Modelling precipitation sequences in power plant steels

Part 1 - Kinetic theory
J. D. Robson and H. K. D. H. Bhadeshia

The ability of steels to resist creep deformation depends on the presence in the microstructure of carbides and intermetallic
compounds which precipitate during tempering or during elevated temperature service. The precipitation occurs in a sequence
which leads towards thermodynamic equilibrium. The present paper deals with an extension of the Johnson—Mehl-Avrami theory
for overall transformation kinetics. The modification permits the treatment of more than one precipitation reaction occurring
simultaneously, a feature which is found to be essential for representing the reactions observed experimentally in a wide range of

secondary hardening steels.
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Introduction

Steels used in the manufacture of power plant range from
those designed to resist creep deformation at temperatures
~600°C to others which are exposed to relatively low
temperatures where the primary design criterion is tough-
ness.!2 The microstructures of power plant alloys often
consist of & ferrite, martensite, bainite, allotriomorphic
ferrite, and retained austenite as the major phases obtained
following a normalising heat treatment. However, these
microstructures are then subjected to very severe tempering
(~700°C for several hours) causing general coarsening and
the precipitation of ever more stable alloy carbides and
intermetallic compounds. It is these solid state reactions
which ultimately determine the mechanical stability of the
steels and, hence, their useful design lives.

The purpose of the present work was to model the
kinetics of carbide and Laves phase precipitation reactions
that occur in power plant steels over long periods of time
at elevated temperatures: in other words, to produce time—
temperature—transformation diagrams for tempering reac-
tions as a function of steel chemical composition and
tempering temperature. It has been necessary, therefore, to
develop theory capable of handling several simultaneous
precipitation reactions whereby the different phases influ-
ence each other, for example by drawing the same solute
from the matrix ferrite.

Overall transformation kinetics

The evolution of volume fraction during solid state
transformation can be modelled using the classical John-
son—Mehl-Avrami theory, which has been reviewed by
Christian.® It is necessary briefly,to introduce this theory
to set the scene for the modifications made to allow for
simultaneous reactions.

A given precipitate particle effectively forms after an
incubation period 1. Assuming growth at a constant rate g,
the volume w, of a spherical particle is given by

w, = (4n/3)g%(t — 1) dt . Q)
P TR ()

where ¢ is the time defined to be zero at the instant the
sample reaches the isothermal transformation temperature.

Particles nucleated at different locations may eventually
touch; this problem of hard impingement is neglected at
first, by allowing particles to grow through each other and
by permitting nucleation to happen even in regions which
have already transformed. The calculated volume of § phase

t>1

w,=0

is therefore an extended volume; the change in extended
volume dVj is given by

dvi=wlIvde . . . . . . . . . . . . (3
ie.

Vs = (4z1/3) glr=2Fdr .. . .+ - . + (N
where 17 15 the total sample volume and {15 the nucleation
rite. Motiee that it 5 possible 1o follow the evolution of
ach extended particle individually,

Cinly those parts of the change in extended volume
which liz in untransformed regions of the parent phase
can contribute to the change in real volume of . The
probability that any change in extended volume lies in
untransformed  parent materal 18 proportiopal Lo the
raction of untransformed material, 1t follows that the
actual change in volume
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In making this conversion from extended to actual volume,
all information about individual particles is lost, so that
the application of the Avrami model can only yield average
quantities such as grain size and volume fraction, but not
grain size distribution or grain volume distribution.

The approach described above is limited to the precipi-
tation of a single phase. The theory can be applied to cases
where more than one decomposition reaction occurs if the
individual reactions occur over different temperature ranges,
ie. they occur successively and largely independently.*~$
However, a great deal of fruitless work demonstrated that
the evolution of carbides during the tempering of steels can
not be treated in this way. Precipitation and dissolution
reactions during tempering overlap significantly, with
profound interactions between the different precipitates.
Consequently, the Johnson-Mehl-Avrami approach has
been adapted to deal with many reactions occurring
simultaneously.

Simultaneous reactions

The principles involved are first illustrated by a simplified
example in which § and 0 precipitate at the same time
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from the parent phase which is designated «. It is assumed
that the nucleation and growth rates do not change with
time and that the particles grow isotropically.

