NEW CREEP RUPTURE ASSESSMENT OF GRADE 91

<u>L. Cipolla</u> - Centro Sviluppo Materiali S.p.A., Rome, Italy J. Gabrel - Vallourec Research Center, Aulnoye Aymeries, France

ABSTRACT

The European collection and assessment of Grade 91 creep rupture data were performed by European Creep Collaborative Committee (ECCC) in 1995 referring to all products - tube, pipe, forging, casting and plate - obtained by industrial and laboratory casts. The database mainly contained data within 50,000 hours. The stress to obtain rupture at 600°C into 100,000 hours was assessed in 94 MPa.

A new collection of creep rupture data was performed by ECCC in 2005: a larger database was generated with several broken tests in the range of 50,000-100,000 hours and some over 100,000 hours. The dataset was assessed with different procedures developed by ECCC and the extrapolations were validated by Post Assessment Tests (PATs). The evaluated creep strength into 100,000 hours at different temperatures reached a high level of confidence and more accurate extrapolations up to 200,000 hours were achieved.

KEYWORDS

High Chromium steel, T/P91, Creep-rupture strength, Creep data assessment, ECCC

INTRODUCTION

In the last two decades, the request of improved efficiency and reduced emissions in power plants has resulted in the design of system utilizing higher and higher steam temperatures and pressures.

This shift towards more severe service conditions required the use of materials with appropriate high-temperature strength, physical properties and metallurgical stability at the operating temperature of the unit to prevent catastrophic failures by several potential long-term mechanisms: leakage due to creep-induced dimensional changes, bursting due to stress rupture, or thermal fatigue due to thermally-induced cyclic stresses.

In the 1970s, Oak Ridge National Laboratory (ORNL) developed a new alloy, commonly referred to as 9Cr-1Mo-V, similar to conventional 9Cr-1Mo grades; modifications included additions of Vanadium, Niobium, Nitrogen and low Carbon content. The chemistry of the 9Cr-1Mo-V steel was especially designed to promote the formation of a microstructure which provides excellent long-term high-temperature strength. The final desired microstructure, which can be achieved by a proper normalizing and tempering heat treatment, consists of tempered martensite, with a fine carbonitride precipitation (MX) inside the matrix, and a extensive carbide precipitation ($M_{23}C_6$) along the grain boundaries [1], [2], [3]. In addition, because of its lower thermal expansion coefficient and higher thermal conductivity, this alloy is much more resistant to thermal fatigue than the austenitic stainless steels.

The 9Cr-1Mo-V steel has been adopted in various forms in ASTM/ASME Specifications: seamless tube T91 (ASTM A213), seamless pipe P91 (ASTM A335), forged pipe FP91, forging F91 and casting C12A. This alloy is also included in European Standardization, EN 10216-2, under the designation X10CrMoVNb9-10. The first large scale application of this steel at USC (UltraSuperCritical) steam conditions was in the Kawagoe plants in Japan, commissioned in 1988 with steam parameter 31MPa/566°C/566°C.

The present paper focuses on long-term creep properties of parent material of 9Cr1Mo0.25V steel (Grade 91). This steel has been at the center of activities in European Creep Collaborative Committee (ECCC), Working Group 3A (WG3A), "Ferritic Steels", which covers creep data development and analysis for parent materials and welds of all creep resistant steels, ranging from low alloy steels up to 12%Cr steels.

The first European collection and assessment of Grade 91 creep rupture data were performed by ECCC in 1995 referring to all products - tube, pipe, forging, casting and plate - obtained by industrial and laboratory casts. The database mainly contained data within 50,000 hours. The stress to obtain rupture at 600°C into 100,000 hours was assessed in 94 MPa.

A new collection of creep rupture data was performed by ECCC in 2005: a larger database was generated with several broken tests in the range of 50,000-100,000 hours and some over 100,000 hours. The dataset was assessed with different procedures developed by ECCC and the extrapolations were validated by Post Assessment Tests (PATs) [4]. The evaluated creep strength into 100,000 hours at different temperatures reached a high level of confidence and more accurate extrapolations up to 200,000 hours were achieved.

