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Abstract 

 
Neural network modelling, a powerful method of non-linear pattern recognition, has been used to 
predict the lattice parameter of δ plutonium as a function of both aluminium concentration and 
temperature. The methods of producing such a model are explained and possible physical insights 
offered by the model are explored. Comparisons are drawn with an existing invar model and it is 
found that both agree on the general trends. 
 

 

1. Introduction 
 

Well known due to its attractive nuclear 
properties for energy production and nuclear 
explosives, the actinide plutonium is 
considered to be the most varied and 
interesting of all metals, with seven solid state 
phases known – more than any other element – 
and each phase exhibiting its own 
characteristics.  

The presence of alloying elements 
increases this complexity further. Initial 
interest came as a result of the ability of 
alloying to stabilise high temperature phases of 
plutonium, in particular the δ phase at room 
temperature, allowing the fabrication of 
plutonium for use as fuel and weapons. 

The variation of these plutonium alloys’ 
lattice parameters with both temperature and 
solute addition is complicated, with 
coefficients of thermal expansion changing 
from positive to negative over a range of 
compositions and temperatures. These changes 
are not yet fully understood let alone easily 
predicted. 

Any unexpected volume changes could 
compromise structural stability where 
plutonium alloys are contained by another 
material, leading to a serious health risk and a 
necessity to understand their behaviour. 

Neural networks offer a non-linear 
modelling technique which can be used in 
problems where the physics are not fully 
understood, but in which oversimplification 
would be unacceptable. 

Through the use of such neural networks, 
an attempt has been made to model 
plutonium’s unique behaviour, enabling future 
predictions without the need for tests involving 
this dangerous nuclear material, as well as 
bypassing the need for structure determination 

by the complicated and time-consuming 
method of x-ray, neutron or electron 
diffraction. 

 
2. Scientific Background 
 
2.1 Pure Plutonium 
 

Having only been discovered in 1941, 
plutonium research is still in relative infancy. 
As already mentioned, plutonium exhibits 
seven different solid phases. α, β, γ and ε all 
have very large, positive coefficients of 
thermal expansion (CTE) while the CTE of 
both the δ and δ′ phases are negative1  
(Figure 1). A further peculiarity of plutonium 
is the contraction upon melting as the liquid 
phase is denser than the ε, δ′ and δ phases 
(Table 1). Little is known of the complex 
seventh allotrope, ζ, which exists only at high 

Figure 1: A dilatometer curve displaying the length 
change of a plutonium rod with temperature (image 
from Jette, 1955) 
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temperatures and within a limited pressure 
range. 

The electronic configuration of plutonium 
in the metallic state is 7s2 6d1 5f5 and it is 
suggested that these f electrons contribute to 
bonding in plutonium, causing some of its 
peculiar properties, namely low symmetry 
crystal structures, a high number of allotropic 
phases and a low melting point. 

Initially the ‘pointed’ orbitals of the f 
electron wave functions were the cited cause2, 
resulting in highly directional or covalent-like 
bonding favouring low symmetry crystal 
structures, this effect only being overcome at 
high temperatures, with the f character 
becoming smeared, permitting the cubic δ 
phase. 

Within the last 15 years, due to increases 
in computing power, it has been possible to 
accurately calculate the total energy of the 
electronic ground state from first principals 

(without any experimental input). Wills and 
Eriksson applied this method to plutonium3. 
These calculations showed no localised 
increase in electron density between atoms, 
dismissing the possibility of covalent type 
bonding. Instead it was shown that in elements 
where a narrow f band straddles the Fermi 
energy level (as in the light actinides), the 
lifting of degeneracy associated with a less 
symmetrical crystal structure causes a splitting 
of the f band, an equal number being pushed 
both above and below the Fermi energy. This 
lowers the energy associated with the less than 
half filled f band of plutonium, stabilising 
‘distorted’ crystal structures. 

