
M. A. Yescas*
University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street,
Cambridge CB23QZ, U.K.

The problem of designing these austempered ductile
irons clearly involves many variables and great complex-
ity.3 The purpose of the work presented here is to develop
a model capable of predicting the hardness o_f ADI, as a
function of the main variables affecting hardness using a
neural network technique within a Bayesian framework.4

To the design engineer, hardness often means an
easily measured quantity which indicates
something about the strength and heat treatment
of a metal. Austempered ductile iron (ADI) is an
alloyed and heat treated ductile cast iron which
has a good combination of mechanical properties.
This paper describes a neural network model
created with a Bayesian framework using
published data. The model created is capable of
successfully expressing the hardness of
austempered ductile irons and can be used as a
tool in the processing or design of ADI. The
computer programs associated with the work
have been made freely available at:
http://www.msm.cam.ac.uk/map/mapmain.html

Keywords: hardness, austempering, bainite, ductile iron, retained
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Introduction
Austempered ductile cast irons have complex microstruc-
tures consisting of a mixture of bainitic ferrite, retained
austenite, untempered martensite and carbides. It is not
easy to characterise the microstructure on a routine basis,
but it is known that the details of the microstructure to a
large extent determine the mechanical properties or the
iron.!

Hardness, on the other hand, is easily measured and
widely reported. It is frequently used as a quality control
parameter to ensure that the process and materials used
are behaving in a reproducible manner.

Since the hardness correlates with the microstructure, it
can also be used to optimise the production process. For
example, it is known that during austempering, the
microstructure is very sensitive to the time it is held at
the isothermal transformation temperature! Thus, a short
time leads to a final microstructure which is predomi-
nantly martensitic and very hard. As the transformation
time is increased, the formation of bainitic ferrite and the
consequent carbon enrichment of the residual austenite
leads to a softer microstructure. Prolonged austempering
causes the decomposition of austenite into carbides and
ferrite, which leads to a small increase in hardness. The
precipitation of carbides is detrimental to properties, so
the hardness can be used as a simple way of optimising
the austempering time in the development process.

Y = L wfJ)hi + 0(2) (1)
i

hi = tanh ( ~ wg) Xj + of)where

The subscript i represents the hidden units (Fig. 1), the (J
terms are biases and Wij the weights. Thbs, the statement
of Eq. 1 together with the weights and coefficients defines
the function giving the output as a function of the inputs.

A potential difficulty with the use of powerful regres':
sion methods is the possibility of overfitting data. One
procedure to avoid this is that the experimental data are
divided into two sets, a training data set and a test data set.
The model is produced using only the training data. The
test data are then used to check that the model behaves

* Author for correspondence

e-mail: Miguel.Yescas@corusgroup.com

Int. J. Cast Metals Res., 2003, 15,513-521

The technique
A neural network is a general method of regression
analysis in which a flexible non-linear function is fitted
to experimental data, the details of which have been
reviewed extensively.4-6 It is nevertheless worth empha-
sising some of the features of the particular method used
here, which is attributable to MacKay:'S The method, in
addition to providing an indication of the perceived level
of noise in the output, gives error bars representing the
uncertainty in the fitting parameters. The method recog-
ruses that there are many functions which can be fitted or
extrapolated into uncertain regions of the input space,
without excessively compromising the fit in adjacent
regions which are rich in accurate data. Instead of
calculating a unique set of weights, a probability distribu-
tion of sets of weights is used to define the fitting
uncertainty. The error bars therefore become large when
data are sparse or locally noisy.

The Bayesian framework for neural networks has a
further advantage. The significance of the input variables
is automatically quantified:'s Consequently the signifi-
cance, perceived by the model of each input variable can
be compared against metallurgical experience.

The general form of the model is as follows, with y
representing the output variable and Xj the set of inputs.
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correctly when presented with previously unseen data.
The training process involves a search for the optimum
non-linear relationship between the input and the output
data and is computer intensive. Once the network is
trained, estimation of the outputs for any given set of
inputs is very fast. The details of the ways in which
overfitting is controlled are described in 7.8
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Fig. 1 The structure of the network

the Bayesian framework of our neural network analysis
which makes possible the calculation of error bars
whose magnitudes vary with the position in the input
space, which define the range of useful applicability of
the trained network. A visual impr~ssion of the spread
of the data is shown in Fig. 2. Table 2 shows a selection
of alloys which illustrate the range covered in the
database.

Analysis
All the variables were normalised within a range of :to.5
as follows:

The variables
Analysis is based on published data. Fortunately, hardness
is a value which is easily measured and hence is fre-
quently reported. Hardness is strictly a function of the
microstructure and solid solution strengthening. Both of
the latter depend on chemical composition and heat
treatment. Therefore, the inputs to the model included
the detailed chemical composition in wt. %, the austenitis-
ing temperature in DC and time in minutes (T-y and t-y
respectively), and the austempering temperature and time
(T A and tA respectively), Table 1. This is almost all that is
necessary to define hardness. Chromium and vanadium
were not included since these elements are not common
alloying elements in ADI, and indeed, there are few data
available. A total of 1822 experimental data were
collected from the published literature9-73 and digitised;
elementary checks on the data included an assessment of
the minimum and maximum values for each variable.

