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input to the output. The training process involves a search
for the optimum non-linear relationship between the inputs
and the outputs and is computer intensive. Once the
network is trained, the estimation of the outputs for any
given inputs is very rapid. The details of the method used
here have recently been comprehensively reviewed2 and the
original method is described in Refs. 3-7.

One of the difficulties with blind data modelling is that
of 'overfitting', in which spurious details and noise in the
training data are overfitted by the model. This gives rise to
solutions that generalise poorly. MacKay3-7 and Neal8
have developed a Bayesian framework for neural networks
in which the appropriate model complexity is inferred from
the data.

The Bayesian framework for neural networks has two
further advantages. First, the significance of the input
variables is quantified automatically. Consequently the
model perceived significance of each input variable can be
compared against metallurgical theory. Second, the net-
work's predictions are accompanied by error bars which
depend on the specific position in input space. These
quantify the model's certainty about its predictions.

INTRODUCTION
Cast steel is usually processed into usable products by
severe plastic defornlation, frequently using the rolling
process. The purpose of this defornlation is to refine the
cast microstructure, to produce the steel in the required
shape, and to achieve the optimum mechanical properties.
The properties depend not only on the defornlation but
also on the detailed chemical composition in two respects.
First, the steel may contain microalloying elements which
help control the austenite grain structure and in some cases
provide precipitation strengthening.! The other alloying
additions such as manganese control the relative stabilities
of the austenite and ferrite phases and hence the nature of
the austenite transformation products.

When a hot ingot or slab enters a rolling mill, its typical
dimensions are so large that it has to be reduced to the
required thickness in many separate passes. The purpose
of the present work was to develop a model enabling the
estimation of strength as a function of a large number of
rolling parameters and the chemical composition of the
steel. The model is based on the neural network analysis
technique with a total of 108 variables; the method and the
variables are introduced below. The work is restricted to
steels with a ferrite and pearlite microstructure.

DATABASE
The neural network method is empirical and hence requires
experimental data to discover the relationships. The data
used were obtained directly from an actual commercial,
instrumented plate rolling mill. Given that the work is
focused on the production mill, the variables have to be
selected from routine records. The input variables therefore
consisted of:

(i) the slab reheating temperature, which is universally
recognised to be important in determining the initial
austenite grain size and the temperature of the slab
as it progresses through the rolling mill

(ii) the length of the slab, which determines the timing
of the rolling process

(iii) the slab gauge; this is of vital importance in
determining the total reduction required to achieve
the final plate thickness

(iv) the chemical composition, consisting of a total of 14
different elements

(v) the rolling parameters, including the pass by pass
screw settings, any delay period between the passes,
and the time spent for an individual pass

(vi) the 'rolling condition' which is set to 0 for as rolled
plates and 1 for control rolled or normalised rolled
plates; the latter involved rolling with water cooling,
with or without a delay period.

A total of 1892 examples were available for analysis. The
maximum number of rolling passes is 30; when the number
is less than 30, the missing passes were set with zero pass
time, zero delay time, and with a roll gap setting which
gives zero deformation. The purpose of the analysis was to
be able to estimate the yield and ultimate tensile strengths
as a function of each of the 108 variables. Some further
information about the variables is given in Table 1; that
information is necessary to reproduce the present work
using the trained network.

TECHNIQUE
Neural networks are parametrised non-linear models used
for empirical regression and classification modelling. Their
flexibility makes them able to discover more complex
relationships in data than 'traditional linear statistical
models.

A neural network is 'trained' on a set of examples of
input and output data. The outcome of this training is a
set of coefficients (called weights) and a specification of the
functions which in combination with the weights relate the
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ANALYSIS

Both the input and output variables were first normalised
within the range :t005 as follows .,

x-x. Inln - 0°5 (1)
.!CN = --'-,:"
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where XN is the normalised value of x which has maximum
and minimum values given by Xmax and xmin' respectively.