At present no calculations adequately 
predict the δ phase behaviour. The δ phase 
could be reproduced by Wills and Eriksson, 
but only by invoking a mixed state, where only 
one of the 5f5 electrons contributes to the 
bonding3. 

It is important to note that these first 
principal calculations only currently apply for 
zero temperature, and building in temperature 
dependence will be no simple task. 

 
2.2 Plutonium Alloys 
 

The combination of a large CTE and 
brittle crystal structure made the room 
temperature α phase undesirable for 
fabrication and use in a nuclear weapon (the 

Phase Crystal Structure Density 
(g/cm3) 

α Simple Monoclinic 19.86 

β Body-Centred Monoclinic 17.70 
γ Face-Centred Orthorhombic 17.14 
δ Face-Centred Cubic 15.92 
δ′ Body-Centred Tetragonal 16.00 
ε Body-Centred Cubic 16.51 
L Liquid 16.65 

Figure 2: The phase diagram on the left (image from Hecker and Timofeeva, 2000) was determined by the Russians via 
acceleration of kinetics with preconditioning treatments. On the right is the phase diagram, previously believed to be correct in the 
West (image from Hecker, 2000), showing δ stabilisation to room temperature. Recently these two diagrams have been reconciled 
with the Russian version believed to be a true equilibrium diagram and the West’s a good working diagram due to the slow 
kinetics. 

Table 1: Some properties of the six ambient pressure 
phases. 
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production of which was the ultimate aim of 
early plutonium research). What was needed 
was the stabilisation of another, more 
malleable, phase.  

It was found that a small addition of most 
trivalent elements (such as Ga, Al, Ce, Am, Sc, 
or In) retain the malleable δ phase to room 
temperature, with the trivalent element being 
incorporated in a solid solution of the 
plutonium fcc structure. This δ phase is 
actually metastable but due to exceedingly 
slow kinetics would take 10000 years to 
decompose at room temperature4. 

These slow kinetics have led to two 
plutonium–aluminium binary phase  
diagrams4, 5 (Figure 2). 

It is not understood what causes the 
trivalent elements to favour δ phase retention 
to ambient temperatures though the theoretical 
basis of a number phase diagram prediction 
models may provide insights6. 

Work on pure plutonium suggests that 
alloying elements could disturb the coherence 
of the 5f bands, much like increased 
temperature, leading to a reduction in the f 
electrons involved in bonding and a decreased 
drive for a distorted crystal structure3. 

Harrison’s calculations show that 
stabilisation of the δ phase requires the 
cooperative effect of neighbouring solute 
atoms and will not occur when only 
considering just the sum effect of individual 
atoms7. 

 
2.3 Factors Affecting the Lattice Parameter of 
δ Plutonium 
 

Commonly it is observed that materials 
expand upon heating. This is attributed to the 
asymmetric shape of the interatomic potential 
caused by strong nuclear repulsion forces, thus 
the average interatomic distance increases as 
atomic vibrations gain energy. Contrary to the 
predictions of this simple model, pure δ 
plutonium has a negative CTE, resulting in a 
reduction in lattice parameter with increasing 
temperature (Figure 1). It has been proposed 
that an invar model may be applied to explain 
this8. 

The “invar” property (that of invariable 
thermal expansion) was first seen in fcc  
Fe- 36Ni at.% whose CTE is essentially zero 
near room temperature. The invar model 
proposed the existence of two atomic states 
separated by an energy, ∆E, due to magnetic 
effects. As the temperature increased so would 
the population of the higher energy state, if 
this high energy state also possessed a smaller 
atomic volume then it is possible for its 
increasing occupancy to counter the normal 

thermal expansion or even overcome it, 
resulting in a zero or negative thermal 
expansion (Figure 3). 

For this model to apply to δ plutonium 
two analogous atomic states would have to 
exist, though no magnetic moments have been 
measured to date leaving the mechanism for 
producing these hypothetical states open to 
another possibility. Wills and Eriksson claim 
the invar model is consistent with their 
calculations9.  

