of Gjostein et al. (1966). They suggested that this inconsistency probably arises 
because the shape of the allotriomorph during growth is not controlled by interfacial energy 
considerations alone. 

9.3. Summary  

The experimental data generally indicate that the thickening and lengthening of ferrite 
allotriomorphs in low-alloy steels occurs at a rate which is approximately proportional to the 
reciprocal of the square root of time, even when the transformation temperature is as low 
as 530°C. This indicates that interface motion is diffusion-controlled and does not seem to 
be significantly limited by interface processes for T > 530°C. 

For plain carbon steels, growth is controlled by the diffusion of carbon in the austenite 
ahead of the interface, although the experimentally determined parabolic rate constants seem 
consistently smaller than theoretically expected, with the exception of one very accurate value 
determined using the diffusion-couple method. 

In substitutionally alloyed steels, transformed at low-supersaturations, ferrite growth 
necessarily occurs with the bulk redistribution of alloying elements, presumably by the PLE 
mechanism. Microanalysis of the parent and product phases clearly demonstrates that there 
is no bulk partitioning of alloying elements during ferrite growth at high supersaturations, 
but this could be taken to imply either the NPLE or paraequilibrium transformation 
mechanisms. Some measurements of parabolic rate constants favour the paraequilibrium 
mechanism, but diffusion-couple and high-resolution microanalysis methods lend support to 
the NPLE mechanism. If it is assumed that paraequilibrium growth occurs when the extent 
of the X element spike in the 7 near the ~/7 interface is so small as to be physically 
unreasonable, then it seems that most reported experimental data conform with para- 
equilibrium. However, there are doubts about the use of such a criterion for establishing the 
presence of paraequilibrium. 

With the exception of the parabolic rate constants obtained for Fe-Mn-C alloys using the 
diffusion-couple technique (the results being consistent with the NPLE mode), all other 
reported rate constants significantly differ from theory, and this has been attributed to the 
presence of facetting, solute-drag-like effects and interphase carbide precipitation. Further 
work is needed before the influence of such effects can be properly understood. 
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It seems that the diffusion-couple method is the most accurate of currently available 
techniques for the measurement of rate constants. Gokhale (1984) has recently proposed 
another technique (claimed accuracy ~ 25%) based on sterological counting measurements; 
this promising technique has yet to be applied. 

Finally, we note there are no kinetic data for ~/7 interfaces which have been crys- 
tallographically or structurally characterised. 

10. MASSIVE FERRITE 

10.1. General Aspects of  Massive Transformations 

A massive transformation can be defined as one in which the product phase grows 
diffusionally and has the same bulk composition as the parent phase; an excellent review of 
the subject has been published by Massalski (1970). Being a diffusional transformation, the 
product phase is not limited by grain boundaries of the parent phase and the ability of 
product crystals to cross such boundaries seems particularly pronounced in massive 
transformations. The transformed microstructure is therefore coarse grained, the grain size 
sometimes exceeding that of the parent phase. 

The product phase was originally thought to bear no rational or reproducible crys- 
tallographic orientation relationship with the parent phase (Massalski, 1970). Recent work 
by Plichta et al. (1980) and Plichta and Aaronson (1980) suggests that nucleation would be 
difficult under these circumstances and that low-energy orientation relationships do exist 
during massive transformation. The issue is not however settled; Massalski (1984) has pointed 
out that the products examined by Plichta et al. may not have formed by massive 
transformation, and that there are several systems where no rational orientation relations 
have been found between the massive transformation products and their respective parent 
phases. The interface responsible for growth during massive transformation is believed to be 
incoherent (Massalski, 1958), consistent with the diffusional transformation mechanism and 
with the fact that there is no IPS shape change as a consequence of the transformation. 
Because of the lack of a composition change, the massive reaction is sometimes called 
diffusionless, but this is misleading because reconstructive diffusion is still necessary in order 
to accomplish the lattice change (Massalski, 1958). The transformation is believed to occur 
at an interface-controlled rate (Karlyn et al., 1969), the interface velocity being independent 
of time. The interface sometimes moves continuously, adopting a characteristic ragged 
contour (Fig. 12a), but there is also evidence that it can migrate by a step mechanism 
(Aaronson et al., 1968). 

In binary alloys, precipitate growth without a composition change can occur below the To 
temperature (at To, parent and product phases of identical composition have equal free 
energy). The curve representing To as a function of solute concentration lies within the 
two-phase field where the parent and product phases co-exist in equilibrium. Massive 
transformation sometimes seems to occur only when the parent phase is transformed at a 
temperature within the single-phase field (Massalski, 1984, has pointed out some exceptions 
to this). This may be because at low undercoolings below To, the massive transformation 
initiates at nuclei whose compositon differs from that of the matrix. As a result, the nuclei 
become surrounded by a solute enriched or depleted zone; for the nucleus to develop into 
a massive phase, it has to be able to consume the excess solute and accelerate to the 
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FIG. 12. (a) Optical micrograph showing massive ferrite in Fe 2Mn wt.% alloy, (after Roberts, 1970); 
(b) transmission electron micrograph of  massive ferrite, same alloy as in (a); and (c) schematic plot 
of  T,, vs. cooling rate, typical of  continuous cooling experiments which exhibit just one thermal arrest 

at a given cooling rate. 
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FIG. 13. (a) Results of continuous cooling experiments on Fe-Xalloys (the Ni, Si and Cr alloys contain 
2.7, 2.7 and 2.6wt.% of solute respectively); and (b) AG ~ for massive reaction, evaluation at the 

plateau temperature (after Gilbert and Owen, 1962). 