Linear functions of the inputs Xj are operated on by a
hyperbolic tangent transfer function

h; = tanh [ t w!1)Xj + ef!) ] . . . . . . . . . (2)

so that each input contributes to every hidden unit (Fig. 1).
The bias is designated ei and is analogous to the constant
that appears in linear regression. The strength of the
transfer function is in each case determined by the weight
Wij. The transfer to the output y is linear

- ~ (2)h e(2) (3)Y-L.,Wiji+

The specification of the network structure, together with
the set of weights, is a complete description of the formula
relating the inputs to the output. The weights are determined

Table 1 Variables, with concentrations stated in wt-%: S(J) = screw setting, mm, for Jth pass; D(J) = delay time, s,
before Jth pass; T(J) = Jth pass time

Standard
deviation

Standard
deviationRange Mean Variable Range

0'0-15'0
5.8-167-2
0.0-163.0
0.0-28.0
7.0-780.0
0'0-790.0
0.0-15.0
5.3-157.1
0.0-163'0
0'0-26'0
7.7-153.8
0.0-497'0
0.0-17'0
7'9-151.3
0'0-111.0
0'0-21'0
7.9-150'2
0'0-193.0
0'0-17.0
7.9-150.2
0.0-86.0
0'0-27.0
7'9-150.2
0.0-183.0
0.0-15.0
7.6-150'2
0'0-142.0
0.0-19.0
7.6-150'2
0.0-172'0
0'0-16'0
7'9-150.2
0.0-121.0
0.0-14'0
7'9-150'2
0'0-295.0
0.0-13.0
7.9-50.2
0.0-107'0
0'0-15.0
7'9-150.2
0.0-112'0
0'0-13'0
6'7-150.2
0'0-136.0
0.0-15.0
7.9-150'2
0'0-40'0
0'0-12.0
7-2-150.2
0.0-64'0
0'0-10'0
0 or 1

232'0-594'0
389-692

MeanVariable

Reheating temperature, 'C

51ab gauge, mm

51ab length, mm

C

Mn

5i

5

P

Ni

Cr

Mo

Cu

AI

Nb

N

V

Ti

5(1)

D(1)

T(1)

5(2)

D(2)

T(2)

5(3)

D(3)

T(3)

5(4)

D(4)

T(4)

5(5)

D(5)

T(5)

5(6)

D(6)

T(6)

5(7)

D(7)

T(7)

5(8)

D(8)

T(8)

5(9)

D(9)

T(9)

5(10)

D(10)

T(10)

8(11)

D(11)

T(11)

8(12)

D(12)

T(12)

5(13)

D(13)

993-1373
161-600
915-4080

0'076-0'25
0'7-1'54
0'14-0'46
0'001-0'019
0'008-0'027
0'014-0'56
0'01-0'53
0'001-0'017
0'004-0'296
0-0'058
0-0'011
0-0'043
0'001-0'063
0-0'033

91'0-354'9
47'0-736'0

1'0-3'0
80'1-343'1

5'0-39'0
1'0-5'0

66'1-328'1
5'0-105'0
1'0-25'0

64'5-311'2
4'0-198'0
1'0-6'0

46'0-288'6
5'0-1163'0
1'0-9'0

34'4-268'0
3'0-263'0
1'0-9'0

26'8-249'1
5'0-986'0
1'0-5'0

21'3-232'1
4'0-43'0
1'0-7'0

15'7-216'9
0'0-894'0
0'0-48'0

12'9-203'5
0'0-170'0
0'0-19'0

11'1-192'0
0'0-910'0
0'0-16'0
8'8-182'4
0'0-660'0
0'0-20'0
8'0-174'0
0'0-735'0

1212
245.1

2828

0.14
1.29
0.32
0.006
0.015
0.038
0.028
0.003
0.032
0.036
0.005
0.024
0.009
0.0019

190.3
144'3

1.5
175'4

7.3
2.2

161'1
14'4

1.5
150'0
12'6
2'4

130'6
48.4
2.0

119'1
10.0
2-6

103.9
72-1

2-5
92-2

8'0
3'1

79.3
102-1

3.4
69.3
6'7
4.0

60.3
41.8

4'4
53.5
7.0
4'9

47'9
24'0

22'
36'