Isothermal addition of aluminium shrinks 
the δ plutonium lattice10. The 12.9% size 
difference between atomic radii can only 
partially explain this. An additional contraction 
of the plutonium atoms is believed to be 
caused just by the presence of the aluminium 
atoms in the lattice. 

In general it is thought that an increasing 
addition of aluminium results in an increasing 
number of 5f bonding electrons over the 
solitary electron calculated to be bonding in 
unalloyed δ plutonium3; leading to greater 
bonding and smaller atomic volumes. The 
exact mechanism remains inconclusive but one 
suggestion is that it is due to f-p bonding 
between Pu 5f and Al 3p bands6. 

Applying the invar model to lattice 
contraction by aluminium addition suggests 
that aluminium somehow stabilises the upper, 
smaller atomic state. Again the precise 
mechanism is unclear but the electronic 
interactions described in the previous 
paragraph are a possible candidate. 

 

Figure 3: A schematic representation of the two 
atomic states in the two-state invar model. The higher 
energy state having a lower atomic volume (image 
from Lawson et al, 2003) 

Figure 4: Representation of a single neuron in a neural 
network which forms a weighted sum of the inputs, xi, 
and then transforms this sum using a non-linear 
activation function g(a) to give an output, z (image 
from Bishop, 1994) 
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3. Technique 
 
Neural networks offer an alternative approach 
to materials modelling11, instead of initially 
utilising an explicit set of assumed functional 
forms, the solution to a problem is obtained by 
fitting a very flexible non-linear function to a 
set of example data (hereafter referred to as 
training)12. This method bypasses the need to 
develop a first principles model of the 
underlying physical processes, as already 
achieved for unalloyed plutonium at 0 Kelvin3. 
The difficulties involved in extending this 
model to include alloying additions and 
temperature effects highlights the promise of 
using neural networks for modelling the lattice 
parameter of plutonium alloys. 

The basic set up of a single neuron in a 
non-linear neural network regression is 
illustrated (Figure 4). The inputs, xi, are the 
experimental variables (initially temperature 
and solute concentration for this model). Each 
variable is multiplied by a random weight, wi, 
and then they are all summed together along 
with a random constant, w0, known as the bias, 

 0
1

d

i i
i

a w x w
=

= +�  (1) 

Optimising the constants to fit the example 
data after this step (training) would be 
sufficient if there was a linear relationship 
between the inputs and the output. 

For non-linear relationships the randomly 
weighted input data is used in a non-linear 
‘activation function’, commonly tanh, 

 tanh( )z a=  (2) 
A weighted sum of the outputs of many 
neurons and a constant, (2)

0w , is then trained to 
fit the example data to give the output value 
(lattice parameter in this model), y, 

 (2) (2)
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n
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where (2)
jw are the respective optimised weights 

and n is the number of neurons (also known as 
‘hidden units’) used to fit the data. 

The function usually chosen for the 
activation function (and the one used in this 
work) is the hyperbolic tangent due to its 
flexibility. 

When training the model this study uses a 
method developed by MacKay13. Instead of 
simply identifying the best set of weights, a 
probability distribution of weights is 
calculated. When predictions are made a 
probability-weighted average of these weights 
is used. This quantifies the uncertainty of the 
fitting, allowing a quantitative measurement of 
the performance of the model. Using this 
method the performance of models is best 

evaluated using the log predictive error (LPE), 
which penalises wild predictions less if they 
are accompanied by a high uncertainty, 
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Where t(m) are the measured values, y(m) the 
corresponding predicted values and σ(m) are the 
error bars calculated using Bayesian statistics. 
A larger LPE implies a better model. 

Once a set of weights has been determined 
for the example data, they can be used to make 
predictions on inputs for which outputs are not 
currently known. 