steady-state massive growth rate. Karlyn et al. (1969) showed that this can only occur when 
the alloy is t ransformed within the single-phase fieldt. 

We note that in ternary alloys, the lack of  a bulk composit ion changes alone is not decisive 
p roof  that a diffusional t ransformation is massive, since the N P L E  mechanism of  growth also 
leads to an identical t ransformation product  in the absence of  soft-impingement. 

10.2. Massive Transformation in Iron and its Alloys 

Work on the massive t ransformation in iron (?---,~) and its substitutional alloys is based 
on continuous cooling experiments, since the rate of  reaction is usually too fast to permit 
isothermal measurements.  Transformat ion during cooling from the austenite phase field can 
be followed by noting the temperature T, at which a thermal arrest appears in the cooling 
curve. The arrest arises because the enthalpy of  t ransformation modifies the natural cooling 
curve of  the specimen. A linear plot of  Ta vs. cooling rate usually shows a sharp initial drop 
followed by a plateau region where Ta is insensitive to cooling rate variations; further 
increases in cooling rate sometimes lead to the development of  further plateaux (Fig. 12c). 
The highest plateau is usually identified with the massive reaction and the lowest plateau with 
the formation of  martensite although there are differing opinions on the detailed inter- 
pretation of  cooling curves. 

Gilbert and Owen (1962) conducted continuous cooling experiments on "pure"  iron 
(containing ,-~ 0.01C wt. %), Fe-Ni,  F e - C r  and Fe-Si  alloys. In pure iron, massive ferrite can 
form as soon as its nucleation becomes feasible, within the time scale of  the experiment; 
Gilbert and Owen found that the diffusional formation of  ferrite is suppressed beyond a 
cooling rate of  about  5500°C/s, the austenite eventually transforming to martensite at 545°C 

tMenon et al. (1983) reached this conclusion using thermodynamic arguments, but their treatment relies on the 
assumption that the nucleus composition is restricted to that giving the largest free energy change. This is incorrect 
since the nucleus can adopt any composition which leads to a negative free energy change on transformation and 
nucleation without a composition change is certainly feasible at any temperature below T 0. 
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(although martensite formation was not verified by testing for surface relief effects). Some 
of their results are presented in Fig. 13a which shows that T, initially decreases sharply and 
then levels out at higher cooling rates. In Fig. 13a, the values of  T, at a zero cooling rate 
represent transformation temperatures obtained from the relevant binary phase diagrams. It 
is evident that the influence of  alloying elements on T, depends on their effect on the 
equilibrium transformation temperature (i.e. on AGV~). Indeed, Gilbert and Owen found AG ~'~ 
at the plateau temperature to be independent of  the type of alloying element used (Fig. 13b). 
This is not, however, the whole explanation of alloying element effects, since AG ~' at the 
plateau temperature gently increases with alloy concentration (though not with alloy type). 
Gilbert and Owen also demonstrated that the driving force required to initiate massive 
transformation is always much less than that necessary to induce martensitic reaction. 

Bibby and Parr (1964) first used the presence of an IPS shape change to distinguish 
martensite from massive ferrite in relatively pure iron (<  0.01C wt.%). They showed that the 
Ms temperature of such iron is sensitive to variations in carbon concentration, increasing to 
750°C as the carbon level decreased to <0.0017wt .%.  The critical cooling rate for the 
transition from massive to martensitic transformation similarly varies from 35000~5000'~C 
as the carbon concentration changes from ~ 0.005 ~0.01 wt.%. The reasons for this effect are 
not clear, but Bibby and Parr suggested that it may have something to do with the association 
of  carbon with substitutional vacancies reducing the self-diffusivity of iron and hence making 
diffusional transformation more difficult. Later work by Ackert and Parr (1971) has 
confirmed that the Ms temperaure of low-carbon Fe-C alloys is very sensitive to carbon 
concentration and this work also indicated that the gap between the massive reaction plateau 
temperature and the M~ temperature decreases as the carbon concentration increases, 
although the reasons for this have not been discussed. 

Ackert and Parr identified the temperature corresponding to the first plateau with the 
massive reaction start temperature and this has led Hillert (1975) to conclude that the massive 
reaction in ferrous alloys starts when the alloys enter the ~ single-phase field (as established 
for a non-ferrous alloy by Karlyn et al., 1969). This cannot be considered established, since 
massive ferrite may actually form at higher temperatures, before the cooling rate correspond- 
ing to the plateau region is reached. Similarly, Ms temperatures cannot really be identified 
with the temperature at which the martensite plateau develops in continuous cooling 
experiments. 