700-
0-
0-
0-
0-
0'
0'
0'
0'
0'
0-
0'
0-
0'
0'

40'
58'
0'

39'
l'
0'

38'
10'
0-

37'
6'
l'

36-
160-

0-
36-
8-
0-

35'
181-

0-
35-
3'
1-
3:

218'
l'

31-
5-
1-

28'
128-

1-
26-
17'
2-

24-
84-

5"0
43"7

6'3
5"3

40"5
20'6

4"7
38"0

5"9
5"0

36'3
6"5
3"9

34'9
4'9
4'2

33'9
4"3
3'1

33'1
4'1
3'1

32'5
4'2
2-4

32-1
3'4
2-4

31"8
4"4
1"8

31"5
2-2
1"7

31"4
2-9
1"2

31"3
1"6
1'2

31'2
1"1
0"7

31'2
1'3
0'5

31-2
0"4
0'2

31'1
0"5
0"1

2'41
22'85

6-03
2-98

20'75
84-70

3-04
19-33
8'02
3'62

17-91
19-64

3'42
16'98

7'43
4-12

16-17
8'14
3-72

15-57
7-74
4'02

15'16
14-35

3-66
14-87
8-78
3-78

14-72
16-45
3'40

14-60
6-60
3-35

14'45
15'97

2-81
14-38
6'19
3'12

14'30
5'60
2-21

14'29
7-50
2-05

14-25
2-02
1'05

14-25
4-57
0'92

398.5
537.5

66"64
44"07

T(13)
5(14)
D(14)
T(14)
5(15)
D(15)
T(15)
5(16)
D(16)
T(16)
5(17)
D(17)
T(17)
5(18)
D(18)
T(18)
5(19)
D(19)
T(19)
5(20)
D(20)
T(20)
5(21)
D(21)
T(21)
5(22)
D(22)
T(22)
5(23)
D(23)
T(23)
5(24)
D(24)
T(24)
5(25)
D(25)
T(25)
5(26)
D(26)
T(26)
5(27)
D(27)
T(27)
5(28)
D(28)
T(28)
5(29)
D(29)
T(29)
5(30)
D(30)
T(30)
Condition

Yield strength, MPa
Ultimate tensile strength, MPa
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1 Typical network used in analysis; only connections
originating from one input unit are shown, and two
bias units are not shown
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6

036
24
07
004
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0014
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05
51
75
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92
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meaningless way attempt to fit the noise in the experimental
data. The number of hidden units was set by examining
the performance of the model on the unseen test data
(Fig. 2b). A combination of Bayesian and pragmatic
statistical techniques were therefore used to control the
model complexity. Test error 1;;. is a measure of the
deviation of the predicted value from the experimental one
in the test data

1;;.=O'5}::(Yn-tnf . . . . . . . . . . . (4)
n

where Yn is the predicted yield strength and tn is its
measured value.

It is seen that a model with just two hidden units gives
an adequate representation of the data with a minimum in
the test error (Fig. 2b). The behaviour of the training and
test data is shown in Fig. 3 which shows a similar degree
of scatter in both the graphs, indicating that the complexity
of this particular model is optimum. It should be noted
that the test data cover a wider range of yield strength
values and, for a few cases at the highest yield strengths,
the model underpredicts the measured values. Overfit-
ting would lead to an apparently better accuracy in the
prediction of training data when compared with the test
dataset. The error bars in Fig. 3 include the error bars on
the underlying function and the inferred noise level in the
dataset uv' In all other subsequent predictions discussed
below the error bars include the former component only.
The test error is one measure of the performance of a
model. Another useful measure is the 'log predictive
error' 3-6 for which the penalty for making a wild prediction

is much less if the wild prediction is accompanied by an
appropriately large error bar. Assuming that for each
example n the model gives a prediction with error (Yn, u~),
the log predictive error (LPE) is

~ [ t(tn - Yn)2 . M:= ]LPE= L.. 2+log(v2xun)"'" (5)
n Un

When making predictions, MacKay5 has recommended the
use of multiple good models instead of just one best model.
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-1250".""'"
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Hidden units
a variation in ,,-. as function of number of hidden units; b test error
for each model; c log predictive error

2 YS model (several values are presented for each set
of hidden units because training for each network
was started with variety of random seeds)

by training the network; the details are described else-
where.3-7 The training involves a minimisation of the
regularised sum of squared errors. The term Uv used below
is the framework estimate of the noise level of the data.

