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Abstract 
 
In this work, we attempt a quantitative estimation of the type 
IV rupture stress for welds in ferritic power plant steels 
containing 9–12 wt. % chromium, using a neural network in a 
Bayesian framework. This article describes the methodology 
that was used in creating and evaluating the neural network 
model. The sensitivity of the rupture stress to the test 
conditions, the composition of the steel and the heat treatment 
schedule, as perceived by the model, appears to be consistent 
with engineering experience and known metallurgical effects. 
It has also been possible, for the first time, to infer the 
dependence of the stress on welding parameters. The rupture 
stress increases with the preheat and interpass temperature, 
whereas the heat input has a relatively insignificant effect. It is 
proposed that type IV effects can be ameliorated by welding 
with the highest preheat temperature that is consistent with the 
transformation characteristics of the steel and the practical 
aspects of welding.  
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Introduction 
 
Type IV cracking is a feature of welded joints in creep-
resistant steels. It is associated with an enhanced rate of creep 
void formation in the fine grained and intercritically annealed 
heat-affected zones of the weld, leading to premature failure 
when compared with creep tests on the unwelded steel.  
 
Type IV cracking is particularly prominent in the stronger 9-
12 wt. % chromium steels. Since the problem arises from the 
heterogeneous microstructure of the weld heat-affected zone, 
it can be eliminated by a reaustenitisation and tempering heat 
treatment. Unfortunately, this rarely is a practical option. 
Instead, components have to be designed allowing for a 
reduction in the creep strength (or equivalent reduction in 
creep life) due to type IV cracking.  
 
There are many reported data on the creep rupture stress 
associated with type IV cracking, as a function of the steel 
composition, welding parameters and heat treatments. 

However, the interpretation of this phenomenon has 
essentially been based on the microstructures within the heat-
affected zone and much of the work has been qualitative.  
 
Neural networks can provide a means of developing 
quantitative models of physical phenomena when 
experimental data are available but a physical model, based on 
an understanding of the underlying mechanisms, is not. A 
neural network is a flexible non-linear function which is able 
to represent complex, multivariate phenomena. Neural 
networks are created through a training process in which a 
network uses a database to “learn” a mathematical relationship 
between designated inputs (or operating conditions) and the 
output (or behaviour) of the system being studied. Once 
created, a neural network can be used to predict how a system 
might behave under conditions that have not been tested by 
experiment. It can also reveal the degree to which the output 
of a system is correlated with each of the input conditions. 
Neural networks are particularly powerful when implemented 
within a Bayesian framework because they give an indication 
both of the noise in the output, and a modelling uncertainty. 
The latter is invaluable in identifying domains where data are 
sparse or where data are completely lacking. Furthermore, a 
careful use of the modelling uncertainty greatly reduces the 
dangers of extrapolating a non-linear function. 
 
In this work we apply neural networks in a Bayesian 
framework to type IV cracking data.  This builds on recent 
work in which we proposed that a strength offset could be 
applied to account for the reduction in the creep strength of 9-
12 wt. % chromium steels due to welding and the associated 
type IV phenomenon.1 In that work the magnitude of the offset 
was obtained by comparing the rupture stress of cross-weld 
creep specimens that had failed in the type IV region with the 
rupture stress that would be expected for the parent plate 
material without a weld present.  The rupture stresses for the 
plate material were calculated as a function of chemical 
composition and heat treatment using an established neural 
network model.2 Here we attempt to model the type IV failure 
stress directly, particularly as a function of welding 
parameters, and to identify the physical basis by which these 
parameters might influence failure.  
 



The Database 
 
 A neural network analysis can be as ambitious as is necessary, 
with no particular limit on the number of variables. However, 
because published work frequently does not state all the 
variables that control type IV failure, an overambitious 
collection of variables can limit the data that can be used in the 
analysis.  
 
A pragmatic list of variabes which allowed us to compile 53 
sets of data on cross-weld tests associated with type IV 
failures is given in Table 1. Among these data, 50 sets are due 
to earlier sudies on type IV failure.3-8 A further 3 sets have 
been obtained from an experimental programme that has been 
undertaken by the authors. These experiments are still 
underway and details will be reported at a later date. It is 
sufficient to state that the 3 data sets correspond to cross-weld 
creep specimens that were extracted from welded joints made 
in a P91 pipe section. The normalising, tempering and post-
weld heat treatment parameters, together with the preheat 
temperature, were the same for all three experiments, while 
the weld heat input and the joint preparation angle were 
varied. 
 
Table 1: The range in concentration, heat treatment, welding 
parameters and test conditions covered by the database on 
type IV failures. The shaded rows indicate input variables that 
were not included in the final analysis. 
 

