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Abstract

The purpose of the present work was to characterise and further develop

a novel nanostructured type of bainitic steel. Three chemical compositions

were considered with different concentrations of Al and Co. The addition of

Al and Co is believed to be necessary to produce the desired nanostructure

at very low temperatures within a reasonable transformation time.

An overview of the mechanical performance of fully bainitic steels vs

other steel systems is presented in Chapter 1. An introduction to metal-

lurgical concepts regarding the design and performance of bainite steels is

presented in Chapters 1 and 2.

Chapter 2 focuses on the design concepts by which the steel chemical

composition was optimised, primarily on the basis of cost and the avoidance

of carbide precipitation.

Chapter 3 deals with the evolution of the microstructure during uniaxial

tension, studied using X-ray diffraction. The effect of tempering deformed

and undeformed structures, and heating to high temperatures, have also

been investigated. In this context, data on bainite-containing steels in the

literature are found to be rather limited.

Chapter 4 is a comprehensive assessment of the mechanical behaviour

of the steels subjected to a variety of processing routes. It is demonstrated

that it is possible to outperform current commercially available steels.

The microstructural behaviour of strain-aged and as-transformed steels

during uniaxial tension studied using in situ neutron diffraction is described

in Chapter 5. The evolution of texture with plastic deformation was con-

firmed as previously observed using conventional X-ray analysis. Evidence

regarding the presence of two populations of carbon depleted and carbon-

rich austenite and their response to strain, grain rotation, anisotropy, stress

partitioning between phases and the lack of work-hardening to overcome the

onset of necking are presented.
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(1+cos22θ
sin2θcosθ

) Lorentz-polarisation factor

2ζ Effective lattice microstrain

α Ferrite

α1−2 α1 peak shift caused by α2

α(T ) The degree of thermal reaction

αp The probability of deformation-fault formation between two FCC

crystal layers

β Integral peak breadth

βinst Instrumental broadening

βobs The observed integral breadth

βsize The integral breadth contribution due to fine crystallites

βstrain The integral breadth contribution due to lattice non-uniform micros-
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βtot The total integral breadth

∆2θ Peak shift, in radians

∆Gγα The driving force for the bainite transformation

∆Gα
′
γ The magnitude of the driving force for the martensite transformation

∆GM The magnetic free energy component of the transformation γ → α in

pure iron
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Chapter 1

Bainitic Steels—Literature

Review

Bainite† is a non-equilibrium transformation product of austenite which

evolves by cooling at rates such that the diffusion-controlled transforma-

tions such as pearlite are not possible, yet the cooling is sufficiently slow to

avoid the diffusionless transformation into athermal martensite.

Bainitic microstructures are generally described as non-lamellar aggre-

gates of carbides and plate-shaped ferrite. As shown in figure 1.1, bainite

can be classified according to morphology to upper and lower bainite. Upper

bainite consists of clusters of platelets of ferrite which share identical crystal-

lographic orientation which are intimately connected to the parent austen-

ite phase in which they grow. An average bainitic ferrite plate is about 10

µm long and 0.2 µm thick [1]. Elongated cementite particles decorate the

boundaries of these plates; the amount and continuity of the cementite layer

depends on the steel carbon concentration.

As the transformation temperature is reduced some of the carbon precipi-

tates within the ferrite plates as cementite leading to the lower-bainite struc-

ture.

The mechanism of the bainite transformation has been a subject to con-

troversy and discussing different schools of thought in detail is beyond the

scope of the present work. However, a brief presentation is unavoidable so

as to point out to some relevant aspects of mechanisms which are discussed

†Bainite or bainitic ferrite is henceforth referred to as αb.
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Figure 1.1: Illustration of upper and lower bainite showing the main differ-
ences in carbon partitioning and precipitation [2].

in the literature.

1.1 Bainite Transformation Mechanism

Austenite transformation products which form below the temperature of re-

constructive transformations are identified as Widmanstätten ferrite, bainite

and martensite. The bainite phase is observed at temperatures lower than

that necessary for Widmanstätten ferrite to form.

Surface relief as a result of transformation has been observed in steels

that undergo either the Widmanstätten ferrite or bainite transformation.

However, the crucial aspect concerning the evolution of these intermediate

displacive transformation products is the kinetics associated with carbon

partitioning. The equilibrium carbon content of ferrite is usually much less

than that of austenite.

Bhadeshia envisaged that the nature of the bainite nucleus is similar

to that of Widmanstätten ferrite [1]. Unlike Widmanstätten ferrite, carbon

diffuses into the residual austenite not during but after bainite plate growth.

Therefore, the thermodynamic conditions accompanying growth must be the
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determining factor for a nucleus to evolve either to Widmanstätten ferrite

or bainite. If diffusionless growth cannot be sustained, the formation of

Widmanstätten ferrite takes place instead of bainite. A stored energy in

Widmanstätten ferrite of about 50 J mol−1 has been assumed [3], compared

with that for bainite at around 400 J mol−1. The chemical free energy change

has to be sufficient as to exceed the stored energy for a transformation to

take place.

The much higher stored energy in bainite was rationalised on the basis of

the absence of favourable strain interactions ‘within’ bainite sheaves [3].

Hillert argued that the assumed high stored energy in bainite requires

high growth velocity which has not been observed experimentally, conse-

quently, carbon supersaturation in bainitic ferrite bears ‘no conclusive evi-

dence’ [4]. In this context, Oblak and Hehemann had earlier proposed that

bainite growth is rapid though occurs in short steps [5].

Hillert adopted the basic bainite transformation model suggested by

Hultgren [6], in which, bainite was assumed to form initially as Widmanstätten

ferrite plates ‘followed by the formation of a mixture of ferrite and cemen-

tite in the interjacent spaces.’ [4]. Hillert argued that in eutectoid Fe-C

alloys, at low temperatures, bainite is promoted over pearlite not due to a

martensite-like transformation mode, but rather is related to the high asym-

metry in the Fe-C phase diagram [4]. It was suggested that ‘The edgewise

growth mechanism [of bainite] is the same as for Widmanstätten ferrite’

with carbon diffusion controlling growth velocity [4]. As the transformation

temperature is lowered, the formation of carbides is enhanced which ‘may

speed up the edgewise growth.’ [4]. The carbides precipitation occurs in the

vicinity of advancing bainite plate-tips which results in a ‘shorter diffusion

distances for carbon away from the advancing tip’ [4].

Aaronson et al., have argued in favour of the short-range diffusion of

carbon to be the predominant aspect of the bainite transformation mecha-

nism [7].

However, although bainite transformation was assumed to be marten-

sitic, proposed carbon diffusion at the γ/αb interface was believed to cause

an increase in the free energy change thereby facilitating the formation of
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bainite above the MS temperature [8].

Speer et al. have suggested that bainite may grow by a martensite-like

growth mechanism which is diffusionless ‘followed by, or along with, carbon

partitioning into austenite.’ [9, 10], with overall kinetics controlled by carbon

diffusion, i.e. the growth mechanism is both “fully’ displacive and ‘fully’

diffusional.’.

This growth mechanism was also proposed by Muddle and Nie [11] and Saha

et al. [12].

1.2 The T0 Concept

“Fully” bainitic steels are free from allotriomorphic ferrite and almost free

from athermal martensite. The structure is thus composed of retained

austenite, bainitic ferrite and carbides. Carbides, however, can be sup-

pressed by alloying with elements such as Si, Al and P. It is essential to

understand the issues governing the formation of carbides in bainite in dif-

ferent varieties of steel and the mechanical properties achievable thereof in

greater detail.

As shown in figure 1.2, bainite growth by a diffusionless mechanism has

to occur at a temperature just below T0, when the free energy of bainitic

ferrite falls below that of austenite of same composition [13].

The stored energy in bainitic ferrite is accounted for by raising its free

energy curve by an amount equal to the strain energy due to transformation,

giving the T
′

0 curve (figure 1.2). During isothermal transformation the excess

carbon in the bainite partitions into the residual austenite, forcing the next

plate to grow from carbon-enriched austenite [1]. The process finally ceases

as the austenite carbon content reaches T
′

0 value, leading to the so-called

‘the incomplete reaction phenomenon’ [14]. It is important to realise that

this scenario is valid only for carbide-free bainitic steels.

Application of the lever-rule allows the estimation of the maximum frac-

tion of bainite (V max
αb

) at any temperature:

V max
αb

=
CT

′

0

− x̄

C
T

′

0

− xαb

(1.1)
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Figure 1.2: Schematic illustration of the T0 and T
′

0 curves [1]. T1 is the
temperature corresponding to the free energy curves.

where C
T

′

0

is the austenite carbon content given by the T
′

0 boundary, x̄ is

the alloy average carbon concentration and xαb
is the carbon concentration

of the bainitic ferrite. The thermodynamic restriction imposed by the T
′

0

curve on the extent of bainite transformation can result in the formation

of pools of retained austenite with a coarse, blocky morphology. However,

austenite also appears in the form of thin films trapped in between bainitic

ferrite plates, as shown in figure 1.3.

1.2.1 Effect of Alloying Elements on the T0 Curve

The effect of substitutional solutes on the T0 temperature is given by [16]:

∆T0 =
x(bNM∆TNM + bM∆TM )

bNM + bM
(1.2)

where x is a unit concentration of the substitutional solute, ∆TNM and
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Figure 1.3: Bright field TEM (transmission electron microscopy) micro-
graph exhibiting the fineness of retained austenite films (dark) in a bainitic
microstructure [15].

∆TM are the non-magnetic and magnetic temperature changes due to a

unit change in the concentration of the substitutional solute. Values of a

and b are listed in table 1.1. The combined effects of multiple substitutional

elements are approximated by assuming additivity [16]:

∆T0 =
Σixi(bNM∆TNMi

+ bM∆TMi
)

bNM + bM
(1.3)

By allowing for 400 J mol−1 stored energy in bainitic ferrite, the T
′

0 curve

for a plain carbon steel is given by [16]:

T
′

0(K) ' 970 − 80xc (1.4)

so, for a given alloy it is modified to:

T
′

0(K) ' 970 − 80xc − ∆T0 (1.5)

where xc is the atomic fraction of carbon.
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Function a b Temperature Range

∆Gγα
NM -6660 7 900>T>300 K

∆Gγα
M 650 -1 900>T>620 K

∆Gγα
M 0 0 T<620 K

Table 1.1: Approximate values for non-magnetic (∆GNM ) and magnetic
(∆GM ) free energy components of the transformation γ → α in pure iron.
The formula ∆G = a + bT J mol−1 should be used for estimating the free
energy changes [17].

Solute ∆TM (K) per at.% ∆TNM (K) per at.%

Si -3 0
Mn -37.5 -39.5
Ni -6 -18
Mo -26 -17
Cr -19 -18
V -44 -32
Co 19.5 16
Al 8 15
Cu 4.5 -11.5

Table 1.2: Values of ∆TM and ∆TNM for some substitutional elements [18].
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It is apparent from table 1.2 that Mn has the largest effect in depress-

ing the T0 temperature. On the contrary, Co and Al increase T0, thereby

facilitating the formation of a greater volume fraction of bainitic ferrite.

On the other hand, Quidort and Bouaziz proposed that the incomplete

bainite reaction or the ‘transformation stasis’ is a result of the reduction in

transformation driving force due to plastic straining of the austenite ma-

trix [19]. The authors pointed out to the difficulties associated with accu-

rately determining carbon content in retained austenite in order to validate

the T0 concept. Furthermore, they argued for possible inaccuracies which

might be associated with the calculation of T0 compositions being dependent

on extrapolated thermodynamic data from higher temperatures.

The above theory has been discussed by Caballero and Bhadeshia where it

was argued that the plastic work calculated in [19] should be divided by unit

quantity of bainite instead of the fraction of remaining austenite [20].

1.3 Transformations Beyond T0 Concentration

Hillert argued that even if the diffusionless growth of bainite has stopped,

further transformation into Widmanstätten ferrite should still be possi-

ble [4].

Tsuzaki et al. observed the formation of large carbide plates in the

carbon-rich austenite, the austenite later decomposing into ferrite [21], in a

steel of composition Fe-2Si-0.6C (wt%). It is obvious that carbide precipi-

tation was the main reason for further austenite decomposition despite that

the alloy had been alloyed with 2 wt% Si.

In the work of Tsuzaki et al., the bainite was initially carbide-free, consistent

with the alloy high-Si concentration. However, the ferrite formed at later

stages of bainite transformation possessed a variant which was different from

that of the early formed bainitic ferrite.

Chang observed the formation of lenticular bainite first, followed by

pearlite along the grain boundary after heat treating a steel of composition

Fe-0.46C-2.1Si-2.15Mn (wt%) at 510◦C, demonstrating that the formation

of the diffusion-controlled pearlite transformation lags behind bainite [22].
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1.4 Effect of Si, Al and P on Bainite Transforma-

tion

Silicon, when present in an amount greater than 1 wt% contributes sig-

nificantly to the enrichment of carbon in austenite by inhibiting carbide

precipitation. The TRIP phenomenon, caused by strain-induced martensite

transformation of austenite is said to be responsible for improved elongation.

In TRIP-aided steels, Si also contributes to the solid-solution strengthening

of ferrite. Silicon has also been reported to lower the lower-bainite start

temperature [22].

Silicon does harm the surface quality of steels and limits their use in gal-

vanised products. Attempts have therefore been made to substitute silicon

with Al or P [23].

Aluminium is promising as a carbide-suppressing element, but does not

contribute to the strengthening of ferrite. Results obtained in TRIP-aided

steels (table 1.3) containing various levels of Al and Si are shown in fig-

ures 1.4 and 1.5. As shown in figure 1.4, for the same holding time, the

amount of untransformed retained austenite was less in the Al-steel com-

pared with Si-steel, with Al-Si steel exhibiting the lowest amount of retained

austenite.

Figure 1.5 shows that, for all steels investigated, carbon content of

austenite was comparable.

It is therefore concluded that full or partial substitution of Si with Al does

not decelerate bainite transformation nor it affects the carbon content of

retained austenite.

wt% C Mn Si Al P S N

Al1 0.11 1.55 0.059 1.5 0.012 0.007 0.017
Si1 0.11 1.53 1.5 0.043 0.008 0.006 0.0035

Al-Si 0.115 1.51 0.49 0.38 0.003 0.009 0.03

Table 1.3: Chemical composition of steels investigated by Jacques et al. [24].