NETWORK TRAINING

Yield strength

The network model for the yield strength consisted of 108
input nodes, a number of hidden nodes, and an output
node representing the yield strength. The network was
trained using 946 of the examples randomly chosen from a
total of 1892 available, the remaining 946 examples being
kept aside at first to be used as 'new' experiments to test
the behaviour of the trained network.

The complexity of the model is controlled by the num-
ber of hidden units (Fig. 2), and the values of the 110
regularisation constants (Jw, one associated with each of
the 108 inputs, one for biases, and one for all weights
connected to the output. C

Figure 2a shows that the inferred noise level decreases
as the number of hidden units increases. However, the
complexity of the model also increases with the number of
hidden units. A high degree of complexity may not be
justified and, in an extreme case, the model may in a
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This is called 'forming a committee'. The committee
prediction y is obtained using the expression the tensile strength to find out whether the results are

compatible with known metallurgical principles and other
published data. These studies are limited to simple
relationships since there are no metallurgical models which
deal with all the variables incorporated in the neural
network approach.

In the discussion that follows, a typical 19 pass schedule
with a starting slab thickness of 200 mm and the final pass
screw setting of 13.8 mm was used unless otherwise stated.
The slab reheating temperature was set at 1215°C. The
chemical compositions were set at their average concen-
trations given in Table 1. A comprehensive list of the
standard set of variables is given in Table 2 in the precise
order in which they appear in Table 1. For example, a
variation in the carbon concentration is discussed leaving
all the other variables in Table 2 unchanged. In all the
predictions below, the error bars represent the :t 10" limits
on the underlying function.

y=i~Yi (6)
1

where L is the size of the committee and Yi is the estimate
of a particular model i. The optimum size of the committee
is determined from the validation error of the committee's
predictions using the test dataset. The test error of the
predictions made by a committee is calculated by replacing
the Yn in equation (4) with y. In the present analysis a
committee of models was used to make more reliable
predictions. The models were ranked according to their log
predictive error. Committees were then formed by combin-
ing the predictions of best M models, where M gives the
number of members in a given committee model. The test
errors for the first 18 committees are shown in Fig. 4.

A committee of the best four models gives the minimum
error; three of these were two hidden unit models and the
remaining one was a three hidden unit model. Each
constituent model of the committee was therefore retrained
on the entire dataset beginning with the weights previously
determined. Figure 5 shows the results from the new
training on the entire dataset. For the sake of simplicity,
the error bars in Fig. 5 include the error on the fitted
function only.

Carbon concentration
It is well known that carbon forms an interstitial solid
solution in iron, leading to intense solid solution strengthen-
ing. The effect is more pronounced in the case of ferritic
iron because, unlike austenite, the carbon atoms cause a
tetragonal distortion of the lattice giving strong interactions
with all kinds of dislocations.9 It has been estimated that
1 wt-%C in solid solution in ferrite raises the yield strength
by 4600 MPa and UTS by 6800 MPa (Ref. 10). However,
the solubility of carbon in ferrite is extremely small so that
the main effect in the context of steels with a mixed
microstructure of ferrite and pearlite is to increase the
fraction of the latter phase. There is also a refinement of
microstructure since the temperature at which the ferrite
forms is suppressed. Both the yield and tensile strengths
should therefore increase with the carbon concentration
and this is indeed replicated by the model (Fig. 9); the
calculations are for a steel without Nb or V additions.
Note also that, as must be expected, the UTS is always
predicted to be higher than the yield strength even though
the latter was not included as an input to the UTS model.
The error bars (:t 10") are larger when an attempt is made

Ultimate tensile strength
The same procedure was used to model the ultimate tensile
strength (UTS), with the same set of 108 input variables.
The variation in (lv, the test error, and log predictive error
with the number of hidden units is shown in Fig. 6.