Swanson and Parr (1964) similarly showed that the critical cooling rate at the transition 
from massive to martensitic transformation decreased from 30000~15000~C/s as Ni in- 
creased from 1--,7 wt.% in pure Fe-Ni  alloys. This may be related to the increasing difficulty 
of  nucleating massive ferrite as the stability of  the austenite increases with Ni content and 
as transformation temperatures become depressed. 

Parr and his co-workers (Gomersall and Parr, 1965; Wallbridge and Parr, 1966; Parr, 1967) 
showed that with Fe-Mn,  Fe-Cr  and Fe-Co alloys, experimental difficulties associated with 
the fine size of any surface relief effects make the distinction between massive and martensitic 
reactions difficult to assess, particularly since many of the experimental curves of T, vs. 
cooling rate showed just a single plateau, without the expected discontinuity in 7", at the 
critical cooling rate where the transition occurs. The results on these alloys are therefore 
inconclusive as far as information on the suppression of  the massive transformation is 
concerned. 

In view of these difficulties, Pascover and Radcliffe carried out a series of  experiments on 
high-purity F ~ C r  alloys, using the thermal arrest method, for the first time backed by 
detailed transmission electron microscopy. At very low quench rates, the massive ferrite that 
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formed consisted of  relatively large equiaxed grains containing a low dislocation density, 
while that formed at higher quench rates had a microstructure of  irregular grains with a 
distinctly higher dislocation density. In both cases, the dislocation distribution resembled that 
of  a recovered microstructure (sub-boundaries, cells, etc.), consistent with the diffusional 
transformation mechanism. The martensite structure was found to consist of  very fine, 
parallel laths arranged in packets, and Pascover and Radcliffe were able to clearly distinguish 
between massive ferrite and lath martensite. Their results are interesting in that they observed 
just one thermal arrest in any given experiment, but that for a given high quench rate, the 
y sometimes transformed to massive ferrite but at other times to martensite. This meant that 
the curves of Ta vs. cooling rate had, at high cooling rates, two plateaux, the higher one 
representing massive ferrite and the roughly parallel lower one corresponding to arrests 
caused by martensite formation. This is consistent with the fact that higher undercoolings are 
needed to initiate martensitic transformations (Gilbert and Owen, 1962). 

Wilson et al. (1969) carried out similar experiments on a high-purity Fe-5.1Ni wt.% alloy; 
they were able to show that the reason why the austenite sometimes transforms to massive 
ferrite and at other times to martensite is related to the surface roughness of  specimens used. 
Electropolished specimens invariably transformed to martensite whereas those not electro- 
polished transformed to massive ferrite. This suggests that the surface of  the thin specimens 
helps the nucleation of  massive ferrite, and Wilson et al. (1969) and Wayman (1965) have 
expressed concern about the use of  the thin foil specimens, especially as far as Ms 

determinations are concerned. Wilson et al. also showed that massive ferrite has a dislocation 
density of  about 5 × 10 -9 c m  2, irrespective of the quench rate used, and that the dislocation 
structure is akin to a recovered structure. 

The experiments discussed above all yielded just one thermal arrest during cooling from 
the y phase field. Wilson and his co-workers (1970, 1984) have reported observing multiple 
thermal arrests in experiments on pure iron, Fe-Ni  and Fe-Cr  alloys. As usual, each thermal 
arrest could, at sufficiently high cooling rates, be associated with a characteristic plateaut.  
The observation of  up to four arrests in a single experiment implies, according to Wilson, 
the existence of four different transformations in pure iron. The first two plateaux are 
associated with the formation of  "equiaxed ferrite" and massive ferrite respectively, the 
difference between these arising during nucleation (Wilson, 1978); massive ferrite nuclei are 
assumed to be more highly strained compared with equiaxed ferrite nuclei, the reasoning 
being based on the observed high dislocation density of  fully grown massive ferrite (Wilson 
et al., 1969). In Wilson's (1978) interpretation, the two reactions thus follow separate 'C' 
curves in the TTT  diagram, the plateaux temperatures of  the continuous cooling experiments 
being taken to correspond to the points on the TTT  diagram where the nucleation rate is 
at a maximum. Christian (1979) has pointed out that with the parameters he uses, Wilson's 
interpretation predicts incredibly low nucleation rates, inconsistent with experimental data. 
More significantly, the model identifies the temperature corresponding to the minimum 
incubation time on the TTT  curve (assumed to depend only on nucleation) with the plateau 
temperature concerned, and this is not correct because the reactions are all supposed to follow 
C curve kinetics. A 'C' curve necessarily implies that the temperature of  maximum reaction 
rate must decrease with increasing cooling rate, so that the model (Wilson, 1978) does not 
in fact predict plateaux in plots of  T a vs. cooling rate. The reasons for the existence of such 
plateaux are therefore not clear; Bhattacharya et al. (1973) have suggested that the plateaux 

tMorozov et al. (1971, 1972) have found many such plateaux during continuous cooling experiments on 
high-purity iron, although only a single thermal arrest seems to have been observed in any given experiment. 
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are artefacts of  plotting, but Wilson (1978) showed that the plateaux exist irrespective of  the 
method of plotting the results. 