The increase in the extended volume owing to particles
nucleated in a time interval t =t to ¢ =t + dr is, therefore,
given by

dV§=4/3ngi(t—1*L,(V)dr . . . . . . . . (8)
dVi=4/3ngi(t—°I,V)dt . . . . . . . . (9

where gg, g4, I, and I, are the growth and nucleation rates
of B and @ respectively, all of which are assumed here to
be independent of time, and V is the total volume of the
system. For each phase, the increase in extended volume
will consist of three separate parts. These are, for g:
(i) B which has formed in untransformed «

(ii) B which has formed in regions which are already g

(iii) p which has formed in regions which are already 6.
Only p formed in untransformed « will contribute to the
real volume of . On average, a fraction [1—(V; + V,)/V]
of the extended volume will be in previously untransformed
material. It follows that the increase in real volume of f is
given by

v+,
avy= (1~ ")dV; (10)

nd, similarly for 0
Vi + V
v, = (1— "It ")dvz

Generally, V; will be some complicated function of ¥, and
it is not possible to integrate these expressions to find the
relationship between the actual and extended volumes.
However, in certain simple cases, it is possible to relate ¥
to ¥, by multiplication with a suitable constant K. It is
then possible to write

V=KV, . (12)

The equations relating the increment in the actual volume
to that of the extended volume may now be written as

. (11)

V,+KY,
dV,=<1——£—t—">dV; S e T
T AT _
dhp=(1-== Javs (14}

Equations (13) and | 14) may then be integrated to find an
analytical solution relating the extended and actual volumes
imalogous to that for single phase precipitation

¥,
e — 2 (14 K) (15
; K]n\f ].I (15}

LI_= —.a-_|n[1_ |-é_-|:-|_rh;]-‘ y (16)

The total extended volume is found for each phase by
miegrating equations (2) and [9) with respect 1o 7. Aller
rearrangmng, the final expressions for the volume fractions
Dof fand 0 phases are

- ( I !I I . T . g
Ly l'll-I]'l II] —-.:xp’r— ;I 1+ K :I-'.'_I;'.._-Il,u"J:‘ (17}

L= |: i i\KJ : | —;':.\[1’7 - I—II[II: Lf\:l .'.',L{j!-.-":J;IE‘ (18}

Fhese equations resemble the well known Avrami equation
for single phase precipitation with exira factors Lo account
for the presence of a second precipitate phase. When the
volume fraction of both precipitating phases is very small,
sijuations (17) and (18) approximate to the expressions [or
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a two phases have identical nucleation and growth rates; b identical
growth rates but § has twice nucleation rate of B; c identical
nucleation rates but 6 particles growing at twice rate of § particles

1 Simultaneous precipitation of 8 and g at given
nucleation and growth rates

each phase precipitating alone. This is because in the early
stages of transformation, nearly all of the extended volume
lies in previously untransformed material and contributes
to the actual volume. As transformation proceeds, the
volume fraction of each phase predicted for the phases
precipitating simultaneously becomes less than that pre-
dicted if the phases were precipitating alone. This is what
is expected, since additional phases reduce the ftaction of
the extended volume which lies in previously untrans-
formed material.

As the nucleation and growth rates were assumed to be
constant, it is possible explicitly to calculate the value of
K. The volume of each phase at any time depends on its
nucleation rate and the cube of its growth rate. The ratio
Vo/V} is then constant and given by

Yo Lak

K=-2=-¢
Vs lsgp

(19)
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Some examples of calculations for the case of linear (ie.
constant) growth are shown in Fig. 1. When the nucleation
and growth rates of 8 and 6 are set to be identical, their
curves for volume fraction v. time are exactly superimposed
and each phase eventually achieves a fraction of 05
(Fig. 1a). When the nucleation rate of 8 is set to be twice
that of B, then, for identical growth rates, the terminal
fraction of 0 is, as expected, twice that of  (Fig. 15). The
case where the growth rate of 0 is set to be twice that of 8
but with identical nucleation rates is illustrated in Fig. lc.
The finalyvolume fraction of the 8 phase is eight times that
of the § phase because volume fraction is a function of the
growth rate cubed.