Mertens et al. demonstrated the pronounced effect of Al in accelerating

bainite transformation kinetics in comparison with Si [25], consistent with
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Figure 1.4: Volume fraction of retained austenite as a function of bainite
holding time at 375◦C [24]. The steels have the composition shown in ta-
ble 1.3.

Figure 1.5: Carbon content of retained austenite as a function of bainite
holding time at 375◦C [24]. Compositions are shown in table 1.3.
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(a) Fe-0.22C-1.55Si-1.55Mn-0.035Nb-
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(b) Fe-0.19C-1.5Si-1.54Mn-0.024Al

Figure 1.6: Variation of retained austenite content with holding time at
400◦C [34]. Compositions are in wt%. Both steels also contain 20–40 N
(ppm).

the results in table 1.2.

Phosphorus contributes to the solid-solution strengthening of ferrite [26,

27]. Pichler et al. have shown that the addition of 0.001 wt% P allowed

the reduction of Si content with a significant improvement in strength [28].

However, as discussed by Wang and Van der Zwaag, it is uncertain how

efficient phosphorus is in preventing carbide precipitation [29]. Therefore, it

is difficult to determine the amount of phosphorus required. Furthermore,

the possible precipitation of phosphide (Fe3P) has negative effect on the

steel properties [30]. This necessitates limiting the P concentration.

Mo is also effective as a ferrite solid-solution strengthening element which

inhibits carbide precipitation [31, 32].

1.5 Isothermal Transformation to Bainite

The temperature and transformation time determine the phase fractions and

the carbon content of the retained austenite, which in turn determine the

mechanical properties [27, 33–42].

The austenite volume fraction peaks with time as shown in figure 1.6 [34].

Prolonged holding caused carbide precipitation thereby destabilising the

austenite.

Figure 1.7 shows the effect of bainite transformation temperature on the
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extent of transformation. For the same holding time, the fraction of bainite

transformed was greater when transforming at higher temperatures.

Figure 1.7(a) shows that silicon enhances the retention of the residual austen-

ite.

1.6 Stability of the Retained Austenite

The blocky morphology of austenite is detrimental to toughness when the

austenite transforms into high-carbon, untempered martensite at an early

stage of deformation. On the other hand, austenite films which have a

higher carbon content are much more stable and remain untransformed to

later stages of deformation [44–48].

The ratio of films to blocky austenite should exceed about 0.9 for opti-

mum properties [49]:

(Vγ−f/Vγ−B) = Vαb
/(6 − 7.7Vαb

) > 0.9 (1.6)

where Vγ−f and Vγ−B are the volume fractions of film and blocky morpholo-

gies respectively and Vαb
is that of bainite.

Following Zackay [50], the potential of enhancing ductility through the TRIP

effect was popularised in automobile applications with the aim of improving

the crash-worthiness of cold-formable automobile parts.

The TRIP effect was originally observed in fully austenitic steels with

sufficient Ni and Mn to maintain the MS temperature below room temper-

ature. However, such alloying elements are expensive.

In 1987, Matsumura et al. reported the potential of bainite in TRIP-

aided carbide-free steels, where as a result of the transformation, austenite

carbon-enrichment takes place [51, 52]. In this way expensive elements are

no longer necessary to retain γ [53–55].

Unlike the usual practice of subjecting a high-Si steel to isothermal bai-

nite transformation directly by quenching from the γ-phase field, it is also

possible to intercritically anneal and then isothermally transform to αb, with
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(a) HSi

(b) LSi

Figure 1.7: Volume fraction of bainite as a function of transformation time
for (a) Fe-0.29C-1.4Mn-1.5Si; (b) Fe-0.16C-1.3Mn-0.38Si (wt%) [43].
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more refined austenite regions.

The strain-induced transformation of retained austenite has been modelled

using the Austin and Rickett-type equation formulated by Burke [56]:

−dVγ

dε
= kPV

2
γ ε

P−1 (1.7)

where Vγ is the austenite volume fraction, ε is the plastic strain, kP is an

empirical constant and P is the strain exponent which is related to the

autocatalytic effect.

With the assumption that kP and P are independent of Vγ , and by

considering Vγ = V 0
γ at ε = 0, equation 1.7 can be integrated as follows [52]:

1

Vγ
− 1

V 0
γ

=
kP

P
εP or Vγ =

V 0
γ

1 + (kP /P )V 0
γ ε

P
(1.8)

As shown in figure 1.8, the log-log plot of (1/Vγ − 1/V 0
γ ) vs ε of the experi-

mental steel yielded a slope P = 1 comparable to that of dual-phase steel.

However, a value of P = 3 was obtained in conventional TRIP metastable

austenitic stainless steels. Thus, the expression for the experimental steel

was formulated as [52]:

−dVγ

dε
= kV 2

γ (1.9)

for the special case where P = 1. k is a constant. Equation 1.9 indi-

cates a negligible autocatalytic effect. The suppression of autocatalysis was

attributed to the presence of phases such as ferrite, in the microstructure.

For a given steel, the volume fraction, chemical stability and morphology

of the retained austenite play a crucial role in the TRIP effect. A higher

volume fraction of austenite is expected to contain a lower carbon concen-

tration, whereas a much lower austenite content may be so rich in carbon

that it does not transform at all [37]. While a large austenite grain will

transform at an earlier stage of straining, austenite grains of sub-micron

sizes may remain untransformed up to necking [36, 57].
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Figure 1.8: Austenite transformation vs strain of the experimental TRIP-
aided steel [52]. Other steel types are also shown for comparison.
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As far as TRIP-aided multiphase steels are concerned, the characteristics

of austenite in the final microstructure are inherited during intercritical an-

nealing when fine granules of austenite appear along the boundaries of ferrite

grains. During subsequent quenching and holding at the bainite transfor-

mation temperature, the reaction proceeds by the growth of bainitic ferrite

plates resulting in further carbon-enrichment and modification of the mor-

phology of the residual austenite [58].

The above discussion suggests the dependence of bainitic transformation

in such steels on the intercritical and isothermal transformation conditions,

both of which are influenced by the steel composition.

The carbon content of retained austenite Cγ can be estimated as a func-

tion of the overall carbon concentration [59]:

Cγ = x̄+ Vαb
(x̄− xαb

)/(1 − Vαb
) (1.10)

Bhadeshia and Edmonds identified an austenite stability parameter as

the ratio of retained austenite and athermal martensite formed during final

quenching to room temperature [49]. Figure 1.9 shows the variation of the

stability parameter as a function of austenite carbon content for 0.43C-2.0Si

(wt%) steel transformed at 270◦C and 363◦C.

While the microstructure of the steel transformed at 363◦C comprised bainitic

ferrite, retained austenite and some martensite, the steel transformed at

270◦C additionally contained some carbides within the bainitic ferrite.

Figure 1.9 demonstrates greater austenite stability in the bainitic steels

due to its size being smaller than that achieved in the plain carbon-steels.

Tsuzaki et al. reported a maximum amount of carbon-enrichment in

austenite of 1.61 wt% in the case of a 0.6C–2Si (wt%) steel transformed at

450◦C for 50 s. The measured austenite carbon content was lower than the

paraequilibrium value of 3.59 wt% [21], presumably because of the incom-

plete reaction phenomenon. The carbon concentration in the bainitic ferrite

was found to be 0.19 wt% at the lowest, indicating a significant degree of

supersaturation.

In early work on TRIP-aided steels, the enhancement in elongation was

ascribed to the martensitic transformation of retained austenite under ten-
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Figure 1.9: The austenite stability parameter as a function of carbon con-
tent, in wt% [49].

sion. Recent work has emphasised the contribution of microconstituents

other than austenite in the overall deformation behaviour [60–63].

According to Jacques et al., an enhanced strength-ductility balance may

be attributed to dislocation density strengthening in allotriomorphic fer-

rite [61]. On the other hand, Perlade et al. assumed that the improvement

is due to dislocation density strengthening in the austenite phase due to

martensitic transformation [64].

It has been reported that ductility is not only influenced by retained

austenite but also by the fraction of ferrite [63].

Bhadeshia has demonstrated that only about 2% of the large elongation

observed (15–30%) may be accounted for by transformation plasticity per

se [65].

During deformation, strain at first concentrates in the softest phase [66].
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Harder phases deform plastically only after the soft constituents have strain-

hardened. The soft phases ‘cushion’ against the strain due to martensite,

thereby inhibiting bursts of transformation and reducing the autocatalytic

effect. The presence of hard phases reduces the mean stress in the austenite,

therefore delaying strain-induced martensitic transformation, rendering the

transformation process more progressive, which is beneficial to ductility.

1.7 Bainite-containing Steels

The attractive mechanical performance of microstructures which contain

carbide-free bainite is now well-established [47, 49, 51, 52, 57, 67–76].

1.7.1 Fully Bainitic Steels

The ductility of fully bainitic steels (containing carbides) is generally im-

proved by reducing the average carbon content whilst strength can be main-

tained using substitutional solutes [77]. Fully bainitic low-carbon steels

exhibit better elongation than quenched and tempered-martensite steels

of equivalent strength, but the reverse is true at high-carbon concentra-

tions [77].

Lower bainite usually exhibits higher toughness than upper bainite pre-

sumably due to the finer carbides [1]. The achievable strength and tough-

ness in bainitic steels has primarily been attributed to the fineness of the

microstructure [78].

Cementite is known to be brittle [1]. The coarsest cementite particle gov-

erns the toughness rather than the average size [79]. In lower bainite, when

compared with upper-bainite structures, the cracks generated from the finer

carbide particles are smaller and hence more difficult to propagate, leading

to an improved toughness [1].

The refinement of the bainite packet size also enhances the toughness. As

shown in figure 1.10, the ductile-brittle transition temperature of fully bainitic

steels has been found to decrease with finer prior austenite grains.

In spite of the appealing mechanical performance, bainitic steels have

limitations when compared with pearlitic and tempered-martensite steels.
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Figure 1.10: Effect of austenite grain refinement on the impact transition
temperature [80].

A conventional bainitic microstructure is superior to pearlite of compara-

ble composition only in the low-hardness regime [81]. Moreover, the coarse

carbide particles in high-strength bainitic steels appear to be the most detri-

mental constituent [82–84].

Following the completion of the bainite transformation, and during cool-

ing to room temperature, the possible formation of untempered athermal

martensite due to the decomposition of the unstable residual austenite fur-

ther worsens the mechanical performance. Such limitations prompted the

search for carbide-free bainitic steels with austenite which is chemically sta-

ble exhibiting MS well below room temperature.

Carbide-free bainitic steels comprise fine plates of bainitic ferrite sepa-

rated by carbon-enriched austenite films with adequate resistance to carbide

precipitation. Suppression of carbide precipitation during bainite transfor-

mation has been achieved, for example, through the addition of 1.5 wt%

silicon which has very low solubility in cementite and greatly retards its

growth [85–87].
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Very Fine Bainite

During the last two decades, ultrafine- (<500 nm) and nano-grained (<100

nm) polycrystalline materials with exceptional mechanical properties have

been discovered [88, 89]. However, due to production and ductility shortfalls,

their technological viability is limited.

While utilisation of conventional powder metallurgy techniques suffers

from limitations with respect to the expected increase in grains surface chem-

ical reactivity and therefore limited thermal stability of very fine powders,

contamination and possible residual porosity [90], severe plastic deformation

techniques have yet to mature with respect to the shape and geometry of

the components produced.

Caballero and Bhadeshia have developed a high-carbon high-silicon carbide-

free bainite with very thin austenite films forming an intimate composite,

with a controlling scale of 20–30 nm (figure 1.3) [20, 91].

The microstructure exhibits an excellent combination of strength and

ductility as shall be demonstrated in the present work. The strength comes

from the fine scale of the structure whereas the ductility is associated with

the texture of γ and αb.

The production of the steel is straightforward; involves an affordable

conventional heat-treatment process. This is believed to be a significant

advantage over other production techniques usually adopted for the syn-

thesis of nanostructured materials. The optimisation of alloy composition

was needed to comply with conventional heat-treatment procedures whilst

keeping the desired microstructure.

There is a wide variation in microstructural scale as a function of the

bainite transformation temperature (figure 1.11).

On the other hand, carbon content in retained austenite is generally

found to decrease with an increase in the transformation temperature [94,

95].

The relationship shown in figure 1.12 [92] indicates an increase in the

yield strength with the decrease in transformation temperature. This cor-

responds to the decrease in bainite plate thickness and the appearance of

twins in austenite when the latter is transformed below 380◦C. By contrast,
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(a) Steels containing 0.65–0.99 C and 2–2.78 Si (wt%),
with and without Cr [92]

(b) Different steel compositions [93]

Figure 1.11: Bainite plate width vs transformation temperature.

an increase in the austenite volume fraction at a given transformation tem-

perature was held responsible for the decrease in the yield strength.

Figure 1.12 also shows that the ultimate tensile strength is generally less

sensitive to retained austenite content except at the higher transformation
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Figure 1.12: (a) Effect of volume fraction of austenite and correspond-
ing transformation temperature on yield strength; (b) effect on tensile
strength [92].

temperature of 380◦C. The latter may be attributed to the fact that Vγ

exceeds 0.3, leading to much blocky austenite.

Figure 1.13 reveals the manner in which the elongation is influenced

by Vγ , reaching a maximum except for steels transformed at lower tempera-

tures. The maximum has been associated with the homogeneous distribution

of thin films of austenite, beyond which the appearance of austenite pools

at larger fractions adversely affects elongation. The stress-strain curves as-

sociated with austenite content which was below, at and above that of the

optimum are shown in figure 1.14.
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Figure 1.13: Volume fraction of retained austenite vs tensile elongation [92].

Figure 1.14: Stress-strain curves of steel with (a) low austenite volume frac-
tion; (b) optimum volume fraction and (c) high volume fraction [92].

1.8 Summary

Bainitic ferrite phase in steel structures contribute significantly not only to

mechanical properties but more importantly to the ability to design specific
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steel microstructures for various applications. In this regard, the following

remarks may be summarised:

1. The suppression of carbide precipitation during bainite transforma-

tion by alloying using minimum levels of silicon or other carbide-

suppressing elements such as Al and P is crucial.

2. The importance of achieving an optimum content of stable retained

austenite has been demonstrated in the published literature.

3. The achievement of very fine bainite can lead to exceptional mechan-

ical properties not normally available in low-alloy affordable steels.

4. The observed continuous work-hardening exhibited in bainitic steels

containing retained austenite due to the progressive martensitic trans-

formation is held responsible for this good ductility.