PREVIOUS ASSESSMENT OF GRADE 91

One of the most demanding task for the validation of new high temperature steels for use in pressure vessel design is the development of a wide database of long-term creep test results. The ECCC WG3A, and its predecessors in earlier rounds of ECCC collaboration, assessed the long creep rupture strength of the most advanced 9Cr1MoV steels, Grades 91, E911 and 92, on comprehensive worldwide datasets, including information about material pedigree: chemical composition of the heats, heat treatment details, mechanical properties. Minor compositional changes among those three steels led to major differences of their creep strength, as shown Table 1.

For P92 a first worldwide data collation was completed in 1999 and it resulted in a database containing approximately 4.2 million testing hours. Data assessments in ECCC resulted in a first datasheet published in 1999 with stress to rupture into 100,000 hours at 600°C assessed in 123MPa. In year 2005 a new ECCC database was generated, containing almost 9 million testing hours. A new data assessment was published in 2005: the creep strength was re-assessed in $600^{\circ}C/113MPa/10^{5}h$ and $600^{\circ}C/101MPa/2 \cdot 10^{5}h$ [5], [6].

For steel E911 the creep tests performed during COST 501 Program were collated by ECCC in 2000. They amounted to approximately 2.4 million testing hours. Assessments made by ECCC in 2002 have resulted in a provisional datasheet, as the data were not extensive enough to establish validated mean stress rupture strength values beyond 30,000 hours without extended time extrapolation.

The database was updated in 2004 with several other worldwide data (longest available data reached 87,000 hours at 600°C) and more reliable extrapolations were published in ECCC datasheet in 2005: $600^{\circ}C/98MPa/10^{5}h$ [5], [6].

For steel P91 a worldwide data collation was made in 1994, which resulted in a database containing approximately 14 million testing hours. The assessment of the data was published in ECCC datasheet in 1995 with validated mean stress rupture strength up to 100,000 hours at temperatures 500°C up to 670°C [5].

	T/P91	E911	T/P92		
Element	(EN 10216-2)	(ASTM 213-335)	(ASTM 213-335)		
С	0.08 - 0.12	0.09 - 0.13	0.07 - 0.13		
Si	0.20 - 0.50	0.10 - 0.50	0.50 max		
Mn	0.30 - 0.60	0.30 - 0.60	0.30 - 0.60		
Р	0.020 max	0.020 max	0.020 max		
S	0.010 max	0.010 max	0.010 max		
Cr	8.00 - 9.50	8.50 - 10.50	8.50 - 9.50		
Мо	0.85 - 1.05	0.90 - 1.10	0.30 - 0.60		
Ni	0.40 max	0.40 max	0.40 max		
Al tot	0.04 max	0.04 max	0.04 max		
Cu	0.030 max	/	/		
Nb	0.06 - 0.10	0.06 - 0.10	0.04 - 0.09		
Ti	/	/	/		
V	0.18 - 0.25	0.18 - 0.25	0.15 - 0.25		
Ν	0.03 - 0.07	0.04 - 0.09	0.03 - 0.07		
W	/	0.90 - 1.10	1.5 - 2.0		
В	/	0.0003 - 0.006	0.001 - 0.006		
Normalising (°C)	1040 - 1090	1040 min	1040 min		
Tempering (°C)	730 - 780	730 min	730 min		
10 ⁵ h creep rupture	94 MPa	98 MPa	113 MPa		
strength at 600°C	(ECCC 1995)	(ECCC 2005)	(ECCC 2005)		

Table 1 – Chemical composition, heat treatment and mean creep rupture strength of advanced Cr steels, Grades 91, E911 and 92

NEW ASSESSMENT OF GRADE 91

More than ten years have passed since last evaluation of Grade 91 creep-strength. Available long term tests have now passed 100,000 hours in the range 575°C-625°C and deviations from previously extrapolated curves in 1995 gave indication that a re-assessment would have been reasonable. For this reason a new ECCC database was generated. The data were collated by Japan, USA and major European Countries (mainly from Germany, France, England and Italy).