Complex simultaneous reactions

In practice, the multiple reactions found in power plant
steels have important complications not included in the
simple model described above. The phases interfere with
each other, not only by reducing the volume available for
transformation, but also by removing solute from the
matrix and, thereby, changing its composition. The change
in matrix composition changes the growth and nucleation
rates of the phases. Therefore, there are no simple constants
linking the volume fraction of all the phases and a different
approach is needed.

The phases which might precipitate include M;C, MX,
M, X, M;C;, M,3Cs, MgC, and Laves phase. It is possible,
in principle, to incorporate all these phases into a unified
model. However, primary interest was in the 10CrMoV
steel in which the predominant phases are those ‘given in
Table 1 along with a summary of the nucleation and growth
characteristics. In the following discussion, the parent phase
(ferrite in this instance) is identified as « and the product
phase as .

The model developed is applicable to a wide range of
power plant steels. In the present work, it is applied to
precipitation in a newly developed 10CrMoV steel as well
as a more traditional 2:25Cr1Mo steel. The compositions
of these steels are given in Table 2.

MODEL FOR M3C ENRICHMENT

There is good evidence that the cementite which forms
during the tempering of martensite, or as a consequence of
the bainite reaction, grows by a displacive mechanism,’™°
Such a mechanism must naturally involve the diffusion of
carbon, but not of substitutional solutes or iron atoms.
The iron/substitutional solute ratio, thus, remains constant
everywhere and, subject to that constraint, the carbon
achieves equality of chemical potential; the cementite is
then said to grow by paraequilibrium transformation.1*-*3

As a consequence of this mechanism of growth, M;C is
far from its equilibrium composition when it first forms.
Tempering, therefore, leads to large changes in chemical
composition with time as the_substitutional solute atoms
partition between cementite and ferrite in a direction
consistent with equilibrium. The calculated paraequilibrium

Table 1 Phases incorporated in model along with type
of growth and nucleation in each case

Phase Nucleation and growth model

M3C No nucleation, but paraequilibrium growth of number of
particles followed by change in chemical composition

M, X Finite nucleation rate, diffusion controlled linear growth
of needles

M23Cg Finite nucleation rate, diffusion controlled parabolic
growth of spheroids

Laves Finite nucleation rate, diffusion controlled parabolic

phase growth of spheroids

and equilibrium compositions of cementite in a 10CrMoV
steel are given in Table 3.

The results in Table 3 are typical for chromium containing
steels; the principal change in going from paraequilibrium
to equilibrium involves enrichment in chromium and a
complementary rejection of iron into the ferrite. The rate
of enrichment is approximately given by®

ADVA (G Pyt
c+
4.

rAny

where ¢ represents the concentration of the diffusing species,
t is the time since M;C formation, z is the thickness of the
cementite plate, D is the diffusion coefficient for solute in
the matrix (it is assumed that the corresponding diffusivity
in cementite is ideptical to that in ferrite), ¢*® is the
concentration of the substitutional solute in the ferrite
which is in equilibrium with the cementite, and ¢ is the
mean concentration of the substitutional solute in the alioy.
This equation is valid only in the absence of soft
impingement (i.e. the overlap of the diffusion fields of
adjacent particles). An approximation for soft impingement
is presented in the ‘Solute partitioning effects’ section
below. The value for ¢*f was calculated using MTDATA 4
The diffusion coefficient for chromium in ferrite is given by**

—240000> gt

=1 -4
D=15x%x10 exp( RT

.2

where R =28-31432J mol~*K™! is the universal gas con-
stant and T is the absolute temperature. The thickness of
the cementite plates.is unknown, so an estimated value of
1 pm was used based on microstructural observations.'®
The volume fraction ¥; of MsC was estimated using the
lever rule and the approximation that any carbon dissolved
in the ferrite can be neglected!’

=g ()

where ¢ is the mean carbon concentration in the alloy
and cf* is the carbon concentration in the cementite ~0-25
atom fraction. The rate at which M;C will draw chromium
from the ferrite will depend on both the rate at which ¢
increases according to equation (20) and the volume
fraction of the cementite. This rate is important when
considering the effect that cementite enrichment will have
on the precipitation of other phases and is discussed further
in the ‘Solute partitioning effects’ section below.