As neural networks are extremely flexible, 
there is also the potential for overfitting14 
(Figure 5). A training dataset can be fit 
perfectly but the model will then generalise 
poorly beyond the input dataset. This problem 
is avoided by splitting the dataset randomly in 
two, a training set and a testing set. All models 
are trained on the training set and then used to 
make predictions on the unseen testing set, an 
overfitted curve will predict badly on the 
testing set and so will not be used in the final 
model. Also, complex models (high number of 
hidden units, large weights) are penalised by 
the existence of the objective function. 

Due to the dependence of a model’s final 
prediction on the number of hidden units and 
the initial random guesses for the weights, 
optimum predictions are often made by using 
the average prediction of more than one model. 
The performance of a cumulative number of 
‘sub-models’ is tested against the testing set 
and the number that gives a minimal error 
forms a committee that is retrained on the full 
database and then used as the final model. 

 

Figure 5: An overfitted model may fit the training 
data (�) perfectly but will have a larger test set (x) 
error than the optimum model (image from Sourmail 
et al, 2002) 
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4. Dataset 
 

 All 223 data points for Pu-Al and pure Pu 
used to train and test the models were acquired 
from literature10, 15, 16 (Appendix 1). Most data 
points were digitised from published graphs 
using Engauge Digitizer17. Of the two sources 
that gave errors for the measured lattice 
parameter  the greatest was ±0.0003 Å. Some 
rudimentary experiments with Engauge 
Digitizer found the error associated with 
reading the data was comparable with a value 
of ±0.0002 Å. 

All concentrations are assumed to be 
absolute as only one reference described the 
Pu-Al specimen preparations where initial 
elemental weights were used to give the 
composition and verified by “negligible” 
weight loss after alloying16. 

The dataset variables are temperature (in 
°C) and aluminium content (in at. %) giving 
the output of lattice parameter (in Å). The 
range of these variables used for training the 
models (Table 2) and their distributions are 
given (Figure 6). Some data points lie outside 
the metastable δ phase field given by the phase 
diagram (Figure 2). This fact is acknowledged 
by the experimenters who assert the validity of 
the results due to no evidence of 
decomposition. 

 
5. Computing Methodology 
 
5.1 Early Models 
 

Initially models were assessed by plotting 
the lattice parameter against temperature for a 
range of compositions for which experimental 
data existed in the dataset. An example of an 
early model’s predictions is given (Figure 7). 
This appears to be a good approximation to the  
behaviour of δ plutonium’s lattice parameter 
exhibiting the main trends, though there is a 

particularly poor fit with the 3 at.% Al data. 
This is possibly due to the high density of 
experimental data points in the high 
temperature region leading to improved fitting 
of this part of the curve while sacrificing the fit 
for lower temperatures. There appeared to be 
little variation in the quality of this fit when 
varying the amount of data retained for the 
testing phase of model training (between 10% 
and 50%). 

 Several steps were taken to refine the 
models produced. The fitting noise was 
reduced to more closely represent the 
experimental error. This resulted in a closer fit 
being attempted without trying to fit better 
than the error associated with the data. This 
obviously resulted in a better fit and lower 
uncertainties when matching the input data 
points (Figure 8) (the model’s uncertainties are 
typically represented by error bars but they 
have been omitted from Figures 7 and 8 for 
improved clarity of predictions). 

The model achieved this improved fit on 
every point in the training set by increasing its 
complexity. The effect of this increased 
complexity can be seen by comparing the high 
temperature extrapolations of both models 
(Figures 7 and 8). Whereas the first model has 
smooth and intuitively believable 
extrapolations, the extrapolations of the model 
with reduced fitting noise do not seem to 
follow the pattern set by the experimental data, 
varying wildly and with high uncertainty when 
there is no experimental data to constrain 
them. This inability to extrapolate makes the 
second model a bad model. 