As has been shown previously,3 the austempering time
is better expressed in logarithmic form as 10g{tA} rather
than fA. However, it is conceivable that there might be
some unknown process which varies directly with tA so
both the logarithmic time and the time were included as
input variables. This has the advantage of avoiding bias in
the inputs; the method used here has automatic relevance
determination4 and hence sets the weights associated with
an irrelevant input to small or zero values should that be

justified.
It is emphasised that unlike linear regression analysis,

the ranges stated in Table 1 cannot be used to define the
range of applicability of the neural network model. This is
because the inputs are in general expected to interact. It is

Table 1 The variables used to develop the neural network model

Input element Minimum Maximum

4.05
3.58
1.52
0.74
4.83
2.00

1050
480
550

60000
6.556

693

Mean Standard Deviation

2.3
2.0
0.01
0.0
0.0
0.0

800
15

220
0.33
1.96

194

3.56
2.56
0.33
0.13
0.37
0.29

905
79

357
1419

3.60
392

0.181
0.244
0.229
0.138
0.598
0.348

31.5
38.3
49.2

8022
0.886

93

Carbon/wt. %
Silicon/wt. %
Manganese/wt. %
Molybdenum*/wt. %
Nickel*/wt.%
Copper*/wt. %
Austenitising temperaturelOC
Austenitising time/min
Austempering temperaturelOC
Austempering time/min
Austempering time IOg{tAls}
Hardness/HV

* Molybdenum, nickel and copper were frequently not reported in publications since they were not deliberate

additions, in which case their concentrations were set to zero
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Table 2 A selection of alloys intended to
illustrate the range covered in the
database used to create the neural
network model. The concentrations
are in wt%

the variation in hardness. As expected, the logarithm of
the austempering time features prominently. Fig. 6
shows that the effect of this variable in hardness is very
non-linear.

c Si Mn Mo Ni Cu Reference

[27]
[34]
[11]
[15]
[20]
[31]
[38]
[48]
[52]
[40]
[12]

4.05
3.67
3.3
3.16
3.52
3.05
3.75
3.74
3.51
3.3
3.52

2.1
2.45
2.5
3.09
2.64
2.17
2.29
2.63
2.81
2.95
2.6

o.
0.:
0.:
o.
0.1
0.1
0.:
1.
0.:
1.!
0.,

0
0.30
0
0
0.25
0
0.32
0
0.13
0
0.2

1.'
0
1.1
OJ
0
1
1.,
0
0
0
0.,

0
0.78
1.6
0.03
0.25
0
0
1.34
0.39
0
0.73

Application of the model
The basic cast iron chosen to study the variations in
hardness has the chemical composition

Fe-3.5C-2.5Si-O.25Mn-O.25Mo-O.5Ni-O.5Cu (wt. %)

According to the literature75-78 this should have a low
tendency to form intercellular carbides; at the same time,
chemical segregation should not be excessive. The aus-
temperability is expected to be around 32 mm in diameter,
calculated using a relationship described by Lee and
Voigt using T'Y = 900 °C!9 The following predictions
therefore indicate the influence of elements in the aus-
tempering process and its influence in hardness and
microstructure.

The neural network can capture interactions between
the inputs because the functions involved are nonlinear.
The nature of these interactions is implicit in the values of
the weights, but the weights are not always easy to
interpret. For example, there may exist more than just
pairwise interactions, in which case the problem becomes
difficult to visualise from an examination of the weights.
A better method is to actually use the network to make
predictions and to see how these interactions depend on
various combinations of inputs. Fig. 6 shows a contour
plot which illustrate the interaction of two major variables
in hardness predictions. First it shows that at low austem-
pering time (tA)' the hardness increases as austempering
temperature (T A) increases. This is because the total
amount of bainite that can form decreases as T A increases,
since the fraction of bainite is limited by the To curve of
the phase diagram. The To curve is the locus of all points
on the temperature versus carbon concentration plot
where austenite and ferrite of the same chemical compo-
sition have identical free energies. The reaction is said to
be incomplete, since it stops before the austenite has
achieved its equilibrium composition80,81 given by the
Ae3 curve.

whereas the test data set was used to see how the trained
models generalised on unseen data.

Training involves the derivation of the weights by the
minimisation of the regularised sum of squared errors (T".
The complexity of the model is controlled by the number
of hidden nodes, and the values of the regularisation
constants,4 one associated with each input, one for
biases and one for all weights connected to the output.
The inferred noise level (T" is expected to decrease as the
number of hidden units increase (Fig. 3a). The number of
hidden units is set by examining the performance of the
model on unseen test data. The test set error tends to go
through a minimum at an optimum complexity (Fig. 3b).