The model with two hidden units was found to be the
optimum one and a committee of the nine best models led
to a further reduction in the test error, as shown in Fig. 7.

The results of the retraining of the committee model on
all of the data are shown in Fig. 8.

APPLICATION OF MODELS
The optimised committee models were used to study the
effect of individual variables on the yield strength and

Table 2 Variables used for predictions; these variables appear in same sequence as in Table 1

1215'(

0'(

158'(

7'(

6'(

7'(

7'(

7'(

7'(

0'(

0'(

0'(

200'

0'

2-

l'

2-

3'

4'

9'

10'

0'

0'

0'

2760'0
0'025

149'6
125'9
105'1
58'6
33'0
14'9
13'8
13'8
13'8
13'8

0'140
0'037
8'0
6'0

16'0
6'0
6'0
6'0
0'0
0'0
0'0
0'0

1'260
0'005
4'0
2'0
3'0
3'0
5'0
g,O
0'0
0'0
0'0
0'0

o"~
0"(

141'~
118"~
85"1
48"")
22'S
14"1
13"~
13"~
13'~
13"~

0'007
0'009

23'0
5'0

24'0
7'0

36'0
7'0
0'0
0'0
0'0
0'0

0'015
0.002
1'0
2.0
3.0
3.0
6'0

10'0
0.0
0.0
0'0
0'0

0'031
174'0
133'6
110'0
70'7
40'1
15'8
13'8
13'8
13.8
13-8
7
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concentration than the yield strength (Fig- 9)- The predomi-
nant effect of carbon in the steels considered here is to
increase the pearlite fraction in the microstructure- For
carbon concentrations up to 0-3 wt-% where the pearlite
fraction is relatively small, yielding begins in the softer
ferrite which has to work harden before the pearlite starts
to undergo plastic deformation- As a consequence, the
effect of pearlite on the yield strength is smaller- On the
other hand, pearlite content does affect the UTS because it
is associated with large plastic strains where all phases
must participate in deformation- These observations are
also reflected in Pickering's10 regression equations for
similar steels, where the quantity of pearlite features only
in the UTS equation

YS, MPa = 53-9 + 32-3wMn + 83-2wSi

+ 354-2w~; + 17-4d-o.s . - - - - (7)
UTS, MPa = 294-1.+ 27-7wMn + 83-2wSi

+ 3-85(%pearlite) + 7-7d-o.s - - - (8)

where w represents the concentration of the element
identified by the subscript (in weight per cent) Nf is the
free nitrogen, and d is the ferrite grain size in millimetres-

Based on a study covering a wide range of ferrite grain
sizes in a number of carbon steels, Morrison14 found a
slightly different factor of 18-13 for the effect of ferrite grain
size on the yield strength (equation (7))-

Figure lOa shows calculations for a microalloyed steel
with 0-03 wt-%Nb- Figure lOb shows, on the same scale,
the effect of increasing pearlite content on the UTS as
calculated using equation (8) - the zero carbon result is
from the neural network model- The agreement between
the two is excellent and similar results have been reported
by Shimizu et a[.l2

to predict at concentrations beyond the range of the
training dataset. The yield strength increases by about
32 MPa (ignoring the error bars) when the concentration
is increased from 0.025 to 0.25 wt-%. This is consistent
with experimental data by Hodgson and Gibbs11 who
found an increase in the lower yield strength by about
15 MPafor aO.l wt-% increase in the carbon concentration.