Variable Min Max Mean 
Standard 
Deviation 

Al (at.%) 0.00 12.00 4.02 4.00 
Temperature (°C) 6.64 572.46 300.42 135.73 
Lattice Parameter (Å) 4.55 4.64 4.61 0.02 

Table 2, the range of initial data points in the model’s 
database 

Figure 6: The distributions of the inputs, aluminium concentration and temperature, against the resultant δ plutonium lattice 
parameter. 
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5.2 Incorporating Perceived Influences 

 
The suggestion that a cooperative effect of 

solute atoms contributed to the variation of 
lattice parameter7 was included in the neural 
network model by using a quasichemical 
solution model representing the amount of 
clustering (preference for A-A bonds) or 
ordering (preference for A-B bonds) of the 
solute atoms, given by, 

1/ 2[ 1 [1 4 (1 )(exp{2 / } 1)] ]
2(exp{2 / } 1)

e
AB

zN x x kT
N

kT
ω

ω
− + + − −=

−
 

Where e
ABN  is the equilibrium number of AB 

bonds in a solution of A and B atoms, x is the 
concentration of A, and ω is a constant which 
is greater than 1. 

Rather than just assuming a random 
solution this model allows calculation of the 
equilibrium number of unlike bonds due to 
enthalpy considerations. The input added to 
the model to represent this was proportional to 

e
ABN , and so representative of the number of 

Pu-Al bonds.  
This term is a function of both 

temperature and composition, both of which 
already exist as separate variables in the 
database. Including inputs that are functions of 
already existing variables is common practice 
where a known relationship is expected as it 
can help the network deduce this relationship. 

Due to the form of this equation, a value 
of the constant ω had to be guessed. Several 
values were attempted, representative of 
different levels of clustering, but the models 

produced were similar for a range of ω values, 
a value of 2 was finally used. 

Next the possibility of a two-state invar 
model was incorporated. Assuming the upper 
and lower states are separated by an energy 
difference ∆E, the population of the upper 
state, ns, is given by 

 
1 2

1
1 ( / ) exp( / )sn

g g E kT
=

+ ∆
 (5) 

where g1 and g2 are the degeneracies of the 
upper and lower states respectively. g1/g2 is 
assumed to be one as we are lacking any 
evidence otherwise and the value of ∆E is 
(1400/kB) Joules as determined from a previous 
application of the invar model to the Pu-Ga 
system18. 
 
5.3 Rejected Influences 
 

Assuming lattice misfit with the smaller 
aluminium atom was at least partly 
responsible, an average atom size input was 
introduced (the average was determined by the 
relative amounts of each atom and their atomic 
sizes in pure fcc Pu/Al). The network allocated 
this input virtually the same weight as that of 
aluminium concentration for every model it 
trained. This is a predictable result as the 
average atom size is proportional to the 
aluminium concentration and so inclusion of 
this variable allowed no extra insight.  
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Figure 9:  (a) The perceived level of noise of each sub-model plotted against the number of hidden units. 
(b) Test error variance with number of hidden units. 
(c) Log predictive error variance with number of hidden units. 
(d) The cumulative test error for number of sub-models that will be included in the final committee. 

Figure 10: (e) The performance of the best single model in the committee on predicting the training set 
(f) and the testing set. 

(a) (b) 

(c) (d) 

(e) (f) 
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6. Final Model Details 
 

Both of the perceived influences in section 
5.2 were included and 225 networks were 
trained with up to 25 hidden units and 9 
different seeds.  The constraint on the fit was 
the same as used for the first model reported 
(Figure 7), a relatively large ±30%. 
Predictably, the perceived level of noise 
decreases with an increasing number of hidden 
units as the model gains more flexibility to fit 
the data, this and other results of the training 
are illustrated (Figures 9 and 10). A committee 
of three models was chosen as it was a local 
minimum in combined test error and did not 
contain so many models that it risked 
averaging out some trends. The perceived 
significances of each of the inputs for the three 
models in the committee are shown (Figure 
11). The significances represent the extent to 
which each input explains the variation in the 
output. The low significances accorded to 
temperature by two of the three models reflects 
the inclusion of temperature in the two 
functional inputs (quasichemical and invar). 