Centro Sviluppo Materiali (CSM) and Vallourec Research Center were officially designed as ECCC assessors of new creep-rupture database. The assessors were asked to process the database separately, following ECCC Recommendations and performing the PATs.

CREEP RUPTURE ASSESSMENT BY CSM

A total of 2,195 creep data (including running tests) were selected according to European Standard EN 10216-2, in terms of chemical composition, heat treatment and mechanical properties, for a total of 17,852,130 testing hours. The database mainly consisted of tube and pipe products, with less than 300 data only from bar, plate and forging.

Details of the used database are reported in Table 2. The summary of creep rupture data distribution is shown in Table 3. The testing temperature varies from 427°C up to 730°C, but most of the data are concentrated at 550°C, 600°C and 650°C. Several very long creep tests are included in the database: seven creep data passed 100,000 hours; the longest broken creep test reached 113,431 hours at 600°C and one running test passed 137,928 hours at 600°C.

Table 2 – Details of assessed database in terms of chemical composition, heat treatment, tensile properties and product sizes (according to EN 10216-2:2002 and its permissible deviations of the product analysis from specified limits on cast analysis)

			/				
DETAILS							d ranges 6-2:2002
Variable	Unit	Mean	Min	Max	Std. Dev.	Min.	Max
Carbon	wt%	0.099	0.080	0.120	0.008	0.080	0.120
Silicon	wt%	0.321	0.190	0.490	0.063	0.200	0.500
Manganese	wt%	0.433	0.310	0.590	0.054	0.300	0.600
Phosphorous	wt%	0.012	0.001	0.024	0.005	1	0.020
Sulphur	wt%	0.003	0.001	0.009	0.002	1	0.010
Chromium	wt%	8.593	8.050	9.300	0.291	8.000	9.500
Molybdenum	wt%	0.945	0.850	1.060	0.037	0.850	1.050
Nickel	wt%	0.156	0.010	0.460	0.085	1	0.400
Vanadium	wt%	0.212	0.150	0.270	0.018	0.180	0.250
Niobium	wt%	0.076	0.055	0.100	0.010	0.060	0.100
Nitrogen	wt%	0.046	0.027	0.069	0.010	0.030	0.070
Aluminium	wt%	0.012	0.001	0.003	0.008	1	0.040
Copper	wt%	0.064	0.003	0.157	0.032	1	0.300
Normalisation temperature	°C		1040	1090		1040	1090
Tempering temperature	°C		740	780		730	780
Rp	MPa	557	450	767	56.8	450	1
Rm	MPa	712	630	829	48.8	630	830
Tube/pipe OD	mm		26.7	660			
Tube/pipe WT	mm		2.67	100			
Forging, bar, plate	mm						
	Variable Carbon Silicon Manganese Phosphorous Sulphur Chromium Molybdenum Nickel Vanadium Nickel Vanadium Nitrogen Aluminium Copper Normalisation temperature Tempering temperature Rp Rm Tube/pipe OD Tube/pipe WT Forging, bar, plate	Variable DE Variable Unit Carbon wt% Silicon wt% Manganese wt% Phosphorous wt% Sulphur wt% Chromium wt% Molybdenum wt% Nickel wt% Vanadium wt% Niobium wt% Nitrogen wt% Aluminium wt% Normalisation temperature °C Tempering temperature °C Rp MPa Rube/pipe OD mm Tube/pipe WT mm Forging, bar, plate mm	DETAILS Variable Unit Mean Carbon wt% 0.099 Silicon wt% 0.321 Manganese wt% 0.433 Phosphorous wt% 