It is possible that a committee of models can make a
more reliable prediction than an individual model!4 The
best models are ranked using the values of the test errors.
Committees are then formed by combining the predic-
tions of the best L models, where L = 1,2,...; the size of
the committee is therefore given by the value of L. A plot
of the test error of the committee versus its size L gives a
minimum which defines the optimum size of the commit-
tee as shown in Fig. 3c. The test error for a committee is
calculated according to:

The committee with ten models was found to have an
optimum membership with the smallest test error
(Fig. 3c). Once the optimum committee is chosen, it is
retrained on the entire dataset without changing the
complexity of each model, with the exception of the
inevitable and relatively small adjustments to the weights.

Fig. 4 shows normalised predicted values versus
experimental values for the best model in the training
and test datasets. The predictions made using the
optimum committee of models are illustrated in Fig. 4c.

Fig. 5 illustrates the significance of each of the input
variables, as perceived by the neural network in influen-
cing the hardness. The magnitude of the significance is a
measure of the extent to which a particular input explains

XT -xcVab = 0 (4)
XTo - Xab

where Vab is the volume fractions of bainitic ferrite at the
point where the reaction stops, XTo is the carbon concen-
tration given by the To curve, XC is the average carbon
concentration of the austenite prior to transformation, and
xab is the carbon concentration of the bainitic ferrite.

A second interesting point from the contour plot is that
it shows that at low T A, the hardness is maintained at a
very high value even for large values of t A. This is
because even though Vab is large, the microstructure is
very fine.82

Unlike linear regression analysis, the range of applic-
ability of a neural network model cannot be defined in
terms of the range of the data used to create the model.
This is because the network is non-linear so the inputs will
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in general be expected to interact. It is the Bayesian
framework of the present method which resolves this
problem because it allows the calculation of error bars
which define the range of useful applicability of the

100 -1
100 250 400 550 700

Measured Vickers hardness I HV

Fig. 4 Predictions made using the best model,
selected as the one having the smallest test
error. (a) Training data set. (b) Test data set.
(c) Predictions made on the entire dataset
using the optimum committee

trained network. The model can therefore be used in
extrapolation given that it indicates appropriately large
uncertainties when knowledge is sparse.

Fig. 7(a) shows that hardness increases slightly as the
carbon concentration of the cast iron (x) is increased from
3.1 to 3.6wt.%. This is not clear since in an ideal pure
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molybdenum does not have a marked influence on the
amount of retained austenite,3 its influence in hardness
seems to be significant. The decrease in hardness as
molybdenum increase has been indicated to be due to
non-uniform transformation response caused by negative
segregation tendency of molybdenum.83 Dorazil et al.84
indicate that this behaviour is due to the segregation of
molybdenum during solidification, resulting in the forma-
tion of stable intercellular carbides and also the local
formation of martensite in the segregation regions.

Finally Fig. 8 shows some predictions which are
compared with experimental data published by Kovaks.85
This experimental data were not included in the input
space of the present model.

iron-carbon binary cast iron, there should be no change in
the equilibrium carbon concentration of the austenite (x-y)
as the average concentration x is increased. However, the
cast iron studied is not a binary alloy but contains many
other elements which may be interacting in a more
complex way.

Fig. 7(b) shows that for a fixed austempering time of
60 min, manganese systematically increases the hardness.
This is because it retards the transformation by increasing
the hardenability. The fraction of martensite in the micro-
structure therefore increases causing a corresponding
increase in hardness. There is of course, a small sub-
stitutional hardness effect as well. The effect of nickel
illustrated in Fig. 7(d) can be similarly explained,
although the uncertainty is greater because nickel is not
usually added in large concentrations.

Fig. 7(c) shows an increase in hardness when moly-
bdenum is increased from 0.0 to 0.1 wt. %, however, over
this value there is a sharp decrease in hardness. Although

Summary
A neural network model has been developed to enable the
estimation of hardness in austempered ductile cast irons
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Contour plot of hardness as a function of austempering time and temperature. Cast iron: Fe-3.5C-2.5Si-
O.25Mn-O.25Mo-O.5Ni-O.5Cuwt.% austenitised at 900°C, for 60min. The error bars associated with these
predictions have been omitted for the sake of clarity
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Carbon content I wi. % Manganese content I wi: %

.,";C400,

0.0 0.1 0.2 0.3 0.4 0.5

Molybdenum content I wI. % Nickell wI. %

Fig. 7 Predictions of volume fraction of retained austenite in 0;0 as a function of chemical composition (Basic
cast iron: Fe-3.5C-2.8Si-0.25Mn-0.25Mo-0.5Ni-0.5Cu wt.o;o). Austenitised at 900 °C for 60 min, and
austempered at 370°C for 60 min

National Council of Science and Technology of Mexico
(CONACYT) for a scholarship.

as a function of their chemical composition (C, Mn, Si,
Ni, Mo, Cu), the austenitisation and austempering para-
meters. The model successfully reproduces experimental
trends observed by other researchers. It can be exploited
in two ways, first in the design of cast irons and their heat
treatments, but also to identify whether experiments are
needed in the future. If the model prediction is associated
with a large uncertainty then an experiment can be
considered to be novel and useful. The model can also
be used to find more complex relationships between
variables.

The computer program associated with this work
can be obtained freely from the Materials Algorithms
Project Library on: http://www.msm.cam.ac.uk/map/
mapmain.html
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