Variable Minimum Maximum 
C wt. % 0.09 0.13 

N 0.041 0.078 
B 0 0.003 
Cr 8.45 12.0 
Mo 0.34 0.96 
V 0.19 0.22 

Nb 0.05 0.13 
W 0 2.21 
Mn 0.40 0.81 
Si 0.02 0.35 
Cu 0 3 
Ni 0.06 0.35 
Al 0.008 0.019 

Normalising Temperature (oC) 1050 1080 
Normalising Time (h) 0.5 2 

Tempering Temperature (oC) 760 820 
Tempering Time (h) 1 6 
Heat Input (kJ/mm) 0.8 3.8 

Preheat Temperature (oC) 100 250 
Preparation Angle (degrees) 0 45 

PWHT Temperature (oC) 740 760 
PWHT Time (h) 0.25 8 

Internal Pressure Test? (0/1) 0 1 
Test Temperature (oC) 600 700 

Test Duration (h) 113 11220 
Rupture Stress (MPa) 40 150 

Among the 53 data sets, it was not always possible to access 
the nickel, aluminium, phosphorus and sulphur concentrations.  
A preliminary analysis indicated that over the range of 
concentrations available in the literature, these elements did 
not have a significant effect on the failure stress; they were 
therefore eliminated from the analysis. The concentration of 
vanadium in the whole database only varied from 0.19 to 0.22 
wt. %, which is probably within the limits of experimental 
error. Vanadium was also therefore eliminated from the 
analysis. This procedure does not imply that Ni, Al, P, S and V 
may not be important in other circumstances; simply that the 
data available are incomplete or over such a narrow range as 
to make it impossible to percieve a significant effect on the 
failure stress. 
 

Creation of the Model 
 
The neural network methdology has been described 
elsewhere.9-11 Suffice it to say that three-layer feedforward 
networks are used here, similar to the network represented 
schematically in Figure 1. The activation function for the 
neurons in the second layer is a hyperbolic tangent (equation 
(1)), while a linear activation function was used in the third 
layer (equation (2)). The specification of the transfer function 
together with the weight distributions completely defines the 
model, which is a fully transparent mathematical function. It is 
noted that committees of models are used here, as described 
elsewhere.11  
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Figure 1: A schematic representation of the three-layer 
feedforward neural networks used in the current work. The 
first layer contains the inputs, xj, which are multiplied by 
weights, wij

(1), and summed with the biases θi
(1) to obtain the 

arguments for the transfer functions in the second (hidden) 
layer of nodes.  The outputs from the hidden layer, hi, become 
the inputs for the third (output) layer. The network output is y. 
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In this article we focus on the 'tricks' that were used to produce 
a robust model that is not overfitted to the data; which respects 
the level of noise in type IV experiments; and which gives 
physically meaningful relationships between the input and 
output variables. 
 

The Overfitting Problem 
 
The process of training a neural network involves fitting a 
flexible non-linear function to a training database.  There is, 
therefore, a possibility of fitting the training data too closely, 
so that experimental noise is incorporated in to the model. 
Networks that have been overfitted to the training data 
generally will not make accurate predictions for input 
conditions that differ from those used in the training process. 
 
The method used here has procedures for avoiding overfitting.  
The first such procedure involves the use of only half of the 
experimental data to train the network. The remainder of the 
data (not used in creating the model) are then used to test how 
the model generalises. A good model should show a similar 
level of prediction error for both the training and test data.  
 
Overfitting is also avoided by the Bayesian framework in 
which both simplicity and accuracy are rewarded. Conversely, 
models with greater complexity are assumed to be less 
probable and are penalised accordingly. However, as will 
become clear later, both of these methods turned out to be 
insufficient to avoid overfitting, given a noisy and limited 
database.  
 
The problem is illustrated in Figure 2; throughout this paper, 
the error bars plotted represent modelling uncertainty (+/- 1 σ) 
rather than the level of model-perceived noise, σν, in the 
output. In spite of the two procedures for avoiding overfitting, 
the training data show a smaller scatter than the unseen test 
data. With our best efforts, it was not possible to obtain equal 
levels of scatter in the test and training data. In this case, the 
model-perceived noise level in the output was only 5%. 
 
Recognising that the actual level of noise in type IV 
experiments is likely to be higher, a procedure was adopted to 
force the model to stop training once a selected level of noise 
in the output is reached. What then determines this 'selected 
level' of noise, σν, in the failure stress? 
 
To find the answer, models were created by setting the 
minimum permissible value of σν that can be achieved to a 
variety of values (the network-perceived value, 10% and 
15%). There were two criteria to judge the quality of the 
resulting models: (1) that the test and training data should 
show similar levels of noise when compared with predictions; 
(2) that the model-perceived 'significance' of each input 
variable in explaining variations in the output does not depend 
on the random numbers used to initiate the training.  
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Figure 2: A comparison of the predictions made by a neural 
network with the database values for input conditions 
corresponding to (a) the training data set and (b) the test data 
set.  In this case the network was allowed to minimise the level 
of perceived noise in the output. This network is over trained. 
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Figure 3: A comparison of the predictions made by the 
selected model with the database values for input conditions 
corresponding to (a) the training data set and (b) the test data 
set. In this case the level of perceived noise was pre-set to 
15%. 
 

These difficulties arise because of the nature of the database, 
i.e. a realtively large number of input variables and 
comparatively few data. These features make for an objective 
function with several local minima, thus making the analysis 
sensitive to the way in which training is initiated. 
 