0.012 Sulphur wt% 0.003 Chromium wt% 0.003 Molybdenum wt% 0.945 Nickel wt% 0.156 Vanadium wt% 0.076 Nitrogen wt% 0.064 Aluminium wt% 0.064 Normalisation temperature °C Rp MPa 557 Rm MPa 712 Tube/pipe OD mm Tube/pipe WT Forging, bar, plate mm	DETAILS Variable Unit Mean Min Carbon wt% 0.099 0.080 Silicon wt% 0.321 0.190 Manganese wt% 0.433 0.310 Phosphorous wt% 0.003 0.001 Sulphur wt% 0.003 0.001 Chromium wt% 0.945 0.850 Molybdenum wt% 0.156 0.010 Vanadium wt% 0.212 0.150 Nickel wt% 0.212 0.150 Niobium wt% 0.212 0.150 Niobium wt% 0.076 0.055 Nitrogen wt% 0.046 0.027 Aluminium wt% 0.064 0.003 Normalisation temperature °C 1040 Tempering temperature °C 740 Rp MPa 557 450 Rm MPa 712 630 Tube/pi	DETAILS Variable Unit Mean Min Max Carbon wt% 0.099 0.080 0.120 Silicon wt% 0.321 0.190 0.490 Manganese wt% 0.433 0.310 0.590 Phosphorous wt% 0.012 0.001 0.024 Sulphur wt% 0.003 0.001 0.009 Chromium wt% 0.945 0.850 9.300 Molybdenum wt% 0.945 0.850 1.060 Nickel wt% 0.945 0.850 1.060 Vanadium wt% 0.212 0.150 0.270 Nioblum wt% 0.046 0.027 0.069 Aluminium wt% 0.064 0.003 0.157 Normalisation temperature °C 740 780 Rp MPa 557 450 767 Rm MPa 557 660 829	DETAILS DETAILS Variable Unit Mean Min Max Std. Dev. Carbon wt% 0.099 0.080 0.120 0.008 Silicon wt% 0.321 0.190 0.490 0.063 Manganese wt% 0.433 0.310 0.590 0.054 Phosphorous wt% 0.012 0.001 0.024 0.005 Sulphur wt% 0.003 0.001 0.009 0.002 Chromium wt% 0.945 0.850 1.060 0.037 Nickel wt% 0.156 0.010 0.460 0.085 Vanadium wt% 0.212 0.150 0.270 0.018 Niobium wt% 0.027 0.069 0.010 Nitrogen wt% 0.064 0.003 0.010 Aluminium wt% 0.064 0.003 0.157 0.032 Normalisation temperature °C 740 780 <	DETAILS Specifier EN 1021 Variable Unit Mean Min Max Std. Dev. Min. Carbon wt% 0.099 0.080 0.120 0.008 0.080 Silicon wt% 0.321 0.190 0.490 0.063 0.200 Manganese wt% 0.433 0.310 0.590 0.054 0.300 Phosphorous wt% 0.003 0.001 0.009 0.002 / Sulphur wt% 0.033 0.001 0.009 0.002 / Chromium wt% 0.945 0.850 1.060 0.037 0.850 Nickel wt% 0.156 0.010 0.460 0.085 / Vanadium wt% 0.012 0.150 0.270 0.018 0.180 Nickel wt% 0.016 0.027 0.069 0.010 0.060 Nitrogen wt% 0.012 0.001 0.003 0.030 / <

It is interesting to compare the new database with the previous one from ECCC (Table 4). The differences are consistent at very long time and the new available long-term broken data guarantee higher calculation reliability and extrapolations up to 200,000 hours.

	Test Durations								
	h	h	h	h	h	h	h		
	<10.000	10.000 to	20.000 to	30.000 to	50.000 to	70.000 to	> 100.000		
		20.000	30.000	50.000	70.000	100.000			
	Number of test points available								
ECCC 1995	1260 (60)	159 (16)	52 (18)	23 (11)	9 (16)	2 (7)			
ECCC 2005	1657 (37)	220 (29)	92 (28)	52 (8)	24 (20)	5 (16)	3 (4)		

Table 4 – Comparison between ECCC databases, dated 1995 and 2005

Two main assessments were performed, the first one according to PD6605 procedure and the second one according to Larson-Miller (LM) method.