It is easy to show that the enrichment of cementite must
be taken into account when considering power plant steels.
The calculations illustrated by Fig.2 are for the classic
2:25Cr1Mo steel studied by Baker and Nutting.'®* When
tempered at elevated temperatures, beginning with a mar-
tensitic or bainitic microstructure, the following (simplified)
sequence of carbide precipitation reactions occurs

M3C—>M3C + MzC-’M23C6

The cementite that precipitates first is not of the equilibrium
composition; it contains far less chromium than is expected
from the phase diagram. Figure 2 shows that M,C would
not form at all for temperatures above ~800°C in the
presence of equilibrium cementite and, at lower tem-
peratures, - the driving force for its formation would be
considerably reduced.

Table2 Concentration of major alloying elements in two
steels used to demonstrate model, wt-%

Steel (o Mn Cr Mo Ni.. Nb V Fe

10CrMoV
2:25Cr1Mo

011 050 1022
0-15 050

142 055 050 020 Bal
212 09 017 ... Bal.
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2 Calculated driving force AG for precipitation of
M,C carbides in 2:25Cr1Mlo steel during elevated
temperature tempering: in one case first phase to
form is equilibrium cementite and in other case first
phase to form is cementite with paraequilibrium
composition; if equilibrium M;C forms driving force
for M,C is considerably reduced

MODEL FOR M,X PRECIPITATION

After M,C has precipitated, M,X is often the next
precipitate to be observed,'® but over a much larger time
scale. Measurements of M,X composition also show that
this phase is closer to its equilibrium composition when it
first forms.'6 The equilibrium composition of M, X predicted
using MTDATA is given for the two steels in Table 4.

Growth is known to be controlled by the diffusion of
substitutional solute,'® the particles growing in the form of
needles. Zener’s solution for the diffusion controlled growth
of needles is known to be a good approximation for
M, X (Ref. 19)

/ DQ \. o ‘
\4C14r,,)’ 4= kcﬁa— aﬂ)

where Q is the supersaturation, r, is the critical radius of
the tip of the needle at which the lengthening rate becomes
zero, C;, is a constant ~1, ¢ is the mean solute
concentration, c* is the solute in the ferrite in equilibrium
with M,X, and c* is the solute in the M,X in equilibrium
with ferrite. Table 4 shows that ‘M’ in the M,X consists
largely of chromium. The diffusion coefficients for the
substitutional species are all similar;'® it was assumed,
therefore, that diffusion of chromium to the needle tip was
the rate controlling step in needle growth. Hence, the
concentrations used are those for chromium. The critical
radius is given by>

20“" r
T - zc*')

\kT}\c”“—c”) .. (24)

where T is the capillarity constant given by Ref. 3, k is the
Boltzmann constant, v is the atomic volume, and ¢ is the
surface energy of the M,X. The values of v and & were
estimated as being ~1-9 x 1072 m® and 06 J m ™2, respect-
ively. As shown by equation (23), the growth rate is time

Table 3 Paraequilibrium and equilibrium concentrations
of principal species in M;C for 10CrMoV steel
heat treated at 500°C, at.-%

independent. The M, X particles are modelled as cylinders
growing at a constant rate with a constant aspect ratio.
The volume of a needle which nucleated at a time 7 at a
later time ¢ is, therefore, given by
3
VB=ng(t 1) L 0y
! o

where ¢ is the needle aspect ratio: measurement showed
this value to be ~ 15.

In independent work, the present authors have demon-
strated that the kinetics of M,X formation can not be
adequately approximated by assuming that the needles
simply grow from pre-existing nuclei, but that it is better
to assume a constant nucleation rate. From classical theory,
the nucleation rate per ur}it volume is given by

T [ (G ¥ 0Y
I=N A exp[ kT :|

where h is the Planck constant, N is the number of
nucleation sites per unit volume; Q* is the energy required
to transfer atoms across the a/ff interface (assumed to be
half the activation energy for volume diffusion),® and G* is
the free energy required to overcome the barrier to
nucleation, given by