 
 

Figure 12: Predictions of the final model for δ plutonium’s lattice parameter against temperature for a range 
of compositions. The error bars are indicative of the model’s uncertainty in its prediction, with increasing 
uncertainty further beyond the limits of the initial inputs. 
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7. Evaluation of the Final Model 
 
7.1 Model’s Predictions 
 

Incorporation of the perceived physical 
relationships described in section 5.2 allowed a 
better fit than the first reported model (Figure 
7) without the need to constrain the fitting of 
the data, resulting in a simple, accurately 
fitting model that makes reasonable 
extrapolations. 

When using this model for predictions, 
extrapolations will be made outside the 
metastable δ phase fields shown by the phase 
diagrams (Figure 2). Firstly for comparison 
with input data, as some points lie outside this 
region and secondly to see how the model 
behaves far away from the data it was trained 
on. 

The final model’s predictions for a 
selection of compositions are shown (Figure 
12). When interpolating, the model predicts 
intuitive results along with low uncertainties, 
even for those compositions not explicitly 
included in the database. Greater uncertainties 
are associated with extrapolating both 
temperature and aluminium concentration, 
though both seem to follow the pattern set by 
the input data. An explanation of this pattern is 
attempted in section 7.2. 

A predicted lattice parameter-composition 
plot at varying temperatures is also given 

(Figure 13). The first obvious feature is the 
inversion in the order of the lines between 1.5 - 
2 at.% Al due to the change in CTE from 
negative to positive with increasing aluminium 
concentration, as also illustrated in the 
experimental data (Appendix 1). 

There is a general decrease in the 
susceptibility of the lattice parameter to 
aluminium addition with increasing 
temperature (decreasing slope gradient).  

At low temperatures the line exhibits an 
upward curve at the lower solubility limit of 
aluminium and a downward curve at the upper 
limit, only the upward curve is reduced at high 
temperatures as the lattice parameter – 
composition variance tends to a straight line in 
the low aluminium region.  

The general trends are in good agreement 
with the experimental data of Lee et al but are 
contradicted by the measurements of Ellinger, 
made beyond the upper solubility limit given 
in the phase diagram, which show an upward 
curve tending to a constant lattice parameter at 
room temperature19 (Appendix 2). This data 
was not included in the dataset as it has not 
been officially published. 

It was found that the fitting had vastly 
improved over early models due to the 
inclusion of the quasichemical term; this is 
reflected in the model’s perceived significance 
of this input for all the networks used in the 
final committee. This suggests the possibility 

Figure 13: Predictions of the final model for δ plutonium’s lattice parameter against composition for a 
range of temperatures. There is increasing uncertainty the further the composition extends above the upper 
limit in the initial database of 12 at.% Al . 
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of an important role of this variable in 
explaining the observed variance and thus an 
attempt will be made to explain the behaviour 
in terms of atomic ordering and the two-state 
invar model. 

At higher temperatures the entropy of the 
system is increased, stabilising more random 
arrangements of atoms. If the effectiveness of 
the aluminium atoms to disturb the coherence 
of the plutonium f bands is related to a 
cooperative effect then a reduction in ordering 
should logically result in a reduction in 
aluminium’s ability to reduce the lattice 
parameter, leading to the reduction in slope 
gradient with increasing temperature (Figure 
13). 

This same trend can be explained equally 
as well using the invar model where an 
increase in temperature results in a greater 
population of the high energy – low atomic 
volume state, Therefore the role of the 
aluminium atoms as a high energy state 
stabiliser becomes increasingly redundant, 
mirrored in their decreasing ability to shrink 
the plutonium lattice. 