Chapter 2

Steel Design & Production

2.1 Introduction

The objective of the work described in this chapter is to provide details

about the design, optimisation and production of the steel investigated.

2.2 Steel Design

As previously mentioned in Chapter 1, several attempts have been made

to assess the potential of fully bainitic steels. In particular, Caballero and

Bhadeshia’s work was directed towards the design of a steel with a bainitic

matrix, for defence applications which necessitated a Charpy energy of about

40 J at -40◦C, a fracture toughness (KIC) of 125 MPa m1/2, yield strength of

1000 MPa, ultimate tensile strength of 1100 MPa and a minimum elongation

of 12% [96–98].

The design of the steel was based on shifting the T
′

0 curve to a greater

austenite carbon content at any transformation temperature by adjusting

the substitutional solute content, thereby:

• allowing for more carbon-enrichment in austenite as bainite forms, in

order to increase its stability;

• obtaining a higher volume fraction of bainitic ferrite;

• accelerating the rate of transformation.
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A higher carbon content in austenite increases its chemical and mechanical

stability against transformation into martensite [99–101]. As will be seen

later in this thesis, austenite is most beneficial when it transforms at the late

stages of deformation. Increasing the volume fraction of bainite transformed

has the effect of reducing the undesirable, mechanically unstable, blocky

morphology of austenite [44] and at the same time increases the strength of

the steel. In this context, increasing the amount of bainite transformed by

reducing the transformation temperature may not enhance austenite carbon-

enrichment if a greater amount of carbon becomes trapped in the bainitic

ferrite [102].

2.2.1 Optimisation of Steel Composition

Carbon

Carbon is very effective in suppressing the bainite-start temperature with

the aim of refining the microstructural scale [103].

Silicon

Silicon suppresses cementite precipitation, particularly from austenite dur-

ing bainite growth. The carbon then partitions into the austenite, thereby

stabilising it to ambient temperature.

The designed alloy contained about 1.5 wt% Si, and in some heats Al

(1–1.3 wt%) was also added. Silicon has negligible effect on the T0 curve.

Manganese

Manganese greatly enhances austenite stability [104], but it shifts the T0

curve to lower carbon concentrations [18]. Therefore, its concentration was

limited to about 2 wt% to ensure hardenability.

Mn is also a ferrite strengthening element [105].

Cobalt and Aluminium

The low-temperature bainite transformation can be very slow [106]. Cobalt

and aluminium both increase the free energy change for the γ → αb trans-
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formation (figure 2.1) and hence can be used to accelerate the rate of reac-

tion [107].

Aluminium also retards cementite precipitation. However, it does not

contribute as much to ferrite solid solution strengthening [23]. In the present

work, Co and Al concentrations were varied as listed in table 2.1.

Alloy C Si Mn Mo Cr Co Al P S Fe

Sp9 0.83 1.57 1.98 0.24 1.02 1.54 – – – Bal.
Sp9c 0.8 1.59 2.01 0.24 1 1.51 – 0.002 0.002 Bal.
Sp10c 0.79 1.56 1.98 0.24 1.01 1.51 1.01 0.002 0.002 Bal.
Sp11c 0.78 1.6 2.02 0.24 1.01 3.87 1.37 0.002 0.002 Bal.

Table 2.1: Chemical compositions of alloys investigated in the present work
(wt%).

The time required for the initiation of bainite transformation was calcu-

lated as shown in figure 2.2(a). For comparison, the kinetics representing a

slow steel are shown in figure 2.2(b). The start of the bainite transformation

in steel Fe-2Si-3Mn-C with 1 wt% carbon at 140◦C would require a year.

On the other hand, the time required can be greatly reduced to only 4.6

months in steel Sp9c with same carbon concentration and transformation

temperature. Figure 2.2(c) demonstrates the profound effect of carbon on

both the BS and MS temperatures.

On the basis of the preliminary kinetic analysis, a maximum practical

alloy carbon concentration would be around 0.8 wt%, which was adopted.

The acceleration due to Co and Al is apparent in the data listed in table 2.2.

Alloy BS (◦C) MS (◦C) Time (s)

Sp9c 235 80 5120
Sp10c 280 132 3860
Sp11c 415 220 2040

Table 2.2: Kinetic parameters calculated using MUCG73. The time is the
delay in seconds before bainite transformation starts (calculated at 234◦C
for all alloys).

Given that the measured bulk carbon concentration per alloy is similar,

the addition of Co and or Al resulted in an increase in the BS and MS
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Figure 2.1: The driving force (∆Gγα) available for bainite transformation
vs temperature for some of the alloys listed in table 2.1. Thermodynamic
calculations were carried out using MTDATA.

temperatures and a significant decrease in the time before bainite starts to

form. Furthermore, at a given transformation temperature, the increased

driving force has the effect of shifting the T
′

0 curve to higher carbon concen-

trations [18] (figure 2.3).

Accordingly, it is speculated that the austenite retained in Sp11c would

be the richest in carbon amongst the three alloys.

The martensite-start temperature of Sp11c must be less than that cal-

culated (table 2.2) [109]. Even at as low transformation temperatures as

200◦C, a carbide-free bainitic microstructure was obtained.

Molybdenum

Molybdenum was added to inhibit austenite grain-boundary embrittlement

due to the presence of impurities such as phosphorus [96]. Mo also increases

hardenability and slightly enhances strength [82]. Mo is a ferrite stabilis-

ing element, but nevertheless suppresses the kinetics of ferrite and pearlite

formation which is useful if a bainite microstructure is desired.

Mo also reduces the BS temperature [110]. Its content was limited to

about 0.24 wt% to avoid shifting the T0 curve to lower carbon concentra-



2.2 Steel Design 29

107

106

105

104

103

102

101

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
im

e,
 s

Carbon, wt%

1 week

1 hour

2 months

(a) Time required for bainite transformation
to start calculated just one degree Celsius
below the bainite-start temperature

(b) The calculated time necessary for the
initiation of bainite transformation vs car-
bon concentration [106]

-150

 0

 150

 300

 450

 600

 750

 0  0.2  0.4  0.6  0.8  1

T
em

pe
ra

tu
re

, o C

Carbon, wt%

BS
MS

(c) Change in bainite and martensite-start
temperatures as the carbon concentration
varied. In this case carbon has reduced both
BS and MS temperatures

Figure 2.2: (a) and (c): Kinetic parameters of steel Sp9c vs carbon concen-
tration, calculated using MUCG73 [108]. Note that figure 2.2(a) represents
transformation kinetics of the slowest alloy of the system studied here, i.e.
steel Sp9c. (b) Kinetic parameters of a slow bainitic steel.
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Figure 2.3: T
′

0 curves of Sp9c and Sp11c. Calculations were carried out
using MTDATA. An energy of 400 J mol−1 was assumed to be stored in
bainite [3].

tions [18].

Chromium

Chromium significantly increases the hardenability and depresses the BS

temperature and shifts the T0 curve to lower carbon concentrations [18, 23].

2.3 Experimental Procedures

Steel ingots of the composition shown in table 2.1 were provided by Corus

UK, hot-rolled down to slabs of 40 mm thickness. Samples were cut and

then homogenised at 1200 ◦C for 48 h in a vacuum furnace. Then they were

left in the furnace to cool down to room temperature over a period of 24 h

resulting in a fully pearlitic microstructure. The slow cooling was necessary

to avoid athermal martensite formation which may introduce cracks, thus

permanently affecting the integrity of the sample. Figure 2.4 illustrates

cracks generated in a steel structure by quenching in water from the γ-phase

field.

Tensile testing samples were then machined from the relatively soft ho-

mogenised lumps which are pearlitic, since the bainitic microstructure is too
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Figure 2.4: Sp10c microstructure featuring cracks generated in an ather-
mal martensite plate (arrowed). The MS temperature was calculated using
MUCG73 and found to be 136◦C.

hard (about 600 HV) to easily machine.

2.3.1 Heat-treatment

It was important to ensure complete dissolution of cementite present in

the as-homogenised pearlitic structure during subsequent austenitisation.

Figure 2.5 shows thermodynamic calculations which were used to set the

austenitisation parameters listed in table 2.3.

To avoid oxidation, austenitisation was carried out in a tube-furnace with a

continuous flow of commercial purity argon. Prior to austenitisation, during

sample loading at moderate temperatures, the furnace was evacuated and

repeatedly flushed with argon.

After holding at the γ-phase field for sufficient time to ensure a fully

austenitic state but not so long as to give grain coarsening, the samples

were transformed in another furnace which was kept at the chosen bainite

transformation temperature (table 2.4). Transformation times were selected

from previous work to ensure cessation of reaction [111].
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Figure 2.5: Evolution of equilibrium phase fractions. During calculations
using MTDATA, only austenite, ferrite and cementite were allowed to exist.

Cementite Austenitisation Duration
Steel dissolved at (◦C) temperature (◦C) (min)

Sp9 890 920 30
Sp9c 830 900 30
Sp10c 905 920 30
Sp11c 915 1000 15

Table 2.3: Austenitisation parameters.

Transformation temperature (◦C) Duration

200 3 days
250 15–16 h
300 6 h

Table 2.4: Bainite transformation parameters.
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2.4 Summary

In this chapter, the basic concepts behind the design of the novel bainitic

carbide-free steels, and their heat-treatments, were discussed. The following

points may be summarised:

1. It seems possible to make these nanostructured steels using conven-

tional heat-treatments combined with alloy design and without the

addition of expensive alloying elements.

2. The microstructure can be generated using reasonable transformation

times.



Chapter 3

X-ray Diffraction Analysis

3.1 Introduction

The objective of the present chapter is to provide an understanding of mi-

crostructural evolution and phase interactions during the uniaxial straining

in tension of bainitic steels characterised using X-ray diffractometry. Some

observations regarding microstructural behaviour due to continuous heating

to high temperature and tempering are also reported.

3.2 Experimental Procedures

A characterisation programme using X-ray diffraction has been carried out

to investigate microstructural evolution of bainitic steels as a function of

plastic strain. Tensile test samples were heat-treated as mentioned in ta-

bles 2.3 and 2.4. As a result, the microstructure consisted of only austenite

and bainitic ferrite.

After heat-treatment, the 5 mm diameter samples were subjected to uni-

axial tensile load and strained as indicated in table 3.1. All tests were carried

out at room temperature using an INSTRON 8500 fitted with 100 kN load

cell, with a cross-head speed of 0.01 mm min−1. Elongation was recorded

via an electronic data acquisition system coupled with an extensometer with

a gauge length of 10 mm.

Upon straining, the metastable austenite transforms into martensite

which inherits the chemical composition of the austenite. Martensite has

only a slightly body-centred tetragonal crystal structure which makes it dif-
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ficult to distinguish it from ferritic phases using X-ray diffraction. Peak

separation becomes more difficult when the reflection lines are broadened

by microstructural features such as fine crystallites and or non-uniform mi-

crostrains.

Transformation Strain level
Alloy temperature (◦C) 0 0.01 0.03 0.1 Fractured

200
√ √ √

—
√

Sp9c 250
√ √ √ √ √

300
√ √ √ √ √

200
√

Sp10c 250
√

300
√ √

Table 3.1: Samples prepared for X-ray investigation. Note that only the
Sp9c sample transformed at 250◦C and strained up to failure using a cross-
head speed of 0.1 mm min−1.

Figure 3.1 illustrates some of the stress-strain curves obtained. There is

in some cases a good balance between strength and ductility. The data will

be discussed further in the following chapter.
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Four discs were cut from each unloaded sample, normal to the tensile

axis. They were chemically etched to remove any surface layers affected by

the machining, which may introduce errors in the analysis.

A PHILIPS PW 1730 diffractometer was used, operated at 45 kV and 40

mA using unfiltered Cu-Kα1
radiation of wavelength 1.5406 Å. A continuous

scanning mode was chosen. The angular step width was 0.025◦ 2θ with a

collecting time about 16 s at each step. The scanned 2θ range was 32–104◦,

giving 5 austenite and 4 ferrite peaks.

The diffractometer optics are listed in table 3.2.

Filter None
Divergence slit 1◦

Anti-scatter slit 1◦

Receiving slit Fixed, 0.2 mm
Soller slits None

Monochromators Secondary, graphite

Table 3.2: X-ray diffractometer settings.

3.3 Common Errors in Counter Diffractometry

Some of the common errors are:

• Instrument misalignment;

• specimen displacement;

• zero-shift;

• flat specimen;

• transparency.

Amongst these, the specimen displacement and zero-shift errors are the

most serious in lattice parameter determination [112]. Figure 3.2 shows the

magnitudes of the variety of common errors in counter diffractometry [113].
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Figure 3.2: Common sources of peak shifts in X-ray diffraction. The flat
specimen error was assessed by constantly illuminating 13 mm of the speci-
men length [113].
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3.3.1 Specimen Displacement Error

Specimen-surface displacement from the goniometer axis of rotation causes

peak shifts. A shift towards higher 2θ occurs if the specimen is within the

focusing circle and vice versa [114].

The shift of peak’s c.g. (centre of gravity) is given by [114]:

∆2θ = 2Scosθ/Rg (3.1)

where ∆2θ is the peak shift in radians, S is the specimen displacement

relative to the goniometer axis and Rg the radius of the goniometer.

It is difficult to measure the displacement S experimentally, so, other means

must be considered to correct the corresponding error.

Correcting for the Specimen Displacement Error

For a cubic system, the peak shift diminishes to zero at 2θ = 180◦, equa-

tion 3.1. A classical method to circumvent this systematic error is therefore

by carrying out a simple extrapolation procedure. Extrapolation is con-

ducted using ‘apparent’ lattice parameters calculated from all reflection lines

of the phase concerned against a function, for instance cosθcotθ, to a value

of the lattice parameter a0 where θ = 90◦ thereby eliminating the error.

3.3.2 Zero-shift Error

Zero-shift or zero-angle calibration error can to a large extent be avoided

via adjustment and calibration of the diffractometer. However, it cannot be

eliminated completely due to inevitable inaccuracies in the diffractometer’s

mechanical movement [115].

Correcting for the Zero-shift Error

In case of unindexed diffraction patterns, a correction method has previously

been proposed [115]. The method uses a reflection pair whose interplanar

spacing ratio is known and exact, for instance, two orders of reflection from

the same crystal plane. This procedure is unnecessary here since the crystal

structure of the phases (αb,γ) is known.
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Both errors, the specimen displacement and the zero-shift errors are in

fact small and generally it is difficult to consider peak shifts caused by each

source of error independently.

