

Radu Calin Dimitriu

NEURAL NETWORKS, TRICKS OF THE TRADE

BEFORE STARTING THE TRAINING

AFTER A CLOSE EXAMINATION WE CAN ESTABLISH

• a)

WE HAVE GOOD DATA

• b)

WE HAVE BAD **DATA**

HOW TO DEFINE GOOD DATA?

GOOD DATA ARE PHYSICALLY MEANINGFUL AND RELEVANT TO THE OUTPUT

FOR EXAMPLE

TO MODEL THE STRENGTH OF A STEEL....

• WE MUST CONSIDER THE CHEMICAL COMPOSITION, THE HEAT TREATMENT, GRAIN SIZE...

 IT WOULD BE A BAD IDEA TO INSERT THE MACHINING SPEED

GOOD DATA

• ARE MADE OF AN OPTIMISED NUMBER OF INPUT PARAMETERS

• IT IS NOT RECOMMANDED TO HAVE AN OVER-AMBITIOUS SET OF INPUT PARAMETERS

• BECAUSE THAT WILL LIMIT THE DATA AVAILABLE FOR ANALYSIS

BE REALISTIC

• ALWAYS MAKE A PRAGMATIC APPROACH WHEN MAKING A DATABASE FOR A NEURAL NETWORK

• THIS WILL ENSURE SUFFICIENT DATA AND VARIABLES TO CAPTURE THE COMPLEXITY OF THE PROBLEM

INCLUDE AS MANY MEANINGFUL PARAMETERS AS POSSIBLE

• INCLUDE MEANINGFUL PARAMETERS IN THE DATABASE

• IF YOU DO NOT KNOW HOW THEY ARE RELATED TO THE OUTPUT, THE NEURAL NETWORK MAY NEVERTHELESS CAPTURE THE RELATION

LEVEL OF PERCEIVED NOISE

LEVEL OF PERCEIVED NOISE

FOR A GOOD DATABASE

• IT IS DESIRABLE TO HAVE A GOOD SPREAD OF DATA OVER THE ENTIRE RANGE

• THAT WILL ENSURE A RELIABLE PREDICTION

MARIE CURIE ACTIONS

DATA-SPREAD AND PREDICTIONS OF HOT-STRENGTH AS A FUNCTION OF COPPER CONTENT

MARIE CURIE ACTIONS

DATA-SPREAD AND PREDICTIONS OF HOT-STRENGTH AS A FUNCTION OF NICKEL CONTENT

CHECKING THE MINIMUM AND MAXIMUM

ALL THE INPUTS AND OUTPUTS

MUST BE CHECKED BEFORE MODELLING

• TO ENSURE THAT THE LIMIT OF THE INPUTS AND OUTPUT IS MEANINGFUL

DO NOT TRUST THE EXPERIMENTS

• ALWAYS MAKE AN ASSESSMENT OF THE QUALITY OF THE DATA

• QUESTION THE ACCURACY AND RELIABILITY OF THE EXPERIMENTS USED TO GENERATE THE DATA

LOOK FOR OUTLIERS

OUTLIERS
ARE POINTS
WHICH ARE
VERY
UNLIKELY

STUDY OUTLIERS

FIRST THEY MUST BE IDENTIFIED

• TRACKED BACK TO THE ORIGIN TO LOOK FOR MISTAKES IN COLLECTING AND COMPILING THE DATABASE

• IF NO ERRORS ARE FOUND THEN SOME THINKING AND ASSUMING MUST BE DONNE TO ENSURE THE CORECTITUDE OF THE MODEL

FIXING THE NOISE LEVEL

BEFORE TRAINING
WE HAVE THE
POSSIBILITY
TO FIX THE
NOISE LEVEL

WE FIX THE LEVEL OF NOISE IF:

WE KNOW WE HAVE A NOISY DATABASE

• AND IF WE TRAIN WITH A LOW LEVEL OF NOISE THE DATA WILL TRAIN UNTIL IT REACHES THE FIXED LEVEL (OVERTRAIN)

• BY INCREASING THE LEVEL OF NOISE WE ENSURE A GOOD TRAINING

AND IF:

• WE KNOW WE HAVE A EXCELLENT DATABASE

• THEN WE LOWER THE NOISE LEVEL AND FORCE THE NEURAL NETWORK TO FIND A MORE COMPLEX SOLUTION THEN IT WOULD HAVE WITH A MEDIUM LEVEL

SO A GOOD DATABASE

- HAS INPUTS PARAMETERS SIGHIFICANT TO THE OUTPUT PARAMETER
- AS MANY SIGNIFICANT PARAMETERS AS POSSIBLE
- UNIFORMLY DISTRIBUTED DATA
- DOES NOT HAVE OUTLIERS
- HAS A OPTIMUM LEVEL OF NOISE

INPUT PARAMETERS

• WE CAN INSERT THE INPUT PARAMETERS

AS RAW

FOR EXAMPLE

- THE CHEMICAL COMPOSITION OF A STEEL
- HEAT TREATMENT TEMPERATURE AND TIME
- GRAIN SIZE
- HARDNESS
- •

OR

• WE CAN INSERT THE INPUTS IN A FUNCTIONAL FORM

FOR EXAMPLE

- THERMAL ACTIVATION
- LOGARITHM OF TIME
- A COMBINATION OF INPUT PARAMETERS
- NORMALISATION

THERMAL ACTIVATION

THE FORMULA DESCRIBES THE DEPENDENCE OF THE OUTPUT UPON AN ACTIVATION ENERGY

$$exp(-\frac{Q}{RT})$$

LOGARITHM OF TIME

IT IS WISE TO INCORPORATE THE
LOGARITHM OF TIME IN THE DATABASE
WHEN THE EXTENT OF REACTION IS
EXPECTED TO VARY WITH

ln{time}

A COMBINATION OF INPUT PARAMETERS

IF A COMBINATION OF ONE OR MORE PARAMETERS HAS A PARTICULAR SIGNIFICANCE THAN THAT COMBINATION SHOULD BE INSERTED IN THE DATABASE

FOR EXAMPLE

• THE FOLLOWING PRODUCT CAN BE USED TO AS AN INPUT FROM KINETIC THEORY, A FUNCTION OF TIME AND TEMPERATURE

$$time * exp(-\frac{Q}{RT})$$

NORMALISATION OF INPUTS

• USUALLY IT IS GOOD TO NORMALISE THE INPUTS IN ORDER TO MAKE COMPARISON BETWEEN THEM EASIER

• FROM THE COMPARISON WE CAN SEE WHICH INPUT PARAMETER HAS A BIGGER INFLUENCE ON THE MODEL

FOR EXAMPLE

• IF WE WANT TO COMPARE THE EFFECT OF CARBON WHICH VARIES BETWEEN 0.1-1 wt% AND CHROMIUM WHICH CAN VARY BETWEEN 0-13 wt%.

• IT IS EASY TO SEE THEIR EFFECT ON THE MODEL WHEN THEY ARE NORMALISED

BUT

• IT IS SENSITIVE THAT ALONG THE RAW DATA THE DATA THAT WAS TRANSFORMED AS A FUNCTIONAL FORM TO BE KEPT IN THE DATABASE

• IF WE DO NOT KEEP ALL THE DATA WE RUN THE RISK OF BIASING THE MODEL

THE OUTPUTS

• THE OUTPUTS CAN ALSO BE INSERTED IN A RAW FORM IN THE MODEL

OR

• AS A MATHEMATICAL FUNCTION FOR THE MODELS THAT HAVE THE TENDENCY TO PREDICT UNPHYSICAL VALUES

FOR EXAMPLE

WE HAVE THE STRENGTH AS AN OUTPUT AND AS A MATHEMATICAL FUNCTION THE STRENGTH CAN GO BELOW ZERO, THAT IS PHYSICALLY IMPOSSIBLE SO WE CAN GUIDE TO OUTPUT NOT TO REACH ZERO

$$f_{strength} = ln(-ln(1 - \frac{X_{max} - X}{X_{max} - X_{min}}))$$

ACKNOWLEDGEMENTS

- MANY THANKS TO PROFESSOR H. K. D. H. BHADESHIA
- DEPARTMENT OF MATERIAL SCIENCE AND METALLURGY
- UNIVERSITY OF CAMBRIDGE
- EUROPEAN COMMISSION UNDER THE MARIE CURIE EARLY STAGE RESEARCH TRAINING PROGRAMME