16ny 0 C o
—W P VY |
v

where ¢ is the surface energy per unit area, # is a shape
factor, and AG, is the chemical driving force for nucleation
psr unit volume of nucleus formed. The values N, o, and
are unknown and difficult to determine experimentally. It
was assumed that the nuclei are spherical, i.e. n=1. The
values of N and o were found by fitting the predicted
results from the model to experimental data. It is likely
that M,X nucleates on certain preferred sites rather than
nucleating homogeneously. These sites include dislocations
and martensite lath boundaries. There is evidence in the
literature that M,X also forms by in situ transformation
following nucleation at the M,C/ferrite interface.?® The
equation describing the behaviour in this case is the same
as equation (26) but the G* term is different because the
activation energy required for nucleation is much less than
in the homogeneous case. This is equivalent to a reduction
in the value of ¢ for heterogeneous nucleation. The value
N is also different and will correspond to the number of
heterogeneous nucleation sites. As both N and ¢ are found
by fitting to experimental data, heterogeneous nucleation
is implicitly accounted for.

The chemical driving force for the M,X nucleation was
derived from the driving force for transformation found
using MTDATA. The transformation considered was

U+ MyCpaa—md+MuX . . . . L L L. (28)

The left hand side is ferrite and M;C with its paraequilib-
rium composition. The right hand side is the condition
after complete transformation to M,X which is ferrite (of
a different composition) and M,X with its equilibrium
composition. The calculated driving forces for both steels
over a range of temperatures are shown in Fig. 3a.

As time increases, the reaction shown by equation (28)
will no longer represent the actual situation. For example,
the M;C will not remain at its paraequilibrium composition
and, as it enriches, the driving force for M, X precipitation

"
\¥ 4

Table 4 Equilibrium concentrations of principal species
in M,X at 500°C, at.-%

Fe c Cr Mo Steel [ Cr Mo N \"
Paraequilibrium 650 25 82 062 10CrMoV 232 7 471 127 101 64
Equilibrium 43 25 698 003 2:25Cr1Mo 333 404 24-4
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3 Driving force AG for given phase precipitation
in system containing ferrite and cementite with

paraequilibrium composition for 10CrMoV steel and
2:25Cr1Mo steel

will decrease. These effects are accounted for by snitable
modification of the driving force and this is discussed in
the ‘Solute partitioning effects’ section below.

MODEL FOR Mj3Cg PRECIPITATION

The carbide M,;Cq is frequently found in a wide range of
power plant steels, and in the 10CrMoV alloys is the most
stable carbide which rapidly dominates the microstructure
even after just 4 h at 600°C. In 2-25Cr steels, on the other
hand, M,;Cs precipitation takes considerably longer
(~1000 h at 600°C).'® Experimental evidence shows that
M,;C; is close to its equilibrium composition when it
starts to form.>* Equilibrium compositions as calculated by
MTDATA are given in Table 5.

It can be seen that M,,C, is predominantly a chromium
carbide. It is reasonable, therefore, to assume that it grows
at a rate controlled by the diffusion of chromium through
the ferrite. As the particles grow approximately isotropically,
they are represented as spheres, the radius of each of which
is given by

r=x(t—1)? - (29)

where x is the three-dimensional parabolic rate constant.
The Zener approximation for low supersaturations was
used to give an expression for y in terms of the compositions

Table5 Equilibrium concentrations of principal species
in M5;Cg at 500°C, at.-%
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4 Volume fraction of phases in thermodynamic

equilibrium as function of temperature (calculated
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of ferrite and M,3C¢ (f) which were calculated using
MTDATA. A typical value for chromium supersaturation
in the M,;Cgqferrite system is 0-02 (2-25CriMo steel at
500°C), which is sufficiently small for the following
approximation to be valid

(E _ caﬂ)l/z
(Cﬁa - -c-)llz

The volume of an individual particle at a time t—7 is
given by

V=(4/3)mp(t — )2 . (31)

The nucleation behaviour of M,;C4 was modelled in much
the same way as that of M,X. The appropriate chemical
driving force is now given by consideration of the reaction

o+ M3Cpar&l —>o+ M23C6

As in the case of M, X nucleation, this driving force will be
modified as time increases and other intermediate trans-
formations (e.g. M,X precipitation) occur. The way the
driving force is modified to account for this is discussed
in the ‘Solute partitioning effects’ section below. Figure 3b
shows how the driving force for M,;Cs precipitation
varies with temperature for the 10CrMoV steel and the
2-25Cr1Mo steel.