As shown in figure 3.2, for the relatively narrow angular range investigated,

the specimen displacement error can be assumed to be constant and similar

in magnitude to the zero-shift error.

3.3.3 Cohen’s Method

Systematic and random errors causing peak shifts were corrected using the

least-squares method proposed by Cohen [116], implemented in the com-

mercial software PHILIPS X’Pert Plus which uses the Rietveld method for

crystal structure refinement.

The basic principle in Cohen’s method is that if the errors, which depend

on the Bragg angle, can be expressed in the form of a mathematical function,

the combined systematic and random errors can be eliminated from the

data using the linear least-squares method. The method is analogous to the

graphical extrapolation procedure discussed earlier with the advantage that

it is also applicable to non-cubic crystal systems [117–119].

The quantities used in the least-squares refinement are:

Qi =
1

d2
i

= 4

(

sinθi

λ

)2

(3.2)

where di is the interplanar spacing of the ith reflection, θi is its Bragg angle

and λ is the wavelength.

Qi can be written as a polynomial expression [120]:

Qi =

mu
∑

j=1

aijxj (3.3)

where aij is the jth term coefficient, xj is an unknown parameter and mu is

the number of unknown cell parameters.

In a general case such as the triclinic system, for a reflection i with Miller

indices hkl, aij may be written as:

ai1 = h2, ai2 = k2, ai3 = l2, ai4 = 2kl, ai5 = 2lh, ai6 = 2hk (3.4)
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and the unknown parameter, in reciprocal-lattice coordinates, can be ex-

pressed as:

x1 = a∗
2

, x2 = b∗
2

, x3 = c∗
2

, x4 = b∗c∗cosα∗, x5 = c∗a∗cosβ∗, x6 = a∗b∗cosγ∗

(3.5)

where a∗, b∗, c∗, α∗, β∗ and γ∗ are the reciprocal-lattice constants.

It follows that, the minimisation function can be given as [120]:

∆ =
N

∑

i

wi[d
∗(observed)2i − d∗(calculated)2i ]

2 (3.6)

where N is the number of reflection lines, wi is the weight assigned to

each reflection line, d∗(observed)i and d∗(calculated)i are the observed and

calculated interplanar spacings respectively. The scheme used herein was to

assign the same weight for all observed reflections.

3.4 Rietveld Method

3.4.1 Cell Refinement

A crystallographic information file CIF † containing approximate lattice pa-

rameters of both crystal structures (αb,γ) is compared with the observed

reflections. Using equation 3.6, new cell parameters are calculated from the

new dni values of the observed reflection lines. This process is then repeated

until there is no increase in the figure of merit [121]:

FN =
1

|∆2θ|
N

Nposs

(3.7)

where |∆2θ| is the mean absolute difference between observed and calculated

Bragg angles, N is the number of observed lines and Nposs is the number of

possible reflection lines.

The analysis included the following refinable parameters:

(a) background (global parameter). Modelled as a third-order polynomial

†The CIF file contains information about approximate phase lattice parameter, space
group, site occupation factor (taken as 1 for the iron atom in both αb,γ) and parameters
regarding the thermal displacements of atoms.
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function of 2θi; (b) scale factors; (c) zero-shift error (global parameter); (d)

lattice parameters; (e) profile parameters (Caglioti parameters [122]). Only

U and W were refined; (discussed later in equation 3.10). No profile param-

eter was allowed to have a negative magnitude; (f) peak shape parameters

(the mixing parameter η; equation 3.17). A single peak shape parameter was

refined per phase. Peak width analysis for determining crystallite sizes and

lattice effective microstrains was not performed using the Rietveld method;

(g) asymmetry parameter was refined in some cases where peaks exhibited

prominent asymmetry; (h) thermal parameters; and (i) preferred orientation

parameters.

The refinement procedure has been carried out in a sequential manner

to avoid trapping in a false minimum.

Presumably due to the initial assumption that martensite is no dif-

ferent from αb, the quality of fit was not exceptionally high with GOF

(goodness-of-fit) around 2% on average. Therefore, for the determination of

crystallite sizes and lattice effective microstrains of phases, the profile fitting

software PHILIPS ProFit has been utilised for this purpose which exhibited

a better fit to diffraction spectra.

3.4.2 Mathematical Background

It is important to note that Rietveld method incorporates the calculation

of diffraction intensity at pre-determined angular steps. A comparison vs

the measured spectrum would thus enable adequate determination of peak

positions especially in the cases where peak overlapping is pronounced. Pre-

cise lattice parameters can then be determined incorporating the previously

mentioned Cohen’s method.

However, the comparison between the observed and calculated intensities is

carried out on the basis of the minimisation of the residual Sy given by [123]:

Sy =
∑

i

ri(yi − yci)
2 (3.8)

where yi is the total observed intensity at step i, ri equals 1/yi and yci is

the calculated intensity at step i. This minimisation process is performed
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over the entire scanned 2θ range simultaneously. The yci value at a step i is

determined from |FK |2 value (FK is the structure factor) calculated using

the provided structural model by summing over the calculated contributions

from neighbouring Bragg reflections (within a specified 2θ range) in addition

to the background. yci can be written as:

yci = s
∑

K

LK |FK |2φl(2θi − 2θK)PKA+ ybi (3.9)

where s is the scale factor, K represents Miller indices (hkl) of a Bragg re-

flection, LK is a factor which contains Lorentz-polarisation and multiplicity

factors, φl is the function which represents the reflection-line profile, PK is

the preferred orientation function, A is the absorption factor and ybi is the

background intensity at step i.

The minimisation process carried out using equation 3.8 results in a set

of equations, normal equations, which include the derivatives of all the yci’s

with respect to each refinable parameter. Consequently, an m×m matrix,

normal matrix is created where m is the number of refinable parameters.

This matrix is soluble by inversion. That is to say, during the course of

structural refinement, all refinable parameters are refined as to arrive at a

solution where it would ideally be the seeked minimum.

3.4.3 Correcting for Texture

As shown in equation 3.9, a correction for preferred orientation can easily be

incorporated in the refinement process. Errors due to preferred orientation

have been dominant in the present work since the specimens underwent large

deformations up to failure.

3.5 Instrumental Broadening

The estimation of the instrumental broadening is crucial for correcting the

breadths of observed reflections. Instrumental broadening was measured us-

ing Si powder with grain sizes large enough to avoid the broadening which

might be caused by fine crystallites. Identical diffractometer optics and

working conditions have been used throughout. The integral breadths of
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Si powder reflections were determined via fitting the observed Si line pro-

files to a pseudo-Voigt function †. The integral breadths of Si lines were

subsequently fitted to the relationship proposed by Caglioti et al. [122]:

β2 = Utan2θ + V tanθ +W (3.10)

where β is the broadening measured at Bragg angle θ and U , V , W are the

profile parameters. Although equation 3.10 is not theoretically justified, it

has been used to describe the nonlinear variation of instrumental broadening

with Bragg angle [125].

The values of U , V and W obtained are listed in table 3.3:

U 0.0085878
V 0.0216716
W 0.0122995

Table 3.3: Caglioti parameters for the silicon diffraction profile, used to
correct for the instrumental broadening.

3.5.1 Stripping Instrumental Broadening

Stripping the instrumental broadening from observed integral breadth de-

pends on the shape of the peak considered.

For purely Lorentzian peaks:

βobs = βsize + βstrain + βinst (3.11)

and for purely Gaussian peaks:

β2
obs = β2

size + β2
strain + β2

inst (3.12)

where βobs is the observed integral breadth, βsize is the integral breadth due

to fine crystallites, βstrain is the integral breadth due to lattice microstrain

and βinst is the integral breadth due to instrument.

†Integral breadth β has been used in the present work as a measure of ‘peak width’
rather than FWHM (full width at half maximum) since the former is believed to make
more use of the data. Furthermore, it was reported that the use of FWHM overestimates
crystallite sizes and underestimates effective lattice microstrains [124].
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Since the general case here is that a peak width is a mix of L and G com-

ponents, for mixed shape peaks, the data were analysed twice as if peak

shapes are purely Lorentzian and once more as if they are purely Gaussian.

Accordingly, it was believed that the ‘real’ value would lie in between these

Lorentzian and Gaussian values. That is to say, after stripping the instru-

mental broadening, two crystallite size values † and two lattice microstrain

values were obtained per experiment. Therefore, microstructural features of

a phase were assessed by means of a range of values whose limits represented

the parameter’s values obtained assuming pure Gaussian or pure Lorentzian

peak shapes. The actual parameter’s value would therefore lie within the

given range.

It is important to note that values obtained by this technique are not

absolute, rather, they are relative values given the complex nature of the

problem [117].

3.6 Crystallite Size & Microstrain

It is known that peak broadening in diffraction patterns occurs due to

the presence of fine crystallites or ‘diffracting domains’, as well as resid-

ual stresses in grains [118].

Non-uniform straining of grains causes peak broadening in diffraction

patterns whereas the practically rare uniform strain induces peak shifts as

shown in figure 3.3.

It is therefore problematic to separate the broadening due to different

sources in the case at hand since both sources of line broadening co-exist.

However, a suitable method for separating broadening due to crystallite

size and strain has earlier been proposed by Hall [126] and Williamson and

Hall [127].

3.6.1 Williamson-Hall Plot

The Williamson-Hall plot, as shown in figure 3.4, can be used to separate the

broadening due to crystallite size and lattice microstrain with the implicit

†Crystallite size determined in the present work represents the volume-average [118].
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Figure 3.3: Peak shifts and broadening due to crystal strain [118]. d0 is the
equilibrium spacing.

assumption that peak shapes are Lorentzian.

The total integral breadth (βobs − βinst) can be expressed as [126, 128]:

βtot = 2ζtanθ +
Ksλ

Dcosθ
(3.13)

where 2ζ is the effective lattice microstrain, θ is the Bragg angle, Ks is

the shape factor, λ is the wavelength of the radiation used and D is the

crystallite size.

The right-hand term is classically named after Scherrer.

Ks in fact is not a constant. Its value is usually taken as 1 but it can

range from 0.7–1.70 depending on factors such as the crystallite shape and

the width-measure, whether it is the FWHM or the integral breadth [117].

In the present investigation, since the integral breadth was considered, Ks

value was taken to equal 1.05 [117].
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Figure 3.4: Williamson-Hall plot of the austenite phase in sample Sp9c
transformed at 300◦C and strained up to 0.1 ε.

Equation 3.13 can be re-written as:

βtotcosθ

λ
=

1.05

D
+ 2ζ

sinθ

λ
(3.14)

Plotting equation 3.14 gives the Williamson-Hall plot where the intercept

of the fitted straight line with y axis approximately yields the inverse of the

crystallite size and the slope yields the effective lattice microstrain.

With the assumption that lattice microstrains and fine crystallite size

induce Gaussian peak shape, the following equation assumes that the squares

of the breadths are additive [117, 127]:

β2
tot = (2ζtanθ)2 +

(

1.05λ

Dcosθ

)2

(3.15)

Therefore, equation 3.15 has also been utilised in the current analysis.

Line profiles were fitted to a pseudo-Voigt function using the software

package PHILIPS ProFit. The package allowed a flexible control over the

refinement process and provided a high degree of accuracy in profile fitting

with average minimised R-factor of no more than few tenths per cent.

The minimised R-factor is given by:



3.7 Microstructural Parameters 47

Rmin =

∑

i(yi − yci)
2

∑

i(yi − btot
i )2

(3.16)

where btot
i is the total background intensity. All intensities are in counts.

The pseudo-Voigt function is:

p − V = ηL+ (1 − η)G (3.17)

where L is the Lorentzian component, G is the Gaussian component and η

is the mixing parameter.

During the profile fitting procedure, η was refined to capture the weights of

both components L and G in each peak width. This refinement yielded an

excellent fit; almost all peak shapes observed were a mix of Lorentzian and

Gaussian functions.

3.7 Microstructural Parameters

3.7.1 Sp9c–Transformed at 200◦C

Lattice parameters of both phases, austenite and bainitic ferrite in alloy

Sp9c transformed at 200, 250 and 300◦C were obtained as a function of the

applied plastic strain and up to the fracture point.

In a recently published study on conventional TRIP-aided steels with

the microstructure generally composed of austenite/athermal martensite in

a ferrite matrix, the effect of plastic deformation in uniaxial tension on

austenite and ferrite lattice parameters was not clear [129]. The authors

could not perform a least-squares linear fit to calculated apparent lattice

parameters of observed reflection lines due to nonlinearities.

As shown in figure 3.5(a), in Sp9c transformed at 200◦C, the general

trend of the austenite lattice parameter is that it decreases as a function

of strain. However, after an initial drop in aγ value, aγ seemed to remain

constant at intermediate strains before fracture. As shown in figure 3.5(b), a

similar trend was also observed for aαb
. It was noticeable, however, that aαb

at 0.03 strain level exhibited the highest value in this series of experiments.

In the work of Streicher-Clarke et al., the effect of deformation in biax-

ial tension and plane strain on the austenite and ferrite lattice parameters
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Figure 3.5: Lattice parameter change with strain of the alloy Sp9c trans-
formed at 200◦C.

was found to increase the lattice parameter of both phases as strain in-

creased [129].

It might be possible to relate lattice parameter changes with strain to the

residual stresses which may present. However, an assessment of the residual

stresses in a phase on the basis of the change in its lattice parameter is

arguable [130] and the classical method to determine the state of the phase

is by conducting the sin2ψ analysis method† [118, 131]. Furthermore, in

†Residual stresses are calculated using the expression:
dφΨ−d0

d0
= 1+ν

Ey
σφsin2Ψ −

ν
Ey

(σ11 + σ22), where dφΨ is the d-spacing of the crystal planes oriented at an angle

Ψ to the surface normal, ν is Poisson ratio, Ey is Young modulus, σ11 and σ22 are the
principal stresses parallel to the surface and σφ is the measured stress, in a direction at
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heavily deformed steel structures, diffraction data are normally collected

from anisotropically distorted crystals which make the analysis more difficult

as shall be presented in the following section.

In fact, as far as the austenite phase is concerned, an increase in aγ can

sometimes be ascribed to compositional changes due to selective martensitic

transformation which preferentially takes place in austenite regions with

lower carbon content [60, 132].