Consistent with experimental observations,10.12.13 the
UTS is predicted to be more sensitive to the carbon
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simply used as an example here to test the model
predictions. In actual practice, the initial slab thickness is
typically in the range 225-305 mm. Alternatively, an ingot
of an initial thickness of 600 mm is used.
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10 a Effect of carbon and b effect of pearlite content

on VS and UTS of microalloyed steel containing
0-03 wt-%Nb (zero V) and c VS and UTS for
0'03 wt.%V microalloyed steel (zero Nb); other
elements were as in Table 2; UTS in b was calculated
using equation (8)10

A comparison of Figs. 9 and lOa shows that the addition
of 0.03 wt-%Nb to a plain C-Mn steel increases both
the yield and ultimate tensile strengths by about 65 MPa
at all carbon concentrations. A corresponding addition of
0.03 wt-% V increases the strength by only about 20 MPa
(Fig. 10c). It is well known that niobium is more effective
in restricting recrystallisation than vanadium.15.16 The
reason for this is discussed separately.

The starting slab thickness was set at 200 mm and the
final plate thickness 13.8 mm in all of the above calculations.
If this is changed to a 400 mm initial thickness but the
rolling schedule is kept the same (i.e. the same percentage
pass reductions and the pass and interpass times), then the
final plate thickness becomes 27-7 mm. This should lead to
a reduction in the strength because the cooling rate when
rolling is completed will be lower for a thicker plate and
because the rolling reductions occur at relatively higher
temperatures (the thicker slab spends the same time in the
mill). The finish rolling temperature will be higher for
27-7 mm plate compared with 13.8 mm plate. The reduction
in strength is predicted by the neural network, as shown in
Fig. 11, although there is some uncertainty due to the large
error bars for the UTS calculations. It needs to be
emphasised that an initial slab thickness of 400 mm is

Manganese concentration
Manganese not only provides solid solution strengthen-
ing, but also has a strong effect on the stability of the aust-
enite. It decreases the ferrite transformation temperature
and therefore leads to a refinement of microstructure.l?
Manganese also shifts the eutectoid point to lower carbon
concentrations and thus leads to an increase in the volume
fraction of pearlite.

The Pickering equations given abovelo attribute a 32
and 27 MPa solid solution strengthening increment in the
yield and ultimate tensile strengths, respectively, due to a
1 wt-% increase in the manganese level. The predictions in
Fig. 12a and b include all the effects of manganese and
hence the somewhat larger strength increment is consistent
with the smaller values reported by Pickering. The results
are in agreement with the work of Gladman et al.IS for a
normalised steel.

As with carbon, an increase in the plate thickness led to
a decrease in strength (Fig. 12c and d). The increase in
thickness was achieved by doubling the slab thickness while
keeping the same rolling schedule. The reduction in the
yield strength is larger than in the UTS, presumably
because the former is more sensitive to grain size (equations
(7) and (8)).

It is a common practice during thermomechanical pro-
cessing to hold the slab at an intermediate stage during
rolling for a certain length of time. This allows it to cool
to a predetermined temperature before rolling is resumed.
The temperature is then sufficiently low to prevent the
austenite from recrystallising during deformation. The
deformation and the increase in austenite surface area
per unit volume due to its pancake shape enhances the
ferrite nucleation rate, giving grain refinement and a
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before the 9th pass is equivalent to an addition of about
0.025 wt-% of costly niobium. These factors are consistent
with the mill experience though, in actual practice, it is the
concentration of carbon and/or manganese which is reduced
rather than that of niobium to improve the weldability and
toughness. However, a hold of as large a period as 700 s
has other commercial implications. It amounts to a total
loss of production; in 700 s two plates can be rolled to
schedules which do not involve long delay periods.

The calculations carried out for manganese were repeated
for silicon in concentrations up to 1 wt-%, but it was found
not to have any significant effect on the strength. Silicon
raises the ferrite transformation temperature and this might
compensate for its solid solution strengthening.
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12 a, b VS and UTS as function of manganese content
and c, d effect of manganese concentration and plate
thickness on strength; thickness was increased by
doubling initial slab thickness

Microalloying additions
Niobium and vanadium carbonitrides prevent austenite
grain coarsening during reheating.19 They also help refine
the austenite grain structure during hot rolling by pinning
the grain boundaries and retarding recrystallisation.19
Niobium is the most effective microalloying addition for
suppressing the recrystallisation (Fig. 14)?0 This is also
evident from the regression equation proposed by Boratto
et al?l

1;.r = 887 + 464wc + (6445wNb - 644w~~) + (732wv

- 230w~S) + 890WTi + 363w Al - 357wSi (9)

where Tnr is the no recrystallisation temperature, i.e. the
temperature below which recrystallisation is very sluggish
and w represents the concentration (in weight per cent) of
the element identified by the subscript.