The simplified Mendelson-Roberts-Manson (MRM) equation was used to assess the database. This is a complex creep-rupture model according to PD6605 assessment procedure, by the following parametric equation [6], based on a polynomial expansion:

$$\ln(t_r^*) = \left\{ \sum_{k=0}^n \beta_k \cdot \left(\log[\sigma] \right)^k \right\} \cdot \left(T - T_0 \right)^r + \tau_0$$
(1)

where *n* is the degree of the polynomial, β_k , τ_0 , T_0 and *r* are constants, t_r^* is the predicted rupture time [hours], *T* is the absolute temperature [K] and σ is the applied creep stress [MPa]. CSM assessed the database according to the following MRM four degree equation:

$$\ln(t_r^*) = \left[263.8 + 217.1 \cdot \log\sigma - 212.8 \cdot (\log\sigma)^2 + 84.9 \cdot (\log\sigma)^3 - 13.2 \cdot (\log\sigma)^4\right] \cdot (T - 438.7)^{-0.27} - 55.9$$
(2)

	h<1	0000	10000<	h<=20000	20000 <h< th=""><th>n<=30000</th><th>30000<</th><th>h<=50000</th><th>50000<</th><th>h<=70000</th><th>70000<</th><th>h<=100000</th><th>h>100</th><th>0000</th><th>Total</th><th>Total</th><th>Total</th><th>% of total</th></h<>	n<=30000	30000<	h<=50000	50000<	h<=70000	70000<	h<=100000	h>100	0000	Total	Total	Total	% of total
Temp. (°C)	в	UB	В	UB	в	UB	в	UB	В	UB	В	UB	В	UB	broken	unbroken	B+UB	broken
427												1		1		2	2	0
454												1				1	1	0.0
482	1									4					1	4	5	0.0
500	71	6	6	3	2	6			1	3		1			80	19	99	3.9
525	3	3	_			1		_		1		2			3	7	10	0.1
538	12		3			2		1		5	1	1			16	9	25	0.8
550	262	11	31	9	21	7	12	2	6	2	3	1	2		337	32	369	16.4
5/5	58	1	10	1										1	68	3	71	3.3
580	1																1	0.0
585	1														1		1	0.0
590	20	4	•		2			4				4			54	2	57	0.0
593	524	7	9	11	12	7	20	1	0	5	1	6	4	2	706	3	5/ 7/9	2.0
610	1	'	2		40	'	25	4	3	J		U	•	2	3	42	3	0.1
615	1		1												2		2	0.1
620	12	2	4						2						18	2	20	0.1
621	10	-	-						-						10	-	10	0.5
625	57	1	2	1											59	2	61	2.9
630	16	5	2	•	2										20	5	25	1.0
637	1	•	_		_										1	•	1	0.0
640	24		5				2								31		31	1.5
645	3		-				_								3		3	0.1
649	55		2		3										60		60	2.9
650	358		40	4	16	5	6		6			2			426	11	437	20.7
660	20														20		20	1.0
662	3														3		3	0.1
665	3														3		3	0.1
670	16														16		16	0.8
675	6														6		6	0.3
677	21				1										22		22	1.1
680	16														16		16	0.8
685	2														2		2	0.1
688	1														1		1	0.0
690	6														6		6	0.3
700	40		4														4	2.1
700	40		4		1										44 6		44 6	2.1
704	5																4	0.3
730	4														4		4	0.2
	1657	37	220	29	92	28	52	8	24	20	5	16	3	4	2053	142	2195	100

Table 3 - Summary of creep rupture data distribution

To check the good quality of the time and stress extrapolations by MRM approach, following the ECCC guideline, CSM verified that the new Grade 91 extrapolations satisfy all PATs categories.