According to Sugimoto et al., tensile deformation of low-alloy TRIP-

aided dual-phase steels induces compressive residual stresses in ferrite while

the harder phase, the austenite, was reported to be under tensile residual

stresses [133]. Similar results were also reported by Song et al. where pre-

straining of a steel microstructure with bainitic ferrite as the matrix yielded

residual stresses in both phases [134]. In their work, the amount of com-

pressive residual stresses developed in the bainitic ferrite matrix was lower

than that observed in steels with polygonal ferrite and annealed martensite

matrices. This was ascribed to the smaller amount of the ‘second phase’

(the retained austenite) in the former case. That is to say, these residual

stresses are a result of the interaction of stress fields caused by martensitic

transformation and macrostresses due to plastic deformation.

Streicher-Clarke et al. carried out the sin2ψ analysis to further investi-

gate their observation regarding the increase in the ferrite lattice parameter

with strain [129]. The residual stress state of the austenite phase was not

assessed using this analysis. It was possible to confirm compressive residual

stresses in ferrite parallel to the sheet surface. The increase in apparent

ferrite lattice parameters with effective strain was ascribed to tensile strains

normal to the surface which was attributed to a Poisson effect given the fact

that the stress perpendicular to the sheet surface is zero [129].

The sin2ψ analysis was also performed on samples deformed in uniaxial ten-

sion [129]. Less compressive stress values were observed in comparison with

biaxial tension and plane strain samples, which was explained as a result of

the enhanced accommodation of the ferrite matrix relative to the γ → α
′

an angle φ to σ11. By plotting
dφΨ−d0

d0
vs sin2Ψ, the stress σφ can be calculated if Ey, ν

and d0 are known.
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transformation in uniaxial tension.

Interestingly, Streicher-Clarke et al. suggested the increase in the apparent

austenite lattice parameters with effective strain to be caused by ‘surface

compressive residual stresses’ [129]. The authors admitted the difficulty

associated with having residual stresses with the same sign in both phases.

For the case at hand, it is speculated that the austenite phase was in

tension, however, during the course of straining martensitic transformation

decreased the level of the tensile residual stress [133].

As for bainitic ferrite, the initial increase in aαb
at 0.03 strain could be

explained in terms of the development of tensile strain normal to the sample

surface caused by a Poisson effect, which suggests the bainitic ferrite planes

parallel to the surface being under compression. This is difficult to confirm

without further analysis using the sin2ψ technique.

However, the general trend of aαb
is that it decreases with strain suggesting

increasing the degree of compressive residual stress.

For this particular sample the tensile load was the greatest with strength

above 2 GPa (figure 3.1).

Figure 3.6 shows estimated crystallite sizes and microstrains of austenite

as a function of tensile strain. As expected, the γ crystallite size tends to

decrease with strain †. Figure 3.6(b) represents the austenite-lattice effective

microstrain vs applied macrostrain.

As shown in figure 3.6(b), data at 0.03 ε could not be fitted and in general

there seem no change in the austenite lattice microstrain with macrostrain.

3.7.2 Sp9c–Transformed at 300◦C

As shown in figure 3.7(a), the behaviour of this specimen resembles that

which transformed at 200◦C.

Figure 3.7(b) shows that the bainitic ferrite apparently exhibiting com-

pressive residual stresses with macrostrain, with a slight increase in aαb
at

0.1 ε, presumably due to structural anisotropy.

†Note that in some cases, due to data scattering caused by anisotropies, reflection
lines width could only be fitted assuming Lorentzian or Gaussian peaks profile. Hence
crystallite size range was represented by a single data point.
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Figure 3.6: Microstructural parameters of the retained austenite in alloy
Sp9c transformed at 200◦C vs strain.

As presented in figure 3.8(a), the variation of retained austenite crystal-

lite sizes as a function of macrostrain of steel Sp9c transformed at 300◦C

exhibited a similar trend compared with transformation at 200◦C. However,

the coarser initial grains have a wider range of sizes in comparison with the

latter case. Crystallite size at fracture (0.35 ε) was found to be very fine

7.3–7.6 nm.

Effective microstrain data vs macrostrain were not clear, figure 3.8(b). Fur-

thermore, the regression line in the Williamson-Hall plot for the fractured

specimen’s data could not be fitted.
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Figure 3.7: Lattice parameter change with strain of the alloy Sp9c trans-
formed at 300◦C. (H) represents specimen continuously heated from 35 to
600◦C with 25◦C min−1.

3.7.3 Sp9c–Transformed at 250◦C

As shown in figure 3.9, the austenite and bainitic ferrite in the steel trans-

formed at 250◦C behave differently when compared with steels transformed

at 200 and 300◦C.

As shown in figure 3.9(a), the initial increase in aγ with macrostrain

suggests that austenite is under tension which might be expected. It is also

clear that the lattice parameter value was almost constant in latter stages of

deformation up to failure, presumably caused by martensite transformation.

On the other hand, the results of aαb
were not clear and it is difficult to
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Figure 3.8: Retained austenite microstructural parameters of the alloy Sp9c
transformed at 300◦C vs strain. Data point (H) denotes a specimen which
underwent continuous heating from 35–600◦C with 25◦C min−1–will be dis-
cussed in the following sections.

make a conclusion as to the state of the bainitic ferrite phase.

As shown in figure 3.10, the trends are similar to previous steels trans-

formed at different temperatures. Coherent diffracting domains in austenite

exhibit smaller sizes with greater plastic strain. The experimental results

presented in figure 3.10(b) are not conclusive. However, there might be a

tendency towards lower lattice microstrain in the austenite with higher plas-

tic strain levels. Lattice microstrains calculated from peak broadening do

not give an indication to the nature of the strain whether compressive or

tensile [118].
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Figure 3.9: Lattice parameters change with strain of the alloy Sp9c trans-
formed at 250◦C. (T) indicates that the X-ray specimen has been tempered
at 300◦C for 2 h.

Apparently, any analysis based on the change of the lattice parameter and

or effective lattice microstrain is not sufficient to indicate the state of the

residual stress in a phase within a mixed microstructure. For the austenite

phase for example, considering the rate by which the austenite transforms

into martensite which develops compressive residual stresses in γ, and mi-

crostrains introduced during macrostraining might give a further clue. The

initial state of the phase concerned, and the nature of surrounding phases are

also important parameters. It has been proved that the phases in unstrained

as-transformed steel microstructures are not stress-free [135]. Bainite trans-
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Figure 3.10: Microstructural parameters of the retained austenite in alloy
Sp9c transformed at 250◦C as a function of strain.

formation itself is accompanied by shape and volume changes which is the

case with martensitic transformation. Many parameters have to be taken

into account to understand the overall microstructural behaviour.

3.7.4 Bainitic Ferrite

The overlap of martensite peaks with those of bainitic ferrite may bias

the data obtained via line profile analysis. So, only bainitic ferrite peaks

recorded in the as-transformed unstrained samples were analysed.

Figure 3.11(a) shows the reduction of the average αb crystallite size in

Sp9c as the transformation temperature is lowered . Figure 3.12(a) shows
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a similar trend for alloy Sp10c. This is consistent with previous work re-

ported by Sandvik and Nevalainen [92] and Chang and Bhadeshia [93] using

transmission electron microscopy.
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Figure 3.11: Microstructural parameters of the bainitic ferrite phase in Sp9c
unstrained specimens as a function of transformation temperature.

In figure 3.11(b), the effective lattice microstrains developed in αb during

bainite transformation were higher at lower temperatures. Similar results

were observed in steel Sp10c (figure 3.12(b)). The results in figures 3.11(b)

and 3.12(b) suggest higher dislocation density in bainite formed at lower

temperatures [2].
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Figure 3.12: Microstructural parameters of the bainitic ferrite phase in
Sp10c unstrained specimens as a function of transformation temperature.

Summary

Tensile deformation at ambient temperature leads to complex changes in the

austenite lattice parameter, which can be ascribed to compositional change

and or the presence of residual stresses. Strain-induced martensite relaxes

the stresses in austenite crystals. Bainitic ferrite plates decrease in scale

as transformation temperature is lowered. Transformation at lower tem-

peratures also results in a higher dislocation density. Measured austenite

crystallites were finer as plastic strain increased. Changes in lattice param-

eters and effective lattice microstrains do not reveal the sign of the residual
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stress. Further experimental assessment is thus needed.

Effect of Tempering

The effect of low-temperature tempering (at 300◦C for 2 h) on Sp9c (250◦C)

was presented in figure 3.9. There is an increase in aγ caused by tempering

in both the unstrained and strained (0.1 ε) specimens.

Barbé et al. studied the properties of a laboratory casting of metastable

austenite with a composition similar to that found in TRIP-aided steels [136].

The austenite composition was Fe-1.87C-1.53Mn-1.57Si wt%. Following de-

formation, a heat-treatment at 300◦C for 20 minutes caused aγ to revert to

its pre-deformation value [136]. A similar finding has recently been reported

by Kaputkin et al. [137]. Given the high-silicon content in Sp9c, and the

low tempering temperature, it is unlikely that carbide precipitation took

place [138]. The increase in aγ due to tempering can therefore be explained

in terms of carbon partitioning from αb into γ. On the other hand aαb

decreased by tempering. Partitioning of carbon atoms to austenite during

tempering has been reported by van Genderen et al. [139]. In the current

case, the carbon content in retained austenite using the new value of aγ

yielded 1.33 wt% carbon instead of the previously calculated value of 1.16

wt%.

It is also possible to ascribe the decrease in aαb
to carbon atoms segre-

gation to lattice defects within the bainitic ferrite [140].

The austenite lattice microstrain was found to be nearly unchanged in

both the tempered (0.0102–0.0154) and untempered (0.0082–0.0154) strained

specimens. Austenite crystallite size calculations for the tempered specimen

showed a coarser austenite crystallites of 14–23 nm compared with 10–14

nm in the untempered specimen. It is possible that the tempering process

resulted in the formation of a larger defect-free domains, probably through

dislocation rearrangements.

The same trends were also observed for the unstrained, untempered and

tempered specimens. However, the increase in austenite crystallite size was

greater from 15–29 nm to 25–154 nm upon tempering at 300◦C for 2 h.
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Sp9c Sp10c

Transformed aγ Cγ aγ Cγ

at, (◦C) nm wt% nm wt%

200 0.36087±0.00003 1.00±0.01 0.36114±0.00003 0.91±0.01
250 0.36134±0.00004 1.16±0.02 0.36320±0.00003 1.63±0.01
300 0.36261±0.00003 1.60±0.01 0.36303±0.00002 1.57±0.01

300-3 h+
250-7 h — — 0.36330±0.00004 1.67±0.01

Table 3.4: Carbon content in retained austenite of Sp9c and Sp10c spec-
imens after the completion of the bainitic transformation. Specimens are
as-transformed.

3.7.5 Austenite Carbon Content

The carbon content in austenite was calculated using the following relation-

ship [141–143]:

aγ(nm) = 0.35770 + 0.00065 × C + 0.00010 × Mn

−0.00002 × Ni + 0.00006 × Cr + 0.00056 × N

+0.00028 × Al − 0.00004 × Co + 0.00014 × Cu

+0.00053 × Mo + 0.00079 × Nb + 0.00032 × Ti

+0.00017 × V + 0.00057 × W (3.18)

where concentrations are in at.%.

The calculated carbon contents in the retained austenite in steels Sp9c

and Sp10c heat-treated under various conditions are presented in table 3.4.

The results represent unstrained specimens to avoid confusion from residual

stresses effects.

Despite the increase in bainite that can form at lower temperatures, the

retained austenite does not further enrich, reportedly because of the trap-

ping of carbon in defects in bainitic ferrite [102]. After all, the dislocation

density in bainitic ferrite also increases as the transformation temperature

is reduced [2].

In steel Sp9c, the maximum Cγ was achieved upon transforming at 300◦C.
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This was not the case in steel Sp10c which peaked in Cγ at 250◦C instead

of 300◦C.

Effect of Heating to High Temperature

As shown in figure 3.7, (points marked H), an unstrained Sp9c specimen

transformed at 300◦C was continuously heated from 35 at 25◦C min−1 to

600◦C in a tube-furnace with a dynamic atmosphere of commercial purity

argon. This resulted in the transformation of austenite into ferrite and

carbides with some of the austenite retained with aγ of 0.35867±0.00008

nm corresponding to 0.24 ± 0.03 wt% carbon (figure 3.13).
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Figure 3.13: X-ray diffraction pattern of Sp9c specimen transformed at
300◦C, unstrained, then continuously heated from 35 to 600◦C at 25◦C
min−1. Note that some austenite reflections remain.

The remaining austenite phase fraction was estimated to be 0.075 ±
0.015. The presence of austenite after heating to 600◦C is indicative of the

high resistance against decomposition. aαb
was also found to decrease with

heating to 600◦C, presumably due to carbide precipitation.

In figure 3.8, the observed austenite crystallite size ranged from 8.9–9 nm,

less than the minimum value in the starting microstructure. Nevertheless,

the measured austenite fraction is very small, consequently, it is thought
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that the observation of a smaller crystallite size is a result of experimental

error introduced by only measuring a small number of austenite regions,

rather than being a real physical effect. The effective lattice microstrain

could not be determined for this sample.

3.7.6 Comparison with Alloy Sp10c

Lattice Parameters

Sp10c has a larger aγ relative to alloy Sp9c for the same transformation

temperature, figure 3.14 and table 3.4. This is indicative of greater carbon-

enrichment in the austenite in Sp10c. This is justified since, for the same

transformation period, the content of bainite is greater in the more rapidly

transforming Sp10c.

Figure 3.14(a) shows the decrease in aγ of both Sp9c and Sp10c as the

bainite transformation temperature is lowered.

In figure 3.14(b), aαb
in steel Sp10c was observed to increase steadily

with decreasing transformation temperature. The same trend was observed

for alloy Sp9c with the exception of the specimen transformed at 250◦C. This

lattice parameter increase is consistent with an increase in carbon content.

Lattice Microstrains

Figure 3.15 represents the microstrains in Sp9c and Sp10c as-transformed

samples.

Over the entire transformation temperature range, the higher micros-

train in γ of Sp10c compared with Sp9c is consistent with the austenite lat-

tice parameters in both alloys. The higher austenite microstrains in Sp10c

are therefore due to compositional changes from carbon partitioning into

the austenite.