In a T T T  diagram, the point corresponding to the fastest isothermal reaction rate on a 
given C curve is called the 'nose'  of  the C curve; Wilson's experiments imply that for pure 
iron (and its binary substitutional alloys), the noses of  the C curve for 'equiaxed ferrite', 
massive ferrite, bainite and martensite occur at progressively shorter times since the cooling 
rate has to increase in the same order to detect these transformations. 

Hillert (1975) has proposed a novel explanation of  many of the characteristics of  massive 
reactions in ferrous alloys based solely on growth considerations. His approach relies on the 
fact that all reported experiments have been conducted on alloys containing traces of  
interstitials as impurities. It is proposed that even in dilute binary Fe -C  alloys, it is possible 
to obtain ferrite of  the same composit ion as the parent austenite, while maintaining 'local 
equilibrium' at the interface1-. Since x~'>>2j, there exists a narrow carbon concentration spike 
in the austenite ahead of  the interface. With the constraint that x]' = x~ ~, it is only possible 
to get composition invariant growth when the alloy is transformed within the ~ phase field 
when f~ = 1 (since x~  "~ is otherwise less than Xl), so that the model explains why massive 
transformations may not occur in the two-phase ~ + 7 phase field even though the To curve 
lies in this field. 

Under  these circumstances, the growth of massive ferrite can be expected to occur under 
mixed diffusion and interface-control, some of the free energy of t ransformation being 
dissipated in driving the diffusion of  C in the 7 ahead of  the interface. This loss of  free energy 
can be subtracted from the total driving force and the rate of  interface motion obtained by 
substituting the residue into an equation for interface-controlled growth. The calculated 
interface velocity was found to initially increase sharply with decreasing temperature, the plot 
of  temperature vs. decreasing growth rate having the form of a 'C '  curve. I f  growth is 
considered to be the limiting factor in overall t ransformation kinetics, then this C curve is 
replicated in the T T T  diagram for the alloy. The model therefore predicts the existence of  
a plateau (at the temperature corresponding to x7 r = ~j) in the relevant 'C '  curve of the TTT 
diagram and hence explains the first plateau in continuous cooling experiments. 

The model also predicts that the transition from massive to martensitic transformation 
occurs at lower cooling rates with increasing carbon content, consistent of  the work of Bibby 
and Parr (1964). However,  Hillert found the calculated extent of  the carbon concentration 
spike in the 7 to be sometimes unrealistically small and when he took this into account, by 
ignoring the spike for the region z~a < 0.1 nm, the transition was found to be independent of  
carbon concentration. As discussed earlier (in the context of  local equilibrium-* 
paraequilibrium), the intuitive feeling that concentration spikes of  extents small relative to 
atomic dimensions are unrealistic may not by justified. 

Caretti and Bertorello (1983) recently proposed an alternative explanation for the variation 
of T, with cooling rate, based on evidence (Perepezko and Massalski, 1975; Plichta e t  al . ,  

1978) that the nucleation time in massive transformations is larger than the growth time, so 
that it may be more reasonable to assume that the overall t ransformation kinetics depend 
mainly on nucleation considerations. They considered the initial sharp fall in the curve to 
correspond to nucleation occurring at grain boundary sites, while the first plateau begins to 

tLocal equilibrium is in this case taken to imply that x]' = x~ ~, even though x~ = ~L- The idea of composition 
invariant growth in a binary alloy, with local equilibrium at the interface can be shown to be thermodynamically 
incorrect, unless x]'= x7 "~ =2], and this only happens when the alloy composition falls on the ct/ct +~,, phase 
boundary. On the other hand, it is conceivable that a carbon concentration spike builds up in the 7 at the interface, 
due to some initial transient, although the height of the spike may not equal x~ ". 
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develop when the cooling rate is sufficiently large to allow massive ferrite nucleation within 
the bulk of the parent phase to dominate. The model does not seem to explain why Ta then 
becomes relatively insensitive to further increases in cooling rate, so giving rise to the 
characteristic first plateau. Nevertheless, Caretti and Bertorello provided interesting evidence 
to show that volume nucleation dominates over the plateau region. For several alloy systems, 
the undercooling (AT) below the equilibrium transformation temperature, obtained by 
extrapolating the plateau to zero cooling rate, was found to increase linearly with the 
solidification experiments where a similar correlation was ascribed to homogeneous nucle- 
ation. 