The number of sites and surface energy for nucleation
were found, as in the M,X case, by fitting the predicted
results to experimental data. As before, this will account
for the fact that the nucleation of M,;C4 occurs largely on
preferred sites rather than homogeneously.

y~ DV . (30)

MODEL FOR LAVES PHASE PRECIPITATION

Laves phase is an intermetallic compound with the general
composition Fe,M. The ‘M’ can be tungsten, molybdenum,
or some combination of both. It is often observed in the
9-12 wt-%Cr steels containing tungsten and molybdenum
after long term exposure to elevated temperatures where it
is an equilibrium phase.?*> Typically, there is a temperature
above which Laves phase is no longer a stable phase. In
the case of the 10CrMoV steel under present investigation,
this temperature is relatively low as shown in Fig. 4, which

Table 6 Equilibrium concentrations of principal species
in Laves phase for 10CrMoV type steel, at.-%

Fe C Cr Mo

10CriMloV 62 207

626 10-3
1

210 207 480

Fe Cr Mo
500 607 60 313 20
550 626 40 300 34
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is a plot of the volume fraction of the equilibrium phases
as a function of temperature. The calculated equilibrium
composition of Laves phase in the 10CrMoV steel is given
for two temperatures in Table 6.

It can be seen that, in this steel, Laves phase is
molybdenum rich. It was assumed, therefore, that Laves
phase grows at a rate controlled by the diffusion of
molybdenum. The particles were assumed to grow iso-
tropically and were represented as spheres as in the case of
M,3C¢ precipitation. The same model was used as for
M,;C¢ with the appropriate molybdenum concentrations
being substituted into the growth equations. The nucleation
behaviour was also modelled in an identical manner to the
other phases, with the appropriate chemical driving force
being given by consideration of the reaction

o+ M;C,,pp =+ Laves

This gives the maximum conceivable value for the driving
force. Figure 5 shows how this driving force varies with
temperature for the 10CrMoV steel and the 2-25CriMo
steel. It is apparent that there is only a driving force for
Laves phase precipitation in the 10CrMoV steel. Clearly,
in reality, this driving force will be considerably reduced
by the precipitation of intermediate phases, as discussed
in the section on ‘Solute partitioning effects’ below. The
number of sites and surface energy were found by comparing
the predicted and experimental results, although the lack
of suitable experimental results means that these parameters
are probably not fully optimised.

CALCULATING PHASE COMPOSITIONS

The growth rates of all the phases being modelled depend
on the concentrations of the alloying elements at the
interface in both the parent and product phases. For all
the phases except cementite, precipitation occurs by
diffusion of both substitutional and interstitial atoms, and
it is expected, therefore, that the composition each phase
adopts will be such that the Gibbs free energy of the system
is minimised. The program MTDATA was used to calculate
each phase using this criterion. The procedure used has
two stages. The first is the calculation of the final
equilibrium state, allowing all the phases included in the
model to be potential equilibrium phases. This calculation
gives the composition of the equilibrium precipitates and
the associated ferrite. By suppressing the equilibrium
precipitate phases and recalculating, the next most stable
phases and associated compositions are found. This

-
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6 Distribution of solute at given stages

procedure was repeated for all the phases where the
composition results from minimisation of the Gibbs free
energy (ie. M,X, M,3C,, and Laves phase). For example,
the composition of the M,X in the 2-25Cr1Mo steel given
in Table 4 was calculated by first suppressing M,; Cq, which
is the more stable phase, and then calculating the new
equilibrium state.

Solute partitioning effects

It is not possible to rigorously account for soft impingement
in a method based on the extended volume concept, and
for a problem as complex as power plant steels. However,
the observed effects undoubtedly can not be simulated
without soft impingement. A common approximation in
these circumstances is to take account of the average solute
concentration change caused by precipitation; this is
explained below.

Each precipitating phase will consume or reject atomic
species into the untransformed matrix, whose subsequent
transformation behaviour, therefore, will be altered.
Consider the precipitation of § and y from «, whiéh initially
has a uniform composition. Figure 6 shows how the
distribution of solute might change during precipitation at
an intermediate stage when both B and y are precipitating
(Fig. 6a), and at a later time when the formation of B is
just complete (Fig. 6b).