3.7.7 Lattice Distortion

Figure 3.16 shows the lattice parameters of austenite and bainitic ferrite in

steel Sp10c transformed at 300◦C, unstrained and fractured at 0.376 ε. Two

diffraction patterns were recorded from differently oriented samples of the

fractured steel (figure 3.17). One sample was cut such that, its surface was
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Figure 3.14: Lattice parameter change with bainite transformation temper-
ature of the alloy Sp9c (×) and Sp10c (+). Unstrained specimens.

orthogonal to the loading axis (data marked +). The other was cut with

the characterised surface parallel to the tensile axis (data marked ×).

As shown in figure 3.16, different austenite and bainitic-ferrite lattice

parameters were observed in the fractured specimen depending on the ori-

entation. This suggests heterogeneous lattice distortion caused by the plastic

deformation.

In a recent study on austenitic stainless steel by Taran et al., the ax-
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Figure 3.15: Austenite lattice microstrain vs bainite transformation temper-
ature. Unstrained specimens. (+) and (×) denote Sp9c and Sp10c specimens
respectively.

ial and transverse lattice parameters of the austenite and also those of the

martensite were found not to be identical even in the unstressed condi-

tion [135]. This was attributed to possible deviatoric residual stresses which

may arise as a result of processing. It clearly is difficult to assess lattice

parameters of heavily plastically deformed steel microstructures.

3.7.8 Preferred Orientation

The grains in a steel microstructure may be preferentially crystallographi-

cally oriented due to processing. This texture causes systematic changes in

line intensities in X-ray diffraction patterns [123].

To reduce the effect of texture, a rotating sample holder was used to

enhance grain sampling [144, 145].

Sample oscillation around the diffractometer axis combined with rotation

has been reported to provide better results [146]. Will et al. tested this

method but it did not yield conclusive results [147].

Assuming axial symmetry about the scattering vector, the error due

to texture can be corrected for by determining a single ‘pole-density pro-

file’ [148]. Alternatively, this profile can be modelled using a mathemati-
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Figure 3.16: Lattice parameters change with strain of the alloy Sp10c trans-
formed at 300◦C. Data points marked (+) and (×) represent the specimens
cut perpendicular and parallel to the sample axis respectively.

cal function whose parameters are included and refined in the least-squares

crystal structure refinement procedure embedded in the Rietveld method.

Amongst the available functions proposed in the literature (presented in [148])

March-Dollase function was implemented in the software package PHILIPS

X’Pert Plus since it has been proved to provide a better performance [123,

148, 149]:

PK = (G2
1cos

2ϑ+ (1/G1)sin
2ϑ)−3/2 (3.19)

whereG1 is the refinable parameter and ϑ is the angle between the scattering
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Figure 3.17: X-ray diffraction patterns measured in Sp10c sample trans-
formed at 300◦C and fractured. Two specimens were prepared for diffrac-
tometry; cutting planes of the specimens were orthogonal and parallel to
the sample axis.

vector and the normal to the crystallites.

As previously demonstrated in equation 3.9, equation 3.19 is embedded in

the Rietveld method thereby a mathematical correction for the preferred

orientation problem was possible. As shall be presented in the following

sections, a successful correction process would manifest itself if similar phase

fractions could be obtained using the two apparently different diffraction

patterns shown in figure 3.17.

Estimation of Preferred Orientation Direction

This is necessary for the texture error correction process embedded in Ri-

etveld refinement. The estimation of the planes which are preferentially

oriented parallel to the specimen’s surface, i.e. orthogonal to the scattering

vector, was carried out for each phase by comparing the relative intensities

of the observed peaks with those calculated using standard diffraction pat-

terns published by the International Union of Crystallography.

Ideally, texture parameters are determined using the classical pole figure,

however, this is very time consuming.
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Allowing for preferred orientation refinement resulted in a very signifi-

cant reduction in the value of GOF therefore a proper fitting of the observed

diffraction patterns was possible.

Using the refined lattice parameters of austenite and bainitic ferrite, a

further investigation was carried out using the method proposed by Dick-

son [150] for the estimation of texture parameters.

For bainitic ferrite αb, a texture parameter P ∗
αb

in a dual-phase mi-

crostructure (αb and γ) may be defined as:

P ∗
hklαb

=
Ihklαb

/Rhklαb

1
nαb

∑nαb
0 (Iαb

/Rαb
) + 1

nγ

∑nγ

0 (Iγ/Rγ)
(3.20)

where Ihkl is the integrated intensity of the hkl reflection, n is the number

of phase peaks observed and Rhkl is a factor given by:

Rhkl =

(

1

V2

) (

|FK |2p(1 + cos22θ

sin2θcosθ
)

)

(e−2M ) (3.21)

where V is the unit cell volume, p is the multiplicity factor, ( 1+cos22θ
sin2θcosθ

) is the

Lorentz-polarisation factor and e−2M is the temperature factor.

Although there was uncertainty in the texture history of the manufac-

tured tensile test samples, all cut samples shared identical orientation in the

as hot-rolled steel.

Using Dickson’s method, the texture parameter P ∗ for each reflection

line could be determined as presented in tables 3.5, 3.6 and 3.7.

As shown in tables 3.5 and 3.6, the highest values for P ∗ were observed

for {110}αb
and its higher order reflection {220}αb

at 0.1 ε and fracture

strain.

Unlike the samples which underwent bainite transformation at relatively

higher temperatures, the alloy transformed at 200◦C was observed to possess

the highest values for the texture parameter in the {110}αb
and the {211}αb

reflection lines at 0.03 engineering strain and fracture strain.
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P ∗

Engineering strain 0 0.01 0.03 0.1 0.348 (F)

{111}γ 0.42 0.30 0.32 0.39 0.34
{110}αb

0.63 0.77 0.81 1.11 1.54
{200}γ 0.37 0.33 0.43 0.25 0.06
{200}αb

0.56 0.78 0.48 0.43 0.16
{220}γ 0.46 0.29 0.30 0.13 NA
{211}αb

0.66 0.69 0.71 0.57 0.30
{311}γ 0.36 0.27 0.42 0.19 NA
{222}γ 0.36 0.23 0.23 0.31 0.16
{220}αb

0.58 0.63 0.65 0.87 1.26

Table 3.5: Variation of texture parameter of reflection lines of the alloy Sp9c
transformed at 300◦C with strain. ‘F’ denotes fractured.

P ∗

Engineering strain 0 0.01 0.03 0.1 0.175 (F)

{111}γ 0.33 0.25 0.30 0.28 0.34
{110}αb

0.74 0.91 0.98 1.36 1.37
{200}γ 0.28 0.24 0.25 0.12 0.10
{200}αb

0.72 0.81 0.68 0.44 0.28
{220}γ 0.28 0.25 0.18 0.07 NA
{211}αb

0.78 0.71 0.69 0.59 0.40
{311}γ 0.24 0.18 0.17 0.08 0.02
{222}γ 0.21 0.15 0.22 0.15 0.20
{220}αb

0.68 0.71 0.76 1.06 1.07

Table 3.6: Variation of texture parameter of reflection lines of the alloy Sp9c
transformed at 250◦C with strain.
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P ∗

Engineering strain 0 0.01 0.03 0.046 (F)

{111}γ 0.34 0.28 0.20 0.28
{110}αb

0.72 0.89 1.08 0.99
{200}γ 0.34 0.24 0.05 0.07
{200}αb

0.68 0.82 0.77 0.74
{220}γ 0.35 0.25 NA 0.13
{211}αb

0.67 0.72 0.92 0.89
{311}γ 0.32 0.18 0.07 0.10
{222}γ 0.31 0.18 0.07 NA
{220}αb

0.59 0.67 0.82 0.81

Table 3.7: Variation of texture parameter of reflection lines of the alloy Sp9c
transformed at 200◦C with strain.

3.8 Microstructural Evolution

3.8.1 Phase Fractions

Since the austenite is partly responsible for the enhanced mechanical proper-

ties, its volume fraction was quantified as a function of plastic deformation.

As previously mentioned, preliminary data revealed errors in peak rel-

ative intensities. The volume fraction of austenite in strained samples was

therefore estimated using the Rietveld method combined with the preferred

orientation correction. For comparison, the method proposed by Dickson

was also used [150].

According to Dickson, phase fractions of a multi-phase system could be

calculated making use of the following relationship [150]:

Vγ

Vαb

=

1
nγ

∑nγ

0 (Iγ/Rγ)

1
nαb

∑nαb
0 (Iαb

/Rαb
)

(3.22)

It is apparent that a stronger reflection from a preferentially oriented line will

lead to erroneous results. For example, one may calculate volume fractions

of γ and αb using the first doublet, i.e. {111}γ and {110}αb
. However, in

case of heavily deformed specimens, as presented in tables 3.5, 3.6 and 3.7,

this will clearly lead to under-estimation of the austenite content. Dickson

suggested that using higher order austenite and ferrite reflection lines is
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unnecessary in the analysis.

Dickson’s method offers good statistics if the number of Bragg reflec-

tions provided for analysis is sufficiently large and representative of the mi-

crostructure and captures all major components of the texture, if present.

On the other hand, a crucial difference between Rietveld and Dickson’s

methods is that the former deals with preferred orientation mathemati-

cally through modelling the pole-density profile. The algorithm by which

the phases in a multi-phase structure are quantified can be consulted else-

where [151].

Experimental Findings

Figure 3.18 represents the evolution of the austenite phase as a function

of engineering strain in steel Sp9c transformed at 200, 250 and 300◦C us-

ing Dickson’s and Rietveld methods. Note that the error bars of the data

calculated using Dickson’s method are too small to be visible.

Within experimental error, it is surprising that both methods yield com-

parable results, although Dickson’s method resulted in a higher austenite

volume fraction at fracture for all transformation temperatures.

Figure 3.19 presents the retained austenite volume fraction in alloy Sp10c

subsequent to the completion of bainite transformation. With the exception

of the values obtained at 300◦C, the agreement between Dickson’s and Ri-

etveld methods is evident.

Figure 3.19 clearly shows the higher volume fraction of bainitic ferrite

obtained when transformation temperature is lowered. Nevertheless, when

transformation took place at 200◦C, there seem to be no significant change

in phase fractions, presumably due to the fact that transformation kinetics

are indeed slower at lower temperatures.

Dickson’s and the Rietveld methods were applied to the diffraction pat-

terns presented in figure 3.17. Since they represent the same sample, identi-

cal phase fractions should be obtained. Results are presented in figure 3.20.

As shown, the estimation of Vγ using Rietveld method led to more close

values compared with the case when Dickson’s method was applied.



3.8 Microstructural Evolution 70

 0

 0.1

 0.2

 0.3

 0.4

 0  0.01  0.02  0.03  0.04  0.05

V
γ

Engineering Strain

Dickson
Rietveld

(a) Sp9c transformed at 200◦C

 0

 0.1

 0.2

 0.3

 0  0.05  0.1  0.15  0.2

V
γ

Engineering Strain

Dickson
Rietveld

(b) Sp9c transformed at 250◦C

 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4

V
γ

Engineering Strain

Dickson
Rietveld

(c) Sp9c transformed at 300◦C

Figure 3.18: Evolution of the volume fraction of retained austenite Vγ with
strain in steel Sp9c.
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Figure 3.19: Volume fraction of retained austenite in alloy Sp10c trans-
formed at different temperatures. No deformation was applied.
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Figure 3.20: Volume fraction of the retained austenite in Sp10c bainitic
structure transformed at 300◦C vs strain. Solid data points represent austen-
ite volume fraction estimated using a specimen cut parallel to the sample
axis.

3.9 Stacking Faults

Peak shifts in X-ray diffraction patterns may arise as a result of systematic

and random errors, compositional changes, residual stresses and stacking

faults formed within the austenite phase. Nevertheless, it is well-known

that the deformation of low-stacking fault energy phases such as the high-

carbon austenite in steels leads to a high density of stacking faults [136].

Given the high-carbon concentration in the steels studied in the present
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work, such relative austenite peak shifts was expected.

Warren has developed a method by which, the probability of deformation-

fault formation between two FCC (face-centred cubic) crystal layers can be

calculated. The method makes use of the observed angular peak shifts in a

diffraction doublet, namely {111}γ and {200}γ , with deformation [152].

It follows that:
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Figure 3.21: {111}γ and {200}γ doublet shifts as a function of strain.

∆(2θ200 − 2θ111) =
−90

√
3αp

π2

(

tanθ200
2

+
tanθ111

4

)

(3.23)

where αp is the probability of stacking fault formation on {111}γ planes.

As shown in figure 3.21, angular shifts between {111}γ and {200}γ Bragg

reflections were observed. It is apparent that the separation between the two
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Figure 3.22: The average number of FCC-crystal atom layers (1/αp) between
stacking faults estimated as a function of strain.

reflection lines decreased with deformation and it is systematic in the sense

it decreases more with further straining. Figure 3.21 clearly shows these

systematic shifts. However, only in alloy Sp9c transformed at 300◦C the

separation between the {111}γ and {200}γ doublet tended to increase ini-

tially. After further deformation, namely at 0.03 strain, the doublet started

to move towards each other.

Figure 3.22 represents the estimated 1/αp value for the austenite in steel

Sp9c at different strain levels. It is clear from figure 3.22(a) that, plastic

deformation has increased the probability of stacking fault formation. Fig-

ure 3.22(b) shows that in alloy Sp9c transformed at 200◦C, when strain
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was increased from 0.01 to 0.03, the number of {111}γ layers between two

stacking faults in austenite crystal decreased from 58 to 30. The data point

at fracture strain might be caused by experimental error. A further TEM

examination could confirm the formation of deformation faults in the austen-

ite.

3.10 Summary

The use of X-ray diffractometry has enabled a detailed characterisation of

the steels investigated. Similar reports in the literature are almost absent,

especially regarding fully bainitic steels. The following points may be sum-

marised:

1. It was observed that a finer structure is obtained as the bainite trans-

formation temperature is lowered.

2. By transforming at lower temperatures, the dislocation density in

bainite increases. This was manifested in a lesser degree of carbon-

enrichment in the austenite.

3. Texture and lattice distortions were observed in heavily deformed

steels. This, unless taken into account, may lead to an erroneous

assessment of phase fractions and, in the case at hand, their carbon

contents.

4. Tempering at 300◦C for 2 h caused carbon partitioning from the bainite

to the retained austenite. No clear evidence was observed which might

suggest crystal relaxation.

5. It has been demonstrated that stacking faults are induced in the

austenite as a result of plastic deformation.