As stated earlier, Figure 2 shows a case where the minimum 
permissible σν value is too low, resulting in the overfitting of 
the training data. By contrast, Figure 3 shows a case where the 
minimum permissible σν value has been set to 15%, resulting 
in a similar level of scatter in the training and test datasets. 
Furthermore, the significances obtained for each variable then 
did not depend on the initiation of the training process. For 
this reason, the minimum permissible σν value of 15% is used 
for all subsequent analysis. 
 
This large level of noise indicates that there may be  
(unknown) variables unaccounted for, i.e., not present in the 
database, which contribute to variations in the rupture stress. 
In addition, it is possible that there are inputs in Table 1 which 
themselves are noisy. For example, it may be impractical to 
exercise tight control on the actual preheat and interpass 
temperature.  
 

Significance of Input Variables 
 
In Figure 4, the magnitude of the bar indicates the extent to 
which a particular parameter explains the variation in the 
rupture stress (the output). A small magnitude implies an 
unimportant input within the context of the present analysis, or 
alternatively, its influence is lost in the 15% noise imposed on 
the output. In spite of this, it is evident that the major effects 
perceived to be important have been recognised by the model. 
These include the obvious effects of the test duration and 
temperature, the normalising12 and tempering heat treatments, 
and the well-known effect of tungsten.13 
 
Bearing in mind that our major aim was to discover the effects 
of the welding parameters, it is fascinating that the preheat 
temperature has been recognised to be significant and at the 
same time the heat input has been perceived to be 
insignificant. This is illustrated in Figure 4. 
 

Trends 
 
The predicted type IV rupture stresses for welds in a P91 steel 
are plotted as a function of preheat temperature in Figure 5. It 
can be seen that an increase in the preheat temperature is 
expected to translate to a corresponding increase in the rupture 
stress. It is also evident that as temperatures progressively 
larger than 250oC (the highest preheat temperature in the 
database) are considered, there is an increasing level of 
uncertainty in the predictions.  Nevertheless, the effect of 
increasing the preheat temperature is unambiguous. 
 
 



 
Figure 4: A graphical representation of the degree to which 
the rupture stress correlates with each input variable, as 
perceived by the selected model. 
 
 
The predicted type IV rupture stresses for welds in a P91 steel 
are plotted as a function of heat input in Figure 6. The 
predictions assume a preheat temperature of 250oC in all 
cases, and all other conditions are identical to those used in the 
generation of Figure 5. It can be seen that the neural network 
model does not perceive any significant effect of weld heat 
input in determining the type IV rupture stress. 
 
It is worth considering how these interesting trends might  
arise. We know that type IV cracking occurs in a creep-
softened region which is sandwiched between regions that are 
harder in creep. This will lead to a mismatch in creep strain 
across the heat-affected zone during a cross-weld test. 
Previous studies have shown that the effect of this mismatch is 
to create triaxiality of stresses in the type IV region,14, 15 which 
would be expected to encourage the growth of voids, and 
hence lead to localised failure. 
 

 
Figure 5: The predicted rupture stress as a function of preheat 
temperature at 600oC for a P91 steel and a creep life of 
10,000 hours. The normalising temperature was assumed to be 
1060oC, the tempering temperature 770oC, and the post-weld 
heat treatment 760oC for 2 hours. The confidence limits 
correspond to +/- one standard deviation in rupture stress.  
 
 

 
Figure 6: The predicted rupture stress as a function of heat 
input at 600oC for a P91 steel and a creep life of 10,000 
hours. The normalising temperature was assumed to be 
1060oC, the tempering temperature 770oC, the preheat 
temperature 250oC, and the post-weld heat treatment 760oC 
for 2 hours. The confidence limits correspond to +/- one 
standard deviation in rupture stress. 
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It is possible that the triaxiality diminishes as the type IV 
region becomes wider, and in addition, the creep strain in this 
region becomes distributed over a greater volume of material. 
Wider type IV zones are of course associated with wider heat-
affected zones. An increase in preheat temperature achieves 
exactly this. However, in this context, an increase in heat input 
would also achieve a wider HAZ. It appears, therefore, that 
further work is required to reveal why the heat input does not 
affect the rupture stress in the same way that the preheat 
temperature does. 
 
Nevertheless, the remarkable result is that it would be better to 
control the preheat and interpass temperature to the maximum 
consistent with the welding circumstances in order to 
ameliorate type IV effects. On the other hand, other welding 
parameters can be chosen on the basis of welding productivity 
since the type IV rupture stress was not perceived to be 
sensitive to heat input. 
 

Conclusions 
 
The most important and novel outcome, from both a 
technological and scientific viewpoint, is that it shoud be 
possible to ameliorate the type IV phenomenon by welding 
using as high a preheat temperature as is consistent with the 
transformation characteristics of the steel and with the 
practical aspects of welding. 
 
On the other hand, the type IV rupture stress was not 
perceived to be sensitive to heat input. This conclusion is 
significant since it reveals that other welding parameters can 
be selected with a view to optimising the productivity of 
welding operations. 
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