For the situation illustrated, the maximum fraction of
each phase is designated x and the fraction at any instant
x. The maximum fraction is given by a lever rule

e—c*

x{, = mu (32)

Materials Science and Technology August 1997 Vol. 13



Robson and Bhadeshia Modelling precipitation sequences in power plant steels: Part 1 637

It is then possible to define a parameter @ for each phase,
such that ® = x/x), which changes from 0 to 1 during the
course of the transformation. When there is more than one
precipitating phase, ® can be generalised to account
for concentration changes caused by each new- phase.
Identifying each of the n precipitating phases by a subscript
i=1,..,n gives

Z (xi)(cia _ cai
Q==

' C—c%) -
The approximation is now made that the chemical driving

force AG for the formation:of each phase is related linearly
to q)i

AG,{®} = (1 — ®)AG,{® =0} . . (34)

where the braces are used to identify that AG is a function
of . - wpoh .
The definition of @ is a little different for cementite,
which in the present context precipitates rapidly by
paraequilibrium transformation. The parameter @ is
defined, therefore, to reflect its subsequent change in
composition by the diffusion of solute into the cementite

. (33)

—

Dy, = - (35)

o g
where ¢’ is the mean solute level in the matrix at any
instant, and a function of all the other phases
n
c— Y xic® ' o
F=—>2=— ... (36)
1-— Z X .
i=1

The analysis in terms of @ is a crude approximation to
what is commonly referred to as soft impingement phen-
omena.? The concenfration gradients in the ferrite for the
precipitation reactions that occur in power plant steels are
very shallow, so the approximation may be justified.

As many of the phases in the precipitation sequence are
metastable, they must tend to dissolve as soon as the
concentration in the ferrite falls below that consistent with
metastable equilibrium with the precipitate (ie. &' <c®).
This is discussed further in the ‘Dissolution of phases’
section below.

Computation of overall transformation
kinetics

Having incorporated all the nucleation and growth phen-
omena into a computer program, it becomes possible to
solve for simultaneous transformation kinetics. The follow-
ing explanation is, for the sake of simplicity, based on three
precipitation reactions, although the method can be made
much more general. The three precipitates are designated
8, B, and y, to represent M;C, M,X, and M,;C,,
respectively. .

An iterative procedure is used, as described in the
‘Complex simultaneous reactions’ section above:

(i) the time ¢t and volume fractigns of B and y are set
initially to zero. The concentration of substitutional
solute in the cementite § is set to mean solute
composition, consistent with' its paraequilibrium
growth mechanism

(ii) the growth and nucleation rates for # and y are
calculated using the current value for the solute
concentration in the matrix

(iii) the time ¢ is incremented by a small step At. The
additional volume of each phase precipitated in the
interval t—t+ At is calculated while at the same

time allowing cementite to change its chemical
composition (i.e. tend towards equilibrium)

(iv) the volumes of B and y are updated, as is the
composition of the cementite

(v) the amount of solute removed from ferrite due to

the precipitation of § and y, and due to the change
in cementite composition, is calculated, and the
mean ferrite composition modified accordingly. All
the driving force terms and nucleation and growth
rate terms are modified to be consistent with the
change in ferrite chemical composition

(vi) steps (ii)—(v) are repeated until ¢ = t;, where ¢ is the
time of heat treatment at the temperature concerned

(vit) the volume fractions of § and y at time t; are, thus,
output along with the composition of 6.

VOLUME INCREMENT $ AND y

A detailed description of the method used for spherical
precipitates (e.g. M,3Cg) is now given, and its adaptation
for other shapes.

During diffusion controlled growth of spherical particles,
each dimension of the growing particle increases in
proportion to the square root of the time (equation (29)).
Considering small increments in time, each of magnitude
At, it follows that the corresponding change in the extended
volume of spherical particles beginning with the first
increment of time is given by

AV = VAL)(CRAE?) . (37)

where C=4n/3 and the numerical subscripts identify the
sequence of time increments. The two terms on the right
represent the number of particles nucleated and the
contribution of each particle to the extended volume,
respectively.