Chapter 4

Mechanical Properties

4.1 Introduction

The objective of the work presented here is to characterise the mechanical

behaviour of the novel carbide-free bainitic steels. An interesting develop-

ment has been the adoption of a strain-aging process. Steel performance is

compared with published data from other types of steels.

4.2 Overview

Earlier work on carbide-free bainitic steels demonstrated promising combi-

nations of strength and toughness [15, 20, 91, 92, 96, 97, 106, 107]. The ob-

served enhanced properties were ascribed to the carbide-free microstructure

which featured fine platelets of bainitic ferrite distributed in a finely-divided,

carbon-enriched austenite matrix. Continuous yielding and a high work-

hardening rate during tensile testing are characteristics of this microstruc-

ture. The reasonably stable retained austenite transforms in a progressive

manner into martensite upon deformation. Since the transformation is ac-

companied by a shape and volume change, dislocations are generated and

inherited by the ferrite [153], leading to strengthening and work-hardening,

thereby delaying necking [61].

Table 4.1 shows preliminary results where, for example, the Sp10c sample

transformed at 300◦C exhibited total elongation of 37.6 % for a yield strength

of 1130 MPa. On the other hand, there is a decrease in ductility as strength

increases, particularly for samples transformed at lower temperatures.
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Bainite YS TS UE TE YR
Steel transformation (◦C) MPa MPa % %

Sp9c 200 1193 2183 4.6 4.6 0.55
Sp9c 300 1030 1729 29.8 34.8 0.6
Sp10c 300 1130 1675 27.4 37.6 0.67
Sp11c 250 1620 2078 5.1 16 0.78

Table 4.1: Tensile properties at room temperature. The cross-head speed
was 0.01 mm min−1. The elongation is for a gauge length of 10 mm. YS
is the yield strength (0.2% proof strength); TS the tensile strength; UE the
uniform elongation; TE the total elongation and YR the yield ratio which
is YS/TS.

The yield ratio, a lower value of which may result in better fatigue re-

sistance, was the lowest for the steel transformed at 200◦C with a value of

0.55. Sp9c and Sp10c transformed at 300◦C exhibited similar mechanical

behaviour given the similarities in chemical composition.

The objective of the work presented here was to enhance the mechanical

properties further.

According to the data in table 3.4, the retained austenite was not further

enriched in carbon as the transformation temperature is lowered to 200◦C.

This observation is because of carbon trapping in bainitic ferrite [102]. It

would therefore be interesting to see how the microstructure and properties

respond to low-temperature strain-aging treatments.

4.3 Experimental Procedures

Uniaxial tension tests on 5 mm diameter and 25 mm gauge length specimens

were carried out at room temperature with a cross-head speed of 0.01 mm

min−1 corresponding to a strain rate of 6.66×10−6 s−1. Strain-aged samples

were pre-strained to 2.5, 5 and 10% engineering strain followed by tempering

at 300◦C for 2 h. In some cases the samples were first tempered at 300◦C

for 2 h followed by straining.

The stress-strain curves were recorded during pre-straining, permitting

changes in the yield strength to be monitored on the same sample before

and after the strain-aging process.
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Figure 4.1: Engineering stress-strain curves of as-transformed samples.

YS TS UE TE YR Vγ0

Sample MPa MPa % %

Sp9 800 1853 26.3 27 0.43 0.39
Sp10c 1110 1680 30.3 33.4 0.66 0.4
Sp11c 1283 1641 15.4 20.7 0.78 0.28

Table 4.2: Properties of steels presented in figure 4.1.

4.4 Mechanical Behaviour

4.4.1 As-transformed Structures

Structures Transformed at 300◦C

Figure 4.1 shows tensile curves for samples transformed at 300◦C for 6 h.

Almost all the large elongations observed were uniform with only a minor

tendency to neck in Sp10c and Sp11c just before fracture (figure 4.2).

Strain-hardening was assessed by determining the incremental hardening

exponent nincr [154]:

nincr =
dlnσt

dlnεt
(4.1)

where σt is the true stress and εt the true strain.
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Figure 4.2: Samples corresponding to the tensile curves presented in fig-
ure 4.1 fractured in uniaxial tension.
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The work-hardening behaviour of the samples shown in figure 4.1 is pre-

sented in figure 4.3. Although sample Sp11c exhibited the highest yield

strength (table 4.2), the work-hardening rate in the early stages of defor-

mation was the lowest. Therefore, it is anticipated that the increase in the

YS of steel Sp11c is a result of the higher bainite volume fraction. The

work-hardening rate of sample Sp9 was the highest in early stages of tensile

deformation (figure 4.3), presumably resulting in a greater TS compared

with Sp10c given the similar Vγ0. It is possible that this is because the

retained austenite in Sp9 is less stable to strain-induced martensitic trans-

formation. Using a published austenite mechanical stability model [155],

the driving force for martensite transformation ∆Gα
′
γ in steels Sp9, Sp10c

and Sp11c was calculated and found to be 1210, 1430 and 2008 J mol−1

respectively. This explains the better elongation exhibited by steel Sp10c

when compared with Sp9. In this context, the ductility of steel Sp11c could

have been the best given its austenite chemical stability, only at constant

Vγ0.
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Figure 4.3: nincr vs true strain curves of the as-transformed samples shown
in figure 4.1. The straight line represents the instability criterion where
uniform true strain is equivalent to nincr.
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Figure 4.4: Engineering stress-strain curves of Sp10c steels transformed into
bainite at different temperatures.

Stepped Transformation

Transformation was is some cases conducted in two steps, at 300◦C for 3 h

followed by treatment at 250◦C for 7 h. The retained austenite content was

found to be similar to when the steel was transformed at 300◦C for 6 h with

volume fractions 0.37 and 0.4 respectively. Transformation solely at 250◦C

resulted in a lower fraction of 0.28. Nevertheless, the carbon content in

the retained austenite after the 2-step transformation process was relatively

high, see table 4.3.

Figure 4.4 compares the tensile properties due to the different heat-

treatments. The stepped heat-treatment results in intermediate properties,

both in terms of the proof strength and total elongation (table 4.3). How-

ever, if the strength-ductility balance is considered, the steel transformed at

300◦C for 6 h outperforms the step-transformed steel.

Clearly the 300/250◦C sample exhibited inferior elongation. The result

is surprising because the austenite in the doubly heat-treated sample has a

greater concentration of carbon than for the 300◦C sample. It is expected

that the stepped steel would possess finer bainitic ferrite laths containing
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Transformation YS TS UE TE YR Vαb
Vγ Cγ

temperature (◦C) MPa MPa % % wt%

300 1110 1680 30.3 33.4 0.66 0.6 0.4 1.573
250 1447 1999 8.7 10.9 0.72 0.72 0.28 1.632
300-250 1135 1686 14.4 17.2 0.67 0.63 0.37 1.667

Table 4.3: Mechanical properties of steel Sp10c transformed at different
temperatures.

more defects and a greater amount of trapped carbon compared with the

300◦C sample. In the as-transformed condition, X-ray results reveal bainitic

ferrite crystallite sizes of 14–164 and 19–68 nm for the stepped and 300◦C

samples respectively.

As for the sample transformed at 250◦C for 15 h, there is a significant loss

in elongation at much greater strength.

As shown in figure 4.5, the stepped sample and that transformed at 250◦C

both experienced slightly higher strain-hardening during the early stages

of deformation compared with the structure transformed at 300◦C. How-

ever, the latter sample exhibited better strain-hardening at latter stages of

deformation, consequently postponing the onset of necking to larger strains.

To summarise, the 2-step transformation procedure apparently did not

enhance the strength compared with the 300◦C specimen. The phase frac-

tions are quite similar so it is concluded that the more ductile bainite in the

sample transformed at 300◦C contributed to its high elongation.

Structures Transformed at Lower Temperatures

Figures 4.6 and 4.7 show the mechanical test results for samples transformed

at lower temperatures.

Firstly, higher strength levels are achieved, although at the expense of elon-

gation.

An interesting observation is that Sp10c is more ductile compared with

Sp11c which exhibited necking at an early stage of deformation (table 4.4).

Both steels Sp10c and Sp11c transformed at 250◦C exhibited similar ini-



4.4 Mechanical Behaviour 82

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

n i
nc

r

True Strain

Sp10c-300oC-6h
Sp10c-250oC-15h

Sp10c-300oC-3h-250oC-7h

Figure 4.5: nincr vs true strain curves of the as-transformed Sp10c samples
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Figure 4.6: Stress-strain curves of steels transformed into bainite at rela-
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YS TS UE TE YR Vαb
Vγ Cγ

Sample MPa MPa % % wt%

Sp10c-250◦C-15 h 1447 1999 8.7 10.9 0.72 0.72 0.28 1.632
Sp11c-250◦C-15 h 1577 2072 4 7.4 0.76 – – –
Sp9c-200◦C-3 d 1193 2183 4.6 4.6 0.55 0.67 0.33 1.001

Table 4.4: Mechanical performance of steels presented in figure 4.6.
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Figure 4.7: nincr vs true strain curves of the as-transformed samples shown
in figure 4.6.

tial work-hardening (figure 4.7). On the other hand, Sp9c steel transformed

at 200◦C although contained slightly higher austenite volume fraction, it

is carbon content was remarkably low which apparently resulted in a non-

progressive austenite transformation (figure 4.7).

4.4.2 Tempered Bainitic Structures

Tempering of the as-transformed steels (transformed at 300◦C for 6 h and

air-cooled to room temperature) was carried out at 300◦C for 2 h.

As discussed earlier, tempering of Sp9c steel transformed at 250◦C resulted

in an increase in austenite lattice parameter, presumably due to carbon par-

titioning. A slight decrease in αb lattice parameter was observed. Thermal
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Figure 4.8: Engineering stress-strain curves of steels in the as-transformed,
and transformed and tempered. Tempering was carried out at 300◦C for 2
h.

signals were observed during tempering using differential scanning calorime-

try†. It is therefore expected that tempering should have an influence on

mechanical properties.

Within experimental error, it is apparent from figure 4.8 that tempering

bainitic steels generated at 300◦C has no major impact on tensile properties.

The proof strength of sample Sp9 has increased from 800 to 939 MPa af-

ter tempering with a consequent increase in the yield ratio from 0.43 to 0.51.

No similar observations were found in Sp10c nor Sp11c steels. Figure 4.9

shows that the strain-hardening behaviour of steel Sp9 was comparable be-

fore and after tempering.

Nevertheless a series of sharp fluctuations in the nincr value has been

observed (arrowed in figure 4.9). It is important to note that the relatively

low rate of strain applied during the test combined with the high data-

acquisition rate enabled recording such details. It is interesting that no

local necking has been observed in the sample after fracture and therefore

the observed sharp decrease in work-hardening might be ascribed to jerky

†See appendix A.
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Figure 4.9: nincr vs true strain curves of Sp9 and Sp9-tempered steels pre-
sented in figure 4.8. Arrow points to a sharp variations in nincr.

transformation plasticity. Such features were largely smoothed as a result

of tempering, presumably due to the greater austenite stability which yields

a more progressive transformation.

4.4.3 Strain-aged Structures

Strain-aging of bainite has previously been reported by Kalish et al. [156,

157] and Fondekar et al. [158]. The process involves plastic deformation of

the as-transformed bainitic structure preceded and or followed by tempering.

Kalish et al. used a steel of the composition 0.39C-0.25Mn-1Si-5.25Cr-

1.39Mo-0.54V, austenitised at 1010◦C for 30 min then transformed at 288◦C

for 4 h [156]. Tempering was then carried out at 288◦C for 1 h. The strip

was then rolled at room temperature such that the thickness was reduced

by 3.5%. The steel was then re-tempered.

A huge increase in the yield strength from 827 to 1896 MPa was observed

as a consequence of the thermomechanical processing. However, at that

strength level, the elongation dropped from 12 to 5%. Tensile strength was

found to slightly increase from 1896 to 1965 MPa.

Due to transformation, about half of the retained austenite content (33→16%)
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decomposed at 2% plastic strain in uniaxial tension [156], indicating con-

siderable austenite instability. For comparison, Sp9c transformed at 250◦C

for 15 h and tempered at 300◦C for 2 h, lost half of the retained austenite

from 26 to 13% when 10% strain was applied. As such, the ductility of

strain-aged steels would be a concern.

Apparently, there is no current research regarding the development of

modern bainitic steels with the strain-aging process implemented.

Strain-aging of the as-transformed structures involved straining in uni-

axial tension (ε ≤ 0.1) then tempering. In some cases, tempering prior to

deformation was also applied. Tempering was conducted at 300◦C for 2 h.

Performance of Steel Sp9 Transformed at 300◦C

The elongation decreases following strain-tempering (figure 4.10), proba-

bly because of the reduction in retained austenite content. It is interesting

that for the sample strained ε = 0.05, the ductility ‘recovered’ considerably

following tempering suggesting that austenite fraction is not the only con-

trolling parameter. The improvement in elongation was also accompanied

by an increase in proof strength of about 100 MPa (table 4.5). Similarly,

proof strength was greater in case of tempering alone, and also in the case

where it was followed by strain-aging. Note that in both cases the tensile

strength was almost unaffected.

The better elongation achieved following strain-tempering may relate to a

greater mechanical stability of the austenite. For example, steel Sp9c trans-

formed at 250◦C and strained to 0.1 ε exhibited an increase in austenite

lattice parameter from 0.36247±0.00006 to 0.36282±0.00003 nm upon tem-

pering. The bainitic-ferrite lattice parameter was found to decrease from

0.2868±0.00002 to 0.28673±0.00002 nm, indicating carbon partitioning from

αb to γ. Lattice relaxation is believed to be unlikely given the low tempera-

ture at which tempering was carried out. Another contribution might arise

from the bainitic ferrite recovery. In the above steel, the αb lattice micros-

train decreased from 0.016–0.0241 to 0.0135–0.0204 upon tempering.

The tempered strain-induced martensite may have also contributed to the

enhanced ductility. On the other hand, for the tempered-strain-aged sam-
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YS (before deformation) YS TS UE TE
Process MPa MPa MPa % %

0.05ε 733 1681 1872 12.7 13.2
0.05ε-t 731 1789 1866 20.6 23.6
t-0.05ε-t 825 1851 1881 16.4 20.2
0.1ε-t 740 1999 2047 1.6 5.8

Table 4.5: Mechanical properties of Sp9 transformed at 300◦C for 6 h. ‘t’
stands for tempering.

ple, elongation was less than that of the strain-aged sample. It is speculated

that this might be due to a lower austenite fraction, however, this requires

further experimental confirmation.