By suppressing recrystallisation, they allow a higher
fraction of the strain to be retained in austenite. This
increases the ferrite nucleation rate during subsequent
cooling and a finer ferrite grain size is obtained. Niobium
is more effective than vanadium in refining the grains. Abe
et az.t6 and Irvine et az.ts have observed a finer ferrite grain
size in niobium steel than in comparable vanadium steel.
A larger concentration of vanadium is required to achieve
the same effect as niobium.1s Interphase precipitation

corresponding increase in strength. This behaviour is
predicted as illustrated in Fig. 13. The delay period before
the 9th pass was increased from 24 to 700 s; this would
have the effect of reducing both the end hold temperature
and the finish rolling temperature with a consequent
increase in the yield and tensile strengths (Fig. 13).

If the increase in the strength is assumed to be due to
grain refinement, then, according to the Pickering regression
equations (7) and (8), the increase in YS should be 1.13/0.5
times the rise in UTS. The model predictions are in
excellent agreement with this. For a 1.3 wt-%Mn steel the
YS increases by 52 MPa, whereas UTS increases by 23 MPa
(Fig. 13). Thus, it might be argued that a delay of 700 s
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also causes grain refinement by hindering the ferrite grain
growth?2

At the same grain size microalloyed steels have higher
strength than the plain C-Mn steels!5 and this has been
attributed to the presence of fine precipitates of carbides
and nitrides of the microalloying elements. In this respect
V is more effective than Nb particularly at higher nitrogen
contents?3

Both Nb and V also increase the hardenability and
reduce the ferrite transformation temperature.16,22

These characteristics are predicted using the neural
network model as shown in Fig. 15. A 0.02 wt-% increase
in Nb, in the region in which the error bars are small,
increases the yield strength by about 40 MPa and the
tensile strength by 25 MPa, whereas the same amount of
V increases both the YS and the UTS by only 15 MPa.
The experimental results reported in the literature more or
less confirm these model predictions.12,15-17,24

Figure 15 also highlights the fact that a combined
addition of V and Nb enhances the strengthening effects,
consistent with the experimental results reported by Irvine
et a[.l5 They found that an addition of 0.06 wt-% V to a
Nb microalloyed steel raises the yield strength by about
40 MPa and the UTS by a smaller increment of 15 MPa.
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15 Effect of Nb and V on yield and tensile properties

(normally V is not added alone but is combined with
Nb); calculations are presented here for illustration
only

now presented where the reductions for two or more passes
were simultaneously varied in such a way that the final
plate thickness is not altered. The slab thickness, the delay
times, and the pass times were not changed and the
reductions for the other passes are the same as in Table 2.
Figure 17a shows the lack of variation in strength for a
case where the 1st pass reduction was increased together
with a corresponding decrease in the 19th (final) pass
reduction which left the final plate thickness unaltered at
8.1 mm for a 200 mm starting slab. This is because a small
1st pass reduction leads to a higher temperature for all
subsequent passes including the final pass with a high
reduction since none of the delay times is altered, so that
the strength does not increase. When the 1st pass reduction
is large, the later passes occur at a lower temperature. It is
suggested that the resultant of these two effects is that the
strength does not vary.

Similar results were obtained when the schedule given in
Table 2 was modified. The 15th and 16th pass strains were
set to zero, but the 4th and 5th pass strains were increased
equally so that the final plate thickness remained 13.8 mm.
The effect of this change in schedule on the variation
of YS and UTS with carbon is shown in Fig. 17b. A
comparison with Fig. lOa makes it obvious that the change
in schedule has not made much of a difference to the
properties.