The calculated creep-rupture isothermals are plotted in Figure 1 for main temperatures, in comparison with experimental data points and ECCC reference curves dated 1995 (PAT 1.1). Data fitting is very good in the range 500°C-600°C and at 700°C, whilst at 650°C the scatter is large, especially at very long time exposure.

To assess the effectiveness of the model in predicting the creep behaviour of the complete dataset, the [predicted time, log t_r^*] versus [observed time, log t_r] diagram was plotted for all tested temperatures (PAT 2.1) (Figure 2). Less than 1.5% of total data falls outside log $t_r^* = \log t_r \pm 2.5 S_{[A-RLT]}$ boundary lines.

Figure 1 – Isothermal curves by MRM equation (PAT 1.1)

Figure 2 – Predicted time vs observed time plot

The isothermal creep curve at 600°C and the relative PAT 2.2 plot are showed in Figures 3 and 4. The fitting is very good even at very long time (~100,000 hours) and one point only (0.14%) falls outside $\log t_r^* = \log t_r \pm 2.5 S_{[A-RLT]}$ boundary lines in the $\log t_r^*$ vs $\log t_r$ diagram.

CSM performed a second assessment by Larson-Miller equation. The relationship used to assess the database is the following:

$$\log \sigma_c = a + b \cdot P + c \cdot P^2 + d \cdot P^3 + e \cdot P^4 \tag{3}$$

where σ_c is the calculated stress [MPa], *a*, *b*, *c*, *d* and *e* are constants and *P* is the Larson-Miller parameter, defined as:

$$P = T \cdot (C_{LM} + \log(t_r)) / 1000$$
(4)

where C_{LM} is a constant optimised by regression, t_r is the time to rupture [hours] and T is the temperature [K]. The calculated creep-rupture isothermals are plotted in Figure 5 for main temperatures, in comparison with experimental data points and ECCC reference curves dated 1995. A dangerous stress overestimation is obtained by LM method at all temperatures, especially at 600°C. The requirement of physical realism of the extrapolations is not completely fulfilled.

Figure 5 - Isothermal curves by LM equation

CREEP RUPTURE ASSESSMENT BY VALLOUREC

Vallourec Research Center assessed the same ECCC database by Minimum Commitment (MC) equation [7]:

$$\log t_r^* = a_0 + a_1 \cdot \log \sigma + a_2 \cdot \sigma + a_3 \cdot \sigma^2 + a_4 \cdot T + \frac{a_5}{T}$$
(5)

where t_r^* is the predicted time [hours], σ is the stress [MPa], *T* is the temperature [*K*], and a_0 , a_1 , a_2 , a_3 , a_4 and a_5 are constants. The constants determined for Grade 91 database by MC equation are:

 $a_0 = -0.73; a_1 = -5.15; a_2 = -0.0059; a_3 = -1.68 \cdot 10^{-5}; a_4 = -0.0089; a_5 = 21058.5.$ (6)

The visual check of the credibility of predicted model shows a good correlation between the individual data points and the calculated isothermal lines, as illustrated in Figure 6.

Figure 6 - Isothermal curves by MC equation

DISCUSSION AND RESULTS

The results of three different assessments by MRM, LM and MC equations, are summarized in Table 5 for the main testing temperatures. In the range of 550°C-600°C the large amount of data allowed extrapolations up to 200,000 hours. The values within parentheses indicate the deviation percent of assessed values with respect to ECCC 1995 extrapolations.

A graphical comparison of the experimental data with the assessed isothermal curves is given in Figures 7 and 8, at 550°C and 600°C respectively. Differences between MRM and MC equation are very small, while the LM method is the less conservative and seems to be less able to describe a strong curvature between the high and low stress creep regime. The correction to ECCC assessment is consistent and a general reduction of creep-rupture strength was achieved.