Assuming that the invar model is accurate, 
and that one aluminium atom affects all 12 of 
its neighbouring plutonium atoms an 
explanation for the upward curve at low 
aluminium additions and low temperatures can 
also be envisaged 

The variation of e
ABN  with composition is 

rapid for dilute additions of solute, as each 
added atom only has unlike neighbours 
resulting in a high rate of lattice shrinking with 
aluminium additions. As the concentration 
increases further, the proportion of unstabilised 
plutonium atoms decreases, and aluminium 
atoms begin to have an increasing number of 
aluminium neighbours in the lattice. Both of 
these decreases the amount of shrinkage 
further aluminium additions can cause. 

This explanation does not fit the increased 
shrinkage at high concentrations predicted by 
the neural model but it is consistent with the 
upward curve found by Ellinger19. 

It would be forthright to place too much 
onus on the quasichemical term for the 
appearance of the low aluminium, upward 
curve without further experiment. Its high 
perceived significance does not necessarily 
mean that atomic ordering definitely has a 
crucial role but just that the model has 
successfully used the shape of the function 
provided to fit the variation in the 
experimental data. Secondly the experimental 
data of Lee et al10 used in this study appears to 
exhibit more of a gap between two straight line 
fits at 2.25 at.% Al rather than a gradual 
upward curve, which if true would make the 

quasichemical influenced explanation given 
here both invalid and unable to explain the true 
complexity of the situation alone, for which an 
explanation has already been attempted10. It 
should be noted that the existence of this 
‘kink’ is not conclusive19 and any proposed 
explanations are purely speculative. 

It should also be noted that removal of the 
Lee et al data from the dataset used to create 
models (a loss of 116 data points and only 
leaving 49 Pu-Al data points in) actually leads 
to predictions of the shape observed by 
Ellinger. This large dependence of the model 
on one set of contentious experimental data is 
a problem that only the inclusion of further 
experimental data (none of which is available 
at present) will help resolve. 

 
7.2 Comparison with Other Models 
 

Only one other model has been found for 
the lattice parameter variance with both 
temperature and solute composition for a δ 
plutonium alloy18. Although it is for the Pu-Ga 
system comparisons can be drawn as 
aluminium and gallium are both trivalent 
group 3 elements. 

The Pu-Ga fit was calculated using an 
invar model that balanced thermal expansion 
with the occupancy of two theoretical states of 
different atomic volumes (Figure 14). The 
simplified equation for the lattice parameter 
requires knowledge of several key parameters 
including the Debye temperature and 
Grüneisen constants. 

A direct comparison of the models can be 
made using the unalloyed plutonium 
predictions (Figure 16). The general shapes of 
the curves are in agreement with the neural 
network model predicting a higher lattice 
parameter at 0 K and a lower one at 1200 K. 
There is an obvious discrepancy between the 
experimental values used to fit these models as 
the invar model fits the neutron diffraction 
measurements used in their study but not the x-
ray measurements used in this study and vice 
versa. This could be partially to blame for the 
lack of agreement. 

The shape of the curves shows a 
competition between normal thermal 
expansion, dominant at low temperatures, and 
increased occupancy of the upper, smaller 
atomic volume state, dominant at high 
temperatures. According to the invar model, 
the stabilisation of the upper atomic state of 
plutonium by aluminium (effective even at low 
temperatures) results in a smaller contribution 
of temperature to increasing the upper state 
occupancy. Therefore the higher the 
concentration of aluminium, the greater the 
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temperature range over which thermal 
expansion is dominant. 

The general trends exhibited by increasing 
gallium addition match those discovered here 
for aluminium (Figure 15). This is a positive 
result for the neural network model if it is 
reasonably assumed that the low temperature 
Pu-Al data behaves in a similar manner to the 
experimentally determined data for Pu-Ga 
(Figure 14). 

It should be noted that these extrapolations 
for Pu-Al (including unalloyed Pu) are 
presented as purely theoretical though δ 
plutonium retention has been observed down 
to -125 °C with the addition of 2 at.% 
aluminium20. 
 