Rolling parameters
Figure 16 shows the effect of a 1st pass reduction on the
yield and ultimate tensile strengths; both increase as the
pass reduction is increased, with the yield strength showing
a greater variation. Figure 16 is an extrapolation over the
normal rolling practice. Usually the 1st pass reduction is
less than 10% and in some cases it may be preceded by a
few unrecorded cogging passes. It should also be noted
that the effect shown in Fig. 16 is not of the pass reduction
alone. Other factors need to be taken into account. The
percentage reduction in all other passes were kept constant
so that, for a given slab thickness, a higher 1st pass
reduction meant a lower gauge at all other stages of rolling
and hence a thinner final plate gauge. It follows that with
increasing 1st pass reduction all other subsequent passes
are executed at lower temperatures due to the thinner gauge.

The effect of increasing (i) the initial slab thickness to
400 mm and (ii) the 9th pass delay time (delay before 9th
pass) to 500 s from 24 s is also included in Fig. 16. A slab
thickness of 400 mm is used here as an example only.

The effect of increasing the slab thickness to 400 mm
without changing the pass reductions is to decrease the
strength, which is reasonable. For reasons already discussed,
the introduction of the delay period of 500 s before the 9th
pass increases the strength.

In the above discussion, the per cent reduction of only
one pass was systematically varied. This has the effect of
changing the final plate thickness. Some calculations are
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It has already been seen that the introduction of a delay
time can have an effect on the final mechanical properties
if it leads to grain refinement. Naturally, this can only be
significant at the late stages of rolling and this is reflected
in the results shown in Fig. 18.
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Optimisation of YS/UTS ratio
The YS/UTS ratio is an important design criterion for
many failsafe applications where a low value is desired.
Examples include earthquake resistant steels and cases
where a good fatigue resistance is required?5

The present model was used to explore the possibility of
designing such a steel. The effect of variations in the carbon
and manganese concentrations on the ratio are summarised
in Fig. 19.

~:~;f~~;::::=:~
Table 3 Chemical composition, wt-%, of steels studied

by Irvine et al.15

Steel c

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.10
0.10
0.15
0.05
0.044
0.099
0.104
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0'144
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16 a, b Effect of 1st pass reduction on YS and UTS and
c, d corresponding effects as function of 16th pass
reduction
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18 Effect of delay time on VS and UTS

whkh affect the YSjUTS ratio are the delay period and
the plate thickness. These have already been discussed.

Other published data
Irvine et ai.iS have systematically studied the effect of
chemical composition on the final properties of steel in the
as rolled and normalised conditions (Table 3). The present
model was tested against their results. In their experiments
the samples were reheated to 1200°C and the finish rolling
temperature was about 900°C. They have not reported the
details of rolling schedule employed and for the present
calculation it has been assumed that they are similar to the
standard conditions used here. It is clear that the model
predicts the data rather well (Fig. 20 and Table 4).

The ratio decreased with increasing carbon concentration.
As argued earlier, this is because the pearlite content
increases with carbon which affects UTS more than the
YS. However, a very high carbon is not acceptable because
of its adverse effect on weldability and toughness. Low
carbon will not give adequate strength. Manganese raises
the ratio mainly due to its influence on ferrite grain size
which raises the YS more than the UTS. Other factors

Table 4 Comparison of predicted yield (VS) and tensile
(UTS) strengths with those reported in
literature 15 CONCLUSIONS

A neural network model capable of predicting the yield
and tensile strengths of steel plates as a function of
composition and rolling parameters has been trained and
tested. The model has been shown to be consistent with
established metallurgical trends and can, for example, be
used to study the effect of each variable in isolation. There
are interesting results on the yield strength/tensile strength
ratio whose value can be altered systematically by con-
trolling the carbon and manganese concentrations.

YS. MPa UTS, MPa

Predicted

419.5
368.7
355.4
417-7
497.3
443.4
513.6
468.4
522-7
430.0
494.4
409.4
498'0
449.5
536.'

568"2
427-7
528"0
457"0
568"2
555"8
617"6
599"1
660"8
524"9
543"5
537"3
574"4
611"4
660"8
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