The change in extended volume for the second interval
At, is then

AVE = (L VAL)C3AL?) + 31, VAL, Cr3(Aty + Aty)' Aty
' ' .. (38)

where the second term on the right is the contribution
resulting from the increase in the size of particles which
were nucleated in the first time interval. Since the time
intervals are of equal size, this equation can be written

AV = CVAL2 31, + 3(2)21,) . . (39)

or, in general, for the mth time increment, the corresponding
change in extended volume is given by

AVE = CVASP R (I +3V21 0y ... +3VmlI)) (40)

For each interval, the increase in extended volume for a
specific phase y is converted to a corresponding change
in actual volume of y as before, allowing now for the
coexistence of n phases

n

TV
AV, = 1—511/— AV . (41)
where ¥ is the actual volume of the ith phase. The total
volume of y, thus, is updated

yiew ~ y3ie 4 A, . (@)

This procedure is repeated for all the intervals from t=
0— ¢, at which time the final volume is output along with
the time. The same approach is used for all phases with a
spherical morphology (Laves phase and M,;Cg in this
case). For needle shaped particles, the basic method is the
same but the expression for the extended volume is different.
Equation (25) gives the volume of a single needle shaped
particle of f at a time (¢ — ¢) after its nucleation. This may
also be written as V3= Cy[g(t —1)]* where Cz=mn/$% It
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7 Schematic illustration of composition profile when g
is dissolving and y is precipitating: chain dotted line
shows mean concentration gradient from g to y

follows that

AV = CyVAL g3 [l + 320 m_y  3(m+1)21,]

. (43)

This approach can be used for any number of phases at
the risk of increasing the computational time and memory
requirements. One thousand time increments were used
for each temperature after checking that decreasing the
increment did not make any significant difference to
the results.

Dissolution of phases

Metastable phases must eventually dissolve as equilibrium
is approached. Figure 7 illustrates the circumstances in
which metastable § begins to dissolve when the concen-
tration in the matrix away from the B particle drops below
¢*®, with a tendency for solute to be released from the
dissolving B to the more stable 7.

During diffusion controlled dissolution of a particle of
radius 7, a consideration of mass balance at the B/« interface
requires that

dr de

— (P =c*y=—-D,— . . . . . . . . . . (44

5 @ —eN=-D.~ (44)
The term on the left hand side is the rate at which solute
is released into the matrix as the particle dissolves, which
must be carried away by diffusion as represented by the
right hand side of the equation. If the concentration
gradient is assumed to be constant (the Zener linearised
gradient approximation) then

de (¢ —c*)

dr d

where d is the mean diffusion distance between the § and
y particles, given by

d=(P,+P,) 1 . (46)

where P is a number density of particles, assumed constant
throughout dissolution; smaller particles should, in reality,
vanish before larger ones but, for simplicity, it is assumed
that the whole process can be represented by a mean
particle size of radius 7 With this'approximation, it
follows that
Wy _ gpe e (7 =)
dt d (cF*— )
In the case of a needle shaped particle dissolving (e.g.
M, X), the reduction in volume is given by

v, 3al(e”—c)
dt —  pd(cP*—c*P)

. (45)

. {47)

{48)

where ¢#* and c* now refer to the concentrations of solute
in the needle shaped phase, and ! is the needle length which
decreases as the particles dissolve.

There is a slight difference when considering the dis-
solution of M;C since its composition varies with time.
Enrichment will stop, and dissolution will start when the
extent of reaction @ for M;C equals 1. Dissolution may
then be dealt with in the same way as for other phases,
with the solute concentration in the M;C fixed from the
point when enrichment stopped.

Conclusions

The classical Johnson—Mehl-Avrami theory describing the
rate at which a phase precipitates during solid state
transformation has been adapted to deal with the simul-
taneous precipitation of many phases. In the simplest of
cases, where the fractions of the product phases are related
by constants, it has been possible to solve the problem
rigorously. An approximate method has been necessary to
deal with cases where the composition of the matrix
changes during the course of the transformations. The
method, in principle, enables any number of simultaneous
precipitation reactions to be modelled theoretically, relying
only on the availability of interfacial energies, number
densities of nucleation sites, and thermodynamic data. It is
possible, therefore, to attempt a prediction of the time-
temperature-transformation diagram for tempering reac-
tions in secondary hardening steels as a function of the
chemical composition and heat treatment. Such calculations
are presented in Part 2 (Ref. 23).
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