11. ORIENTATION RELATIONSHIP BETWEEN AUSTENITE AND FERRITE 

An understanding of the crystallography of any transformation is important since the 
properties of interfaces depend on the relative dispositions of the crystals that they connect. 
The development of morphology also depends on crystallography since this determines the 
orientation dependence of the interface energy. 

Perhaps the most interesting experimental observation in this context is that the orientation 
relationships that are found to develop during phase transformations are usually not random 
(Ryder and Pitsch, 1966; Ryder et  al., 1967; Christian, 1969). The frequency of occurrence 
of any particular orientation relation usually far exceeds the probability of obtaining it by 
simply taking two separate crystals and joining them up in an arbitrary way. This indicates 
that there are favoured orientation relationships, perhaps because it is these which allow best 
fit at the interface between the two crystals (Johnson et al., 1975; Pitsch and Ryder, 1977). 
This would in turn reduce the interface energy and hence the activation energy for nucleation. 
Embryos which by change happen to be orientated in this manner would find it relatively 
easy to grow into successful nuclei, giving rise to the non-random distribution mentioned 
earlier. 

On the other hand, it could be the case that nuclei actually form by the homogeneous 
deformation of a small region of the parent lattice (Ryder and Pitsch, 1966) so that there is 
a co-ordinated movement of atoms during the nucleation process. The deformation which 
transforms the parent structure to that of the product (e.g. the Bain strain), would have to 
be of the kind which minimises strain energy. Of all possible ways of accomplishing the lattice 
change by homogeneous deformation, only a few might satisfy the minimum strain energy 
criterion--this would again lead to the observed non-random distribution of orientation 
relationships. It is a major phase transformations problem to determine which of these factors 
really determine the existence of reproducible orientation relations. The problem has further 
complications for diffusional transformations since the product phase grows by the unco- 
ordinated movements of atoms and its growth is consequently not limited to the grain in 
which it originally nucleated. 

While the idea of a homogeneous deformation of the parent lattice leading to the nucleation 
of the product phase is quite general as far as the nature of the deformation is concerned, 
Ryder and Pitsch specifically proposed that a coherent nucleus forms as a small, thin platelet 
such that the plate plane, and one direction within that plane are unrotated (though not 
necessarily undistorted) by the homogeneous deformation. A pair of corresponding planes 
and a pair of corresponding directions within those planes remain parallel in the interface 
during nucleation. On taking the pure strain part of all such homogeneous deformations as 
the Bain strain, they found that the residual rigid body rotations were rather small, so that 
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all 7/~ orientation relationships should lie within some 11 ° of the Bain orientationt. The 
Kurdjumov-Sachs (1930) orientation relationship (i.e. {111 }~ II {011}~, and (01T)~, I] (1 l i )~)  
and Nishiyama-Wasserman (1934) orientation relationship (i.e. {111 }~/II {011 }~, and (011)~, 
about 5.3 ° from (I1T)~ towards (1T1)~) both lie within the I1 ° region about the Bain 
orientation. 

Ryder and Pitsch additionally suggested that for precipitates which nucleate homoge- 
neously in the austenite, the unrotated plane and direction should be the closest-packed 
planes and directions respectively of the two lattices. Alternatively, if the precipitate nucleated 
heterogeneously at a grain boundary, then the unrotated plane should correspond to the plane 
of the grain boundary, and that this may not be a close-packed plane. 

Arguments have been advanced (Aaronson et al., 1976) which claim that nucleation 
involving the co-operative movement of atoms (as implied in the Ryder-Pitsch theory) is 
thermodynamically impossible at the low supersaturations where nucleation occurs, but these 
are necessarily based on weak assumptions about the nucleus shape, composition and stored 
energy. 

King and Bell (1975) conducted a detailed study of the crystallography of allotriomorphic 
ferrite in a Fe-4).47C wt. % alloy isothermally transformed above the eutectoid temperature. 
In almost all the cases they analysed, the ~ was found to possess an orientation relationship 
with at least one adjacent V grain which approximated to the Kurdjumov-Sachs (KS) or 
Nishiyama-Wasserman (NW) orientation relationships. In fact, the range of orientations 
detected was more restricted than the 11 ° Bain region of Ryder and Pitsch. The orientations 
tended to cluster at and around the KS and to a lesser extent the NW relations. It was always 
possible to find a close-packed plane of 7 which was within 2 ° of a closest-packed plane of 
the ~; within these planes, a close-packed direction of the ~ could always be found within 
some 8 ° of a similar direction in the ~. 

King and Bell also found that over half of the ~ particles examined had a KS/NW type 
of orientation relationship with both the adjacent ~ grains. They showed that this is 
unexpected since for a random population of V grain boundaries, about one in three might 
allow a ~ orientation to be chosen which is within the Bain regions of both the adjacent matrix 
grains. The higher proportion observed was attributed to the presence of texture in the 
specimens studied, but such texture is likely to be present in most real materials and their 
results are consistent with the earlier qualitative observations of Aaronson (1962) and Hillert 
(1962) that ~ allotriomorphs often develop into Widmanst~itten ferrite on both sides of the 
grain boundary, given that Widmanstfitten ferrite is a displacive transformation product and 
therefore is confined to the grain with which it has a systematic orientation relationship. 

