Short Communication

Topology of grain deformation

S. B. Singh and H. K. D. H. Bhadeshia

The deformation of a polycrystalline material leads to changes in the amount of grain surface and grain edge per unit volume.
These parameters are of importance in kinetic theory since both surfaces and edges are heterogeneous nucleation sites. In the
present study a method is described for calculating changes in the surface area and edge per unit volume as a function of common
deformations encountered in the production of steels. Unlike previous analyses, each grain in the undeformed material is
represented by a tetrakaidecahedron, a shape which is a realistic representation of equiaxed grains. There are some interesting

results which are compared with previous work.
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Introduction

Method

The hot deformation of steel in its austenitic condition is
the most common way of processing large quantities of
material into their final shape. The deformation has the
dual purpose of producing the required shape and refining
the microstructure. During hot deformation, the austenite
undergoes repeated recrystallisation, which leads to an
increasingly smaller grain size. In the final stage of processing,
the austenite is frequently left in a deformed state with a
‘pancaked’ grain structure since this enhances the possibility
of obtaining a very fine ferrite grain structure.! The pro-
duction process described here has many variants, including
controlled rolling, thermomechanical controlled processing,
etc. but they all involve the transformation of deformed
austenite.

The development and manufacture of steel by controlled
rolling is a very complicated process. There is, therefore,
considerable research throughout the world to produce
kinetic models dealing with the transformation of deformed
austenite, 7 as an aid to the design of steels. Homogeneous
deformation leads to an increase in the grain surface and
grain edge per unit volume but there is no change in the
number of grain corners per unit volume. Since surfaces,
edges, and corners are all heterogeneous nucleation sites,
any change in their number density must be taken into
account in the kinetic model.

Umemoto et al.? estimated the change in the surface area
of austenite grain surface per unit volume by representing the
grains as spheres, each of unit radius. Rolling deformation
changes the sphere into an ellipsoid with axes 1, (1 —p),
and 1/(1 — p), where p is the rolling reduction given by the
change in thickness divided by the initial thickness. The
surface area of the ellipsoidal grain is given by
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which can be compared with the surface area of the
original sphere as 47. The method is a useful approximation
but spheres are not space filling and do not have
edges. We present here some calculations for the changes
in surface and edge densities as a function of strain for
grains which are initially in the form of Kelvin’s space filling
tetrakaidecahedra. This is probably the most realistic simple
shape for equiaxed grains.®

The deformation of a shape as complicated as a tetra-
kaidecahedron can be considered by representing each
corner with a vector whose origin is conveniently chosen.

The deformation itself can be described by a 3x3 .

deformation matrix,® which operates on each vector in turn
to generate a set of new vectors defining the new shape.
Thus, a vector # becomes a new vector v as a consequence
of a homogeneous deformation S
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where u; are the components of u, and b, d, and ¢ are the
principal distortions (ratios of the final to initial lengths of
unit vectors along the principal axes). Therefore, In(b), In(d),
and In(c) are the true strains along the three principal axes
of the deformation. Since all practical deformations involve
shears only, there is no change in volume so that the deter-
minant of S must be unity. It follows that bed = 1. Rolling
involves plane strain deformation with d =1 and bc = 1.

Results

A tetrakaidecahedron has 14 faces consisting of 8 hexagons
and 6 squares (Fig. 1). The resulting 36 edges each have a
length a. The edges can be represented by just six non-
parallel vectors whose components with respect to an origin
defined at a corner are listed in Table 1, both before and
after the deformation described by equation (2).