Assessment	Temperature	Creep rupture strength (MPa) for times					
Method	°C	10,000 h	30,000 h	100,000 h	200,000 h		
ECCC 1995		199	183	166	154*		
MRM equation	550	189 (-5.0%)	171 (-6.5%)	152 (-8.4%)	141 (-8.4%)		
Larson-Miller		190 (-4.5%)	174 (-4.9%)	157 (-5.4%)	147 (-4.5%)		
MC equation		189 (-5.0%)	169 (-7.6%)	149 (-10.2%)	137 (-11.0%)		
ECCC 1995		123	108	94	86*		
MRM equation	600	117 (-4.8%)	101 (-6.5%)	86 (-8.5%)	77 (-10.4%)		
Larson-Miller		120 (-2.4%)	107 (-0.9%)	94 (0%)	86 (0%)		
MC equation		116 (-5.7%)	100 (-7.4%)	84 (-10.5%)	76 (-11.6%)		
ECCC 1995		70	59	49*	42*		
MRM equation	650	65 (-7.1%)	54 (-8.4%)	44 (-10.2%)	38* (-9.5%)		
Larson-Miller		69 (-1.4%)	60 (+1.7%)	51 (+4.1%)	46* (+9.5%)		
MC equation		65 (-7.1%)	54 (-8.4%)	44 (-10.2%)	39* (-7.1%)		

Table 5 – Results of new creep-rupture assessments (*values with extended time extrapolation)

Figure 7 - Comparison of Grade 91 test data with the assessed mean curves at 550°C

Figure 8 – Comparison of Grade 91 test data with the assessed mean curves at 600°C

At this point, a new comparison among the creep-rupture strength of the three most advanced ferritic steels, Grades 91, E911 and 92, can be approached, see Table 6 and Figure 9 [8], [9]. A final official ECCC creep-rupture assessment of Grade 91 must be approved yet, but in the comparison with Grades E911 and 92, the average creep-rupture values between MRM and MC methods were used.

Tomporatura	100,000 h creep rupture strength						
°C	Grade 91	Grade E911	Grade 92				
C	average MRM-MC values	(ECCC 2005)	(ECCC 2005)				
550	150	173	187				
575	116	134	146				
600	85	98	113				
625	62	71	77				
650	44	/	56				

Table 6 – Comparison of evaluated creep rupture strength values of Grades 91, E911 and 92

Figure 9 – Comparison of creep strength within 100,000 hours of Grades 91, E911 and 92. Average values between MRM-MC methods were adopted for Grade 91

CONCLUSIONS

The agreement between the assessments of new ECCC Grade 91 database by MRM and MC equations was very good, while by adopting a LM equation a dangerous overestimation of creep-rupture strength at all temperatures, especially at 600°C, was obtained.

Very long time extrapolations, up to 200,000 hours at 600°C, were achieved according with ECCC Recommendations.

A general reduction of creep resistance of Grade 91 with respect to ECCC official datasheet, dated 1995, was assessed.

REFERENCES

1) J. HALD, Proc. ECCC Creep Conf., London (2005), UK, pp. 20-30

2) L. KORCAKOVA and J. HALD, Microstructure Evolution in High Strength Steels for Power Plant Application: Microscopy and Modelling, Ph.d. Diss. TU Denmark (2002)

3) J.F. HENRY, Combined Cycle Journal, First Quarter 2005, p. 24

4) Creep data validation and assessment procedures, ECCC Recommendations Volumes (2005). Published by European Technology Development.

5) ECCC Data Sheets 2005. Published by European Technology Development.

6) S.R. HOLDSWORTH, C.K. BULLOUGH and J. ORR, BS PD6605 creep rupture data assessment procedure. ECCC Recommendations 2005, Volume 5, Appendix D3

7) J. ORR, ECCC ISO CRDA procedure document. ECCC Recommendations 2005, Volume 5, Appendix D1a

8) W. BENDICK and J. GABREL, Proc. ECCC Creep Conf., London (2005), UK, pp. 406-418

9) S.R. HOLDSWORTH, Proc. ECCC Creep Conf., London (2005), UK, pp. 441-451