King and Bell (1974, 1976) also measured the orientation relationship between Wid- 
manst~itten ferrite and ~ and obtained broadly similar results to their work on allotriomorphic 
ferrite. 

It is difficult unambiguously to interpret the above work and to deduce a nucleation 
mechanism, even though the experimentally determined orientation relations lie within the 
expected range. Both interracial energy minimisation and strain energy minimisation could 
lead to similar non-random distributions of orientation relations. In this respect, Crosky et 
al. (1980) did crystallographic experiments on the nucleation of FCC ~-brass rods from BCC 
brass, a problem which is the reverse of the 7 - ~  transformation in iron. Rods nucleated near 
free surfaces were found to form with a crystallography which allowed their invariant-lines 

tThe  Bain orientation follows from the nature of  the Bain strain: (100);  II (110)~ (001);, 11 (001)~. The Bain strain 
alone does not  rotate any plane or direction by more than about  11 ::, so that any set of  corresponding planes and 
directions can be made parallel after this strain by a rotation of  not  more than 11 ° (Crosky et  al.. 1980). 
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to lie in the surface plane, indicating that nucleation is dominated by strain energy 
minimisation, consistent with the existence of co-ordinated atomic displacements during 
nucleation. They also showed that if interface energy minimisation controls nucleation then 
other surface nucleation events are expected but not found. Experiments like these may help 
towards resolving the factors which determine orientation relations in steels. 

12. INTERPHASE PRECIPITATION 

'Interphase precipitation' occurs during the diffusional growth of ferrite from metastable 
austenite and involves the formation of particles of a third phase at the ~/7 interface. The 
third phase may be cementite, alloy carbides or other phasest which have limited solubility 
in the austenite and ferrite lattices at the transformation temperature. The ferrite and the third 
phase do not grow co-operatively during transformation, as in the pearlite reaction or in 
discontinuous reactions. An example of interphase precipitation is illustrated in Fig. 14, which 
shows Cr23C 6 particles nucleated at the sessile part of the 7/~ interface during ~ growth by 
a step mechanism. The carbide particles seem to grow while in contact with the austenite, 
growth terminating after the carbides become enclosed in ferrite following the passage of a 
trailing step. The low concentration of carbon in the ferrite then prevents further carbide 
growth. 

Interphase precipitation was first recognised in alloy steels containing ternary additions of 
strong carbide forming elements (Gray and Yeo, 1968; Davenport et  al., 1968). Fine 
dispersions of alloy carbides were observed as regular rows of particles, all of which usually 
have the same crystallographic orientation in any given ferrite grain. Electron microscopy of 
partially transformed specimens revealed that the rows of carbides are actually parts of sheets 
of carbides in three dimensions, the carbides nucleating at y/ct interfaces during trans- 
formation (Davenport and Honeycombe, 1971). The row-like appearance of such precip- 
itation only becomes apparent during transmission electron microscopy (using thin foil 
specimens) if the planes on which the carbides precipitate are virtually parallel to the beam 
direction (Davenport and Honeycombe, 1971), particularly if the sheet spacings are small 
compared with the foil thickness. 

Interphase precipitation is for the most part associated with the step mechanism of ~/y 
interface motion (Fig. 14), the carbides precipitating on the stationary, immobile component 
of the interface (Campbell and Honeycombe, 1974) because the steps themselves move too 
rapidly to allow successful precipitate nuclei to develop (Honeycombe, 1976; Aaronson et  al., 

1978). 
Because the precipitates nucleate in contact with both the ferrite and austenite lattices, they 

tend to adopt a crystallographic orientation which allows good lattice matching with both 
phases, and this restricts the number of crystallographic variants of carbide that can form 
(Howell e t  al., 1979). Tilman and Edmonds (1974) have found more than one variant of 
carbide due to interphase precipitation in Fe-Mo-C alloys, but the detailed three-phase 
crystallography has yet to be determined for this system. 

Interphase precipitation is also found in cases where the ~/7 interface does not move by 
a step mechanism, but is displaced continuously (Ricks and Howell, 1982, 1983). In these 

tThe third phase may be cementite (observed in an impure commercial steel by Davenport and Becker, 197 I, and 
in a high-purity Fe-C alloy by Balliger, 1977) or alloy carbides (or carbonitrides) such as VC (Davenport et al., 
1962), NbC (Gray and Yeo, 1968), TiC (Freeman, 1971), Mo2C (Berry and Honeycombe, 1970), CrTC 3 and Cr23C 7 
(Mannerkoski, 1964; Campbell, 1971), W2C (Davenport and Honeycombe, 1971), M6C (Tilman and Edmonds, 
1974). Interphase precipitation of Cu and Au particles has also been observed (Howell et al., 1980; Ricks, 1979). 
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FIG. 14. Bright-field and Cr23C 6 corresponding dark-field transmission electron micrographs showing 
interphase carbide precipitation during the stepped growth of ferrite from austenite (Campbell, 1971). 