8. Conclusions 
 

 Neural network modelling is a flexible 
method of data pattern recognition. Knowledge 
of the potential problems (particularly 
overfitting) allows quick and accurate fitting of 
data enabling the prediction of unknown 
outcomes. 

A neural network model was produced for 
predicting the variance of δ plutonium lattice 
parameter with both temperature and 
aluminium composition. The model fitted the 
experimental data well while producing 
smooth extrapolations that compared 
favourably with an existing model without the 
need to experimentally determine certain 
parameters. 

It was shown here that the use of 
suspected relationships can greatly improve 
the ability of the model to fit the data well. 
Care needs to be taken when interpreting this 
relationship as the significances given for each 
input does not describe the magnitude of the 
effect the input has on the final output but how 
it helps to describe the overall variance. 

Though acknowledging this, possible 
physical explanations for the high 
significances of the quasichemical terms were 
proposed (Figure 11). The direct relevance of 
the quasichemical model could arise from the 
requirement of a cooperative effect of 
aluminium to stabilise the δ phase, or due to 
each aluminium atom stabilising all 12 of its 
nearest neighbours leading to lower amounts 
of stabilisation when additional aluminium 
atoms have nearest neighbours that are already 
stabilised. 

The power of neural networks lies in their 
ability to spot patterns in a given data set but to 
see these overall trends it is sometimes 
necessary to sacrifice the degree of fitting on 
the initial data (Figures 7 and 8). 
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Figure 14: Variance of δ plutonium lattice parameter 
with temperature for a range of gallium 
concentrations predicted using the invar model, the 
circles represent experimental data (image from 
Lawson et al 1999). 

Figure 15: Variance of δ plutonium lattice parameter 
with temperature for a range of aluminium 
concentrations predicted using the neural network 
model of this study. 

Figure 16: A direct comparison of the neural network 
and invar models’ predictions for unalloyed 
plutonium. 
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When using a small database (as in this 
study) the flexibility of neural networks can 
result in the fitting of possible one-off 
experimental anomalies (Figure 13). This over 
complicates the model and can possibly lead to 
false extrapolations, highlighting the 
importance of considering the experimental 
inputs alongside the model’s predictions. 

The true power of neural networks 
becomes apparent when dealing with problems 
consisting of a large number of variables14, 
here the ability to isolate certain variables and 
see how they affect the outputs can reveal new 
and interesting trends which were not 
previously realised. This power could not be 
exploited in the present study due to the small 
number of variables involved (fundamentally 
just temperature and composition) and the 
large range of existing experiments indicating 
how each variable varied when the other was 
held constant. 

The variation of the lattice parameter 
across plutonium alloy systems presents an 
interesting challenge for neural networks. 
There exist several suspected influences that 
vary with alloying element, including the 
solute atom’s size and electronic structure 
(occupied orbitals, orbital energies and Fermi 
energy level). A neural network approach may 
help isolate the most significant factors 
affecting lattice parameter and possibly even δ 
plutonium stability. 
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Appendix 1: Data Used in the Model’s Database 
 
Unalloyed δ plutonium from Ellinger (1956) 

 
δ plutonium-aluminium alloys from Lee et al (1961)  

δ plutonium-aluminium alloys from Elliott et al (1961) 

(a) Pure plutonium 
(b) 1.00 at.% Al 
(c) 2.00 at.% Al 
(d) 2.25 at.% Al 
(e) 2.60 at.% Al 
(f) 3.00 at.% Al 
(g) 5.00 at.% Al 
(h) 7.00 at.% Al 
(i) 10.00 at.% Al 
(j) 11.00 at.% Al 
(k) 12.00 at.% Al 
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Appendix 2: Additional Data Not Used in the Model’s Database 
 
δ plutonium-aluminium alloys at 24 °C by Ellinger, reported by Schonfeld (1961) 
 