The surface area and edge length can easily be calculated
using the vectors given in Table 1. Bearing in mind that
d=1/bc in order to retain a constant volume, the ratio
A/A, of the surface area of the deformed to the undeformed
tetrakaidecahedron is given by

b+ 3[b(1 + 222 4 (b2 + 2¢%)12]
4 + e[2(1+ b))
Ao 3bc(24/3 + 1)

Similarly, the ratio of the total edge length of the deformed
to undeformed tetrakaidecahedron is

o1+ b%c +2(1 + b*c? + 2b%c*)V? @)
L 6be o

. (3)
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1 Shape of tetrakaidecahedron: coordinate axes illustrated
are orthogonal with each basis vector of length a

These ratios are illustrated for plane-strain deformation
(b=1/c) in Fig. 2a, as a function of strain along the roll-
ing direction. A negative value of the strain implies an
antirolling deformation beginning with an equiaxed grain
structure. The increase in the edge length is approximately
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2 a increase in surface area and edge length of
tetrakaidecahedron as function of strain along rolling
direction during plane strain deformation: negative value
of strain implies antirolling operation b comparison
of surface per unit volume Sy for tetrakaidecahedron
and sphere,? assuming that a=1 and 1-393m for
tetrakaidecahedron and sphere respectively
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3 Increase in surface area and edge length of
tetrakaidecahedron as function of strain along radial
direction during a wire drawing operation: positive
value of strain implies antidrawing operation

the same as that in the surface area. The negative value of
strain signifies a compression along the third direction
(c < 1). The increase is roughly symmetrical for the positive
and negative values of strain, though equations (3) and (4)
show that it cannot be precisely symmetrical. Comparison
with the results of Umemoto et al? in Fig. 2b shows that
the tetrakaidecahedron naturally starts off with a larger
surface area per unit volume when compared with a sphere.
However, the rate at which the surface per unit volume Sy,
increases with strain is comparable for the two shapes. It
should be noted that to enable a valid comparison, the
volumes of the tetrakaidecahedron and sphere have been
set to be equal for the calculations presented in Fig. 2b.
Therefore, the dimension a is set at unity and 1-:393 for the
tetrakaidecahedron and sphere respectively.

Another type of deformation common in the processing
of steel is wire drawing or rod rolling, characterised by h=c.
The results for this are illustrated in Fig. 3, where the strain
on the horizontal axis is along the radial direction (i.e.
normal to the drawing direction). A positive strain therefore
implies an antidrawing operation but always beginning
with an equiaxed grain structure.

It is interesting to compare the results illustrated in
Figs. 2 and 3. In both rolling and drawing, the main change
in length is along the rolling or drawing directions respect-
ively. Therefore, the rate at which the edge increases with
strain is found to be similar for both deformations. The
rate at which area increases with strain is larger for drawing
deformation, because there is zero strain along one of the
principal directions during plane strain rolling deformation.

Table 1 Six vectors which completely define edges of
tetrakaidecahedron and their components after
deformation S

Vector Before deformation After deformation

1 [a 0 0] [ab 0 O]

2 [0 a 0] [0 ad 0]

3 [,f 2 i} [_ab o E]

2 2 2 2 2 2

4 [E 2 i] [a_b _ad EJ

2 2 2 2 2
5 [i a i} [a_b ad i’i]
22 p 2 2 2
6 [,f 2 i} [,ib ad E]
2 2 \fp 2 2 )2
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4 Tetrakaidecahedron after a plane strain deformation
with a reduction of 50% along the z axis and b after
wire drawing with reduction of 50% along z and y
axes: a has been uniformly scaled down in size by a
factor of 2 relative to b

Figure 4 shows the shape of the tetrakaidecahedron after
a plane strain deformation and after a wire drawing type
of deformation. These were generated from the coordinates
of the vertices of the original tetrakaidecahedron using
equation (2). The shape in Fig. 4b appears asymmetrical
because the starting shape of the tetrakaidecahedron is not
symmetrical relative to the x axis (the drawing direction)
as is evident in Fig. 1.

Conclusions

Rigorous relationships have been derived for the increase
in the surface area and edge length when equiaxed grains,

idealised as space filling tetrakaidecahedra, are homo-
geneously deformed. This information should be of use in
the modelling of transformation kinetics for reactions which
are heterogeneously nucleated. The results improve on a
previous model which was based on the deformation of
a sphere.
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