circumstances, interphase precipitation acts to pin the ~/7 interface and the resulting 
precipitate dispersions in the ~ can be random, or in the form of regular, non-planar sheets 
of carbides. In the former case, where random dispersions of carbides are formed, the ~/7 
boundary migrates by bowing inbetween coarsely spaced carbide particles. If, on the other 
hand, the precipitation of carbide particles at the c~/7 interface is copious, and interface 
bowing becomes difficult, then a "quasi-ledge" mechanism operates (Fig. 15). The curved ~/7 
interface becomes pinned by the finely spaced particles, but at some position where the 
particle spacing is locally large, an interface bulge develops and subsequently becomes pinned 
but is able to spread laterally, giving in effect a ledge mechanism even though the interface 
energy may not be orientation dependent. 

13. CONCLUSIONS 

Major advances have been made in our understanding of the diffusional formation of 
ferrite in iron and its alloys, and in our knowledge of diffusional transformations in general. 
The difference between morphology and mechanism is better understood and ferrite can be 
clearly discussed in the context of the numerous other transformations that occur in steels. 

Irrespective of whether there is a composition change during transformation, the very 
nature of a diffusional reaction requires the unco-ordinated mixing up of atoms during 
interface motion. Diffusive mixing is responsible for the reconstruction of the parent lattice 
into that of the product, in a way which minimizes the strain energy of transformation. This 
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FIc. 15. Schematic diagram showing the operation of a quasi-ledge mechanism resulting in the 
production of curved rows of interphase precipitates (after Ricks and Howell, 1983). Finely spaced 
particles first pin the boundary. The boundary then develops a bulge where particle spacing is locally 
large, only to be re-pinned by further precipitation, so that the bulge is only free to move laterally, 

giving a quasi-ledge mechanism of growth. 

reconstructive diffusion destroys any atomic correspondence between the parent and product 
phases and this is a major distinction between diffusional and displacive transformations. 

Ferrite can under suitable conditions grow by a diffusional mechanism whatever the 
structure of the cc/~ interface. The mobility of the interface must however depend on its 
structure and often determines the mechanism of interface motion. These conclusions seem 
reasonable even though there is little evidence on the nature of the ~/? interfaces responsible 
for the diffusional growth of ferrite. 

Interface motion can occur by a step mechanism or by the continuous displacement of 
every element of the interface. The exact mechanism is determined by the orientation 
dependence of interface energy (and hence mobility) and by the driving force for interface 
motion. The rate at which an interface moves can be controlled by the diffusion of solute 
in the matrix ahead of the interface (diffusion-controlled), by the rate at which atoms transfer 
across the interface (interface-controlled) or by a mixture of the two processes (mixed- 
control). 

The theory of diffusion-controlled growth is well advanced and sets out the possibilities 
of ferrite growth with local equilibrium or local paraequilibrium at the moving interface. It 
is currently not possible to theoretically decide which of these modes is favoured in a 
particular set of circumstances, and experimental evidence does not help since it is not in 
general sufficiently precise. The possible existence of solute-drag effects and interface pinning 
effects may further complicate the interpretation of experimental evidence. 

The theory of interface-controlled growth is much less advanced and still relies on 
important assumptions about the relationship between interface velocity and driving force. 
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There is little experimental work on the interface-controlled growth of ferrite in steels. 
Massive ferrite may be an interface-controlled reaction although there are suggestions that 
its growth involves local equilibrium at the interface. 

APPENDIX 

14. DIFFUSION-CONTROLLED GROWTH OF WIDMANST.~TTEN FERRITE 

Particle dimensions during diffusion-controlled growth vary parabolically with time when 
the extent of the diffusion field in the matrix increases with particle size. The growth rate thus 
decreases with time. The diffusion-controlled lengthening of plates or needles can however 
occur at a constant rate since solute can be partitioned to the sides of the plates or needles. 
The purpose of  this appendix is to present a treatment of  diffusion-controlled linear growth 
using Widmanst~itten ferrite as an example, even though the formation of Widmanst~itten 
ferrite is strictly not within the context of  this review. The shape change accompanying 
Widmanst~tten ferrite growth implies the existence of  a glissile ~w/)' interface and since carbon 
is partitioned during growth, the rate of growth can be expected to be controlled by the 
diffusion of carbon in the austenite ahead of the moving interface, even when the reaction 
occurs at a low homologous temperature. Iron and substitutional atoms do not diffuse during 
~w growth and there is no reconstructive diffusion during transformation. 

14.1. Theory  o f  Di f fus ion-Contro l led  Plate  Growth 

Trivedi (1970) has given a solution for the problem of  the diffusion-controlled growth of 
plates. The shape of  the plates is taken to be that of a parabolic cylinder and is assumed to 
be constant throughout  growth. The plate lengthening rate (V~) at a temperature T for 
steady-state growth is obtained by solving the equation: 

f~ = (~)0.5 exp{p} erfc{p °5 } [1 + (rc /r ) f ,  S2{p}], (14.1) 

where the P6clet number p, which is a dimensionless velocity, is given by 

p = Vi r /2Dtl .  (14.2) 

The weighted-average diffusion coefficient D~ for carbon in austenite can be determined using 
eq. 5.10, with the integral evaluated over the range ~ to xr, where xr is the carbon 
concentration in the austenite at the plate tip. Xr may significantly differ from the equilibrium 
carbon concentration x~ ~ because of the Gibbs-Thompson cappilarity effect (Christian, 1975) 
which allows for the change in equilibrium concentration as a function of  interface curvature; 
Xr decreases as interface curvature increases, and growth ceases at a critical plate tip radius 
r, when x~ = ~t. For  a finite plate tip radius (r), 

Xr = X'~ ~ [1 + (F/r)], (14.3a) 

where F is the capillarity constant (Christian, 1975) given by 

F = (cr Vm/RT)  [(1 -- x~'~)/(x~ ~' - x'~)]/[1 + [d(ln F,)/d(lnxi'~)]] (14.3b) 

where o- = interface energy per unit area; F~ --activity coefficient of  C in 7; and Vm = molar 
volume of  ferrite. This assumes that the e composition is unaffected by capillarity, since x7 ~' 
is always very small. The function S2{p } of eq. 14.1 depends on the P6clet number; it corrects 
for variation in composition due to changing curvature along the interface and has been 
numerically evaluated by Trivedi. 
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As pointed out earlier, Trivedi's solution for diffusion-controlled growth assumes a 
constant shape (parabolic cylinder), but the solution is not really shape-preserving. The 
capillarity effect implies that x, varies over the surface of  the parabolic cylinder, and this 
should lead to a deviation from the parabolic shape. Trivedi claims that the variation in xr 
has a negligible effect provided the tip radius is greater than 3re. Equation 14.1 on its own 
simply provides a relation between velocity and tip radius but does not allow these quantities 
to be fixed; additional theory is needed to enable the choice of  a particular r, and hence to 
fix I/1. Small tip radii favour fast growth due to the point effect of diffusion, but this is 
opposed by the capillarity effect since the driving force for growth tends to zero as r ~ r  c. 
Zener proposed that the plate should tend to adopt a tip radius which allows V, to be 
maximised but there is not fundamental justification nor experimental evidence to support 
this hypothesis. Recent work (Glicksman et  al., 1976; Langer and Muller-Krumbhaar,  1978) 
on the dendritic growth of  solid from liquid (formally an almost identical problem) has 
conclusively demonstrated that the dendrites do not attain a radius consistent with the Zener 
maximum velocity hypothesis, the actual tip radius being determined by a shape stability 
criterion. If  these results can be extrapolated to solid-state transformations, then any 
calculated velocities would be less than those given by the Zener hypothesis. 

In the absence of  reliable data on plate tip radii, the Zener hypothesis provides an upper 
limit for Vl. A comparison with experimental data (Fig. 16) shows that experimental ~w 
lengthening rates in Fe-C alloys always e x c e e d  corresponding maximum calculated length- 
ening rates; this discrepancy can only increase if the maximum velocity hypothesis is not valid, 
or if any appreciable part of  the free energy is dissipated in interface processes. The shape 
of  ~w is not really that of  a parabolic cylinder but is lath-like (Watson and McDougall, 1973). 
It is therefore useful to compare experimental data with needle lengthening rates, even though 
a needle shape is a poor  representation of Widmanst~tten ferrite, which has a definite habit 
plane. Trivedi has obtained a steady-state solution for the diffusion-controlled growth of  
paraboloids of  revolution (i.e. needles): 

f t  = P  exp{p} E i { p }  [1 + (rc /r ) f~R2{p}] ,  (14.4) 
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FIG. 16. Plots of experimental vs. calculated lengthening rates for Widmanst/itten ferrite. The 
calculations are based on the maximum velocity hypothesis and the %/y interface energy is taken to 
be 0.2 J/mol. The details of the calculations are given by Bhadeshia (1985) but the experimental data 

are due to Hillert (1960), Townsend and Kirkaldy (1968) and Simonen et al. (1973). 
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where the function R 2{p} corrects for the variation in composition due to the changing 
curvature of  the interface and has been numerically evaluated by Trivedi. r, is twice as large 
as that for plates. A comparison of  experimental data with maximum calculated needle 
lengthening rates is presented in Fig. 16; it is evident that the plate model is a somewhat better 
representation of oq. lengthening, although neither of  the models are perfect. 

Finally, we note that Trivedi has also given a slightly more elaborate theory to take account 
of  any free energy dissipated in interface processes. In this, a second set of functions (Sj {p } 
for plates and R~ {p } for needles) is introduced to allow for the variation in dissipation due 
to the changing orientation of  the interface. 
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