As shown in figure 4.10(a), as the degree of pre-strain is increased, although

elongation decreases the strength increases.

Table 4.5 shows that the best strength-ductility balance is achieved in the

0.05 strained and tempered sample. Therefore, it was possible to increase the

proof strength from 731 to 1789 MPa without considerable loss in ductility.

As shown in figure 4.10(b), the stress-strain curves of the strain-aged

samples was not smooth, exhibiting a sequence of local necking events

(shown in figure 4.12).

Figure 4.11 shows the strain-hardening data. As shown in figure 4.11(a),

the as-transformed sample is characterised by a plateau of nincr at about 0.2.

Upon further straining, the structure is continuously, however slightly, hard-

ened presumably via martensitic transformation up to the onset of necking.

On the other hand, the pre-strain sample exhibited a different behaviour.

Clearly strain-hardening lagged behind that of the as-transformed sample.

Comparison with Sp10c and Sp11c

Comparative data are presented in table 4.6. For same processing route,

Sp10c is weaker than Sp9 and Sp11c, however, Sp10c exhibited the best

elongation. It is remarkable the poor ductility exhibited by steel Sp11c after

strain-tempering. As previously presented in table 4.2, steel Sp11c in the as-

transformed condition possessed a relatively lower austenite volume fraction

when compared with Sp10c for instance. Therefore, it is anticipated that



4.4 Mechanical Behaviour 88

 0

 500

 1000

 1500

 2000

 0  0.05  0.1  0.15  0.2  0.25  0.3

E
ng

in
ee

rin
g 

S
tr

es
s,

 M
P

a

Engineering Strain

Sp9 transformed at 300oC for 6 h

As-transformed
Prestrained 0.05ε

Prestrained 0.05ε-t
Prestrained 0.1ε-t

t-prestrained 0.05ε-t

(a)

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 0  0.05  0.1  0.15  0.2  0.25  0.3

E
ng

in
ee

rin
g 

S
tr

es
s,

 M
P

a

Engineering Strain

Sp9 transformed at 300oC for 6 h

As-transformed
Prestrained 0.05ε

Prestrained 0.05ε-t
Prestrained 0.1ε-t

t-prestrained 0.05ε-t

(b)

Figure 4.10: Stress-strain curves of steel Sp9 for various processing routes.
(b) Shows the features following strain-aging.
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(a) Sample Sp9 transformed at 300◦C then strain-aged. Mechanical
behaviour is shown in (b). Arrow points to a ‘local’ neck.
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Figure 4.12: The mechanical performance of the sample shown in (a) during
uniaxial tension.
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this could be an explanation for the very low elongation obtained following

the strain-tempering process.

The work-hardening behaviour is shown in figure 4.13.

Sample Strain level YS (MPa) UE (%) YR

Sp9 0.05 1789 20.6 0.96
Sp10c 0.05 1717 23.1 0.97
Sp10c 0.026 1660 26.4 0.98
Sp11c 0.023 1736 1.2 0.99

Table 4.6: Mechanical behaviour of different steels transformed at 300◦C for
6 h then strain-tempered.
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Figure 4.13: Variations in nincr with true strain of structures transformed
at 300◦C then strain-aged. Arrow points to a softening behaviour.

Steels Transformed at Lower Temperatures

As shown in figure 4.14(a), the structure of Sp9 steel strain-aged by applying

0.025 strain and tempering following transformation at 250◦C showed yield

strength of 2121 MPa. Same material transformed at 300◦C, pre-strained

with double the strain level and tempered yielded only 1789 MPa YS. The

loss of uniform elongation was also evident, decreasing from 20.6 in the latter
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to 3.1 % in the former.

Figure 4.14(a) shows proof strength levels obtained in steels Sp10c and

Sp11c similar to that obtained in the strain-aged Sp9 steel. Nevertheless,

the stress-strain curves of the former alloys, although they underwent similar

processing, were remarkably different. The curves for Sp10c and Sp11c

samples in the as-transformed condition are shown for comparison.

As shown in figure 4.14(b), due to the very small uniform elongation

obtained in steels Sp10c and Sp11c, strain-tempered, the work-hardening

behaviour could not be distinguished from that observed in the alloy Sp9.

However, it is postulated that the lack of sufficient work-hardening in the

former steels to be responsible for the premature failure.

To summarise, as far as the strength-ductility balance is concerned, it

is apparent that the strain-aging process was beneficial especially in steels

transformed at 300◦C. Applying the strain-aging process on steels trans-

formed at 250◦C resulted mainly in an increase in proof strength on the

expense of ductility. Nevertheless, the large yield strength values obtained

(above 2 GPa) in that type of low-alloy steel are remarkable. For industrial

applications where the focus is on providing a material with exceptional

strength, applying strain-aging on steels transformed at lower temperatures,

i.e. 250◦C for example, would be beneficial and sufficient to provide mate-

rials with YS well above 2 GPa. In that sense, the use of steel Sp11c would

be an advantage.

Figure 4.15 exhibits an overall summary of the mechanical performance of

the studied steels as a result of applying different processing routes. In

particular, the illustration demonstrates the advantage of the strain-aging

process in terms of achieving higher yield strength without scarifying duc-

tility.

4.4.4 Comparison with Other Steel Classes

It was believed beneficial to hold a comparison in terms of mechanical per-

formance between steel systems developed in the present work with those

currently under development by many research groups. In particular, steel

data of a newly developed process, quenching and partitioning (Q&P) de-
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veloped by Speer and co-workers is included [9, 10].

Figure 4.16 clearly demonstrates the potential of the steels developed in

the present work with a superior combination of strength and ductility.
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Figure 4.16: A comparison between steels developed in the present work
with those types reported in the literature. Except for bainitic steel data,
data regarding other steel types were collected from the work of Speer et
al. [10]. ‘1’ denotes 80 mm gauge length; ‘2’ approximately 25 mm gauge
length and ‘3’ unspecified gauge length.
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4.5 Summary

The mechanical behaviour of the bainitic steels studied here, both in the

as-transformed and strain-aged condition, have been characterised. The

effect of tempering of the as-transformed steels on mechanical performance

was also presented. The steels exhibited excellent combinations of strength

and ductility owing to the novel carbide-free nanostructure and the stable

retained austenite.

Mechanical properties have been improved further through the adoption

of the strain-aging process. With the exception of the Sp11c steel, when

strain-aging process is applied to bainitic structures transformed at 300◦C,

the yield strength surpassed that exhibited by steels transformed at low

temperatures such as 200◦C. The former steels also showed far superior

uniform elongation than the latter. This is an important achievement since

the total processing time would be greatly reduced given the period needed

to transform bainite at very low temperatures.



Chapter 5

Study of The Mechanical

Behaviour Using in situ

Neutron Diffraction

5.1 Introduction

As already described, microstructural changes and martensitic transforma-

tion take place during the deformation of bainitic steels containing retained

austenite. These changes are directly responsible for the observed macro-

scopic mechanical behaviour and can in principle be followed during the

course of deformation, using neutron diffraction.

5.2 Experimental Procedures

The use of neutrons yields better counting statistics since the considerable

penetration power enables a greater volume of material to be assessed. The

strain measurement instrument ENGIN-X at the ISIS neutron spallation

source was used in the current investigation. Cylindrical samples of 5 mm

diameter were deformed in uniaxial tension whilst subjected to a neutron

beam. Diffraction spectra were recorded as the applied load was stepped

up.

After macroscopic yielding, a position-control mode was implemented during

continued deformation. The loading axis was aligned at 45◦ to the incident

neutron-beam, as shown in figure 5.1.
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Diffracted beam

Uniaxial tension

Incident neutron beam

Slits

Detector bank 2

Q

Q

Bank 1 (PSD)

t

a

Figure 5.1: Geometric arrangement for in situ measurements in uniaxial ten-
sion using neutron diffraction. Qa and Qt denote the parallel and transverse
scattering vectors respectively.

Two position sensitive detectors (PSD) were used to record time-resolved

diffraction patterns at fixed scattering angles ±90◦ to the incident beam.

Diffraction spectra were therefore acquired both parallel and transverse to

the load axis.

The technique provides a volume average elastic strain measurement of

aggregates of grains with identical orientation.

The primary objective of the work present in this chapter was to study

the potential influence of the strain-aging process on microstructure and

consequently mechanical behaviour. As has been outlined in Chapter 3, pre-

ferred orientation was observed to evolve as plastic deformation proceeded.

As shown in figure 5.1, the use of in situ neutron diffraction instrument

equipped with 2 PSDs in the shown arrangement allowed further investiga-

tion of this point.

A neutron spallation source provides pulses of neutrons with a continuous

spectrum of wavelengths. The wavelength of a detected neutron is deter-

mined by the time-of-flight (t) from the moderator to the detector [159]:
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λ = ht/mnLn (5.1)

where h is Planck’s constant, t is the time-of-flight, mn is the neutron rest-

mass and Ln is the neutron flight-path.

Three fully bainitic samples were investigated from alloy Sp10c. Sam-

ple S1 was transformed into bainite at 300◦C for 6 h, and then subjected

to uniaxial tension at room temperature to 2.5% engineering strain, with a

cross-head speed of 0.1 mm min−1. The sample was subsequent tempered

at 300◦C for 2 h.

For comparison, sample S2 was transformed at 300◦C for 6 h without im-

plementing the strain-tempering process.

Sample S3 was a tempered microstructure where bainite transformation was

carried out at 200◦C for 3 d followed by tempering at 300◦C for 2 h. Dur-

ing the course of the experiments, samples S1 and S2 were deformed to the

failure point whereas S3 was loaded beyond yield and then unloaded due to

beam failure. Nevertheless, sample S3 was not expected to withstand large

plastic strains (Chapter 4).

A single peak fitting approach was used in the data analysis by which

peak position and intensity could be determined.

5.3 Preferential Transformation and Evolution of

Texture

The macroscopic mechanical behaviour of the three samples is shown in

figure 5.2.

Figure 5.3 shows axial and transverse spectra of S1 at zero-load and just

before fracture. Figure 5.3(a) represents the axial diffraction spectrum at

zero-load and at 0.126 ε.

Given the high degree of deformation, it is evident that the {220}γ re-

flection has completely disappeared whereas {200}γ and {311}γ are barely

visible. {111}γ was considerably weakened. This is associated with the for-

mation of strain-induced martensite. The austenite grains transform into

martensite in a preferential manner depending on crystallographic orienta-
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Figure 5.2: Macroscopic engineering stress-engineering strain curves ac-
quired during diffraction. Note that the mechanical behaviour confirms that
previously reported in Chapter 4.

tion. Therefore, there can be specific austenite reflections which are more

sensitive to plastic deformation in the sense that their respective grains are

more prone to martensite transformation [160]. It is believed that marten-

site peaks overlap with those from bainitic ferrite, for example, {110}α′

and {101}α′ with {110}αb
reflection. Given the fineness of the structure

(Chapter 3), peak broadening is expected which further makes resolution of

martensite peaks difficult.

The transverse diffraction pattern shown in figure 5.3(b) is similar to

that recorded by bank 1 in the zero-load condition. Upon deformation,

however, the {111}γ reflection line was weaker than that exhibited by the

axial diffraction pattern. Also, {220}γ did not disappear as a result of

deformation compared with the case in the axial diffraction pattern.

In figure 5.3(a), the {211}αb
and {200}αb

reflections decreased in inten-

sity as a result of deformation, whereas it was found that their intensity even

enhanced in the transverse spectrum (figure 5.3(b)). This indicates a de-

gree of grain rotation due to applied plastic strain, although a contribution
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Figure 5.3: Axial (a) and transverse (b) diffraction spectra recorded for S1
in the unloaded and heavily deformed condition.
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due to strain-induced martensitic transformation can not be ruled out. A

similar finding was reported by Tomota et al. in their work on TRIP-aided

steels [161]. Reflection {200}αb
was found to weaken whereas the intensity

of {110}αb
increased with applied stress. This suggested that the change in

reflection line intensity is a consequence of both transformation and grain

rotation. Therefore, the evolution of texture as a consequence of heavy

deformation is anticipated.

Also, it can be observed from figure 5.3(a) the peak shifts to higher

d-spacing with deformation with probably an opposite tendency as can be

seen, for example, in {110}αb
reflection in figure 5.3(b).

Diffraction spectra observed in S2 deformed plastically up to ε = 0.25

exhibited a similar behaviour (figure 5.4).

5.4 hkl-specific Response to Mechanical Loading

Using the in situ neutron diffraction spectra, it was possible to assess the

elastic lattice strain εhkl [162]:

εhkl =
dhkl − d0

hkl

d0
hkl

(5.2)

where dhkl and d0
hkl are the measured and stress-free lattice-plane spacings

respectively. In the present work d0
hkl was taken as the initial hkl-reflection

measurement.

5.4.1 Sample S1

Figure 5.5 shows the lattice-plane strain vs applied stress in sample S1.

Except for the austenite reflections shown in figure 5.5(d), the data presented

cover the range of loading up to just before fracture, at 0.126 macroscopic

strain.

Figure 5.5(a) shows the anisotropic response to loading of individual re-

flections of bainitic ferrite. Note that data acquired for a reflection represent

the response of a family of grains with identical crystallographic orientation.

It is noticeable that the {200}αb
reflection seems to respond more readily
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Figure 5.4: Axial (a) and transverse (b) diffraction spectra recorded for S2
in the unloaded and heavily deformed condition.
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having a rather different diffraction elastic modulus whereas the other re-

flections are compared with the bulk response. As expected, beyond the

onset of macroscopic yield, the lattice elastic strain for all reflections was

almost constant as plastic deformation proceeded. This is consistent with

figure 5.2 where it is seen that there is no macroscopic local hardening as

plasticity progresses.

The transverse strains in the αb (figure 5.5(c)) are consistent with the

above discussion after considering the Poisson’s effect, as are the observa-

tions in austenite (figures 5.5(b) and 5.5(d)).

5.4.2 Sample S2

Figure 5.6 shows the corresponding data for S2, up to 0.25 macroscopic

strain. The key difference when compared with S1 is that, according to

figure 5.2, there is macroscopic work-hardening following yielding. So the

lattice elastic strains continue to increase (figure 5.6) beyond yielding, albeit

at a smaller rate compared with pure elastic loading. This is consistent with

the results previously presented in figure 4.5 where a steady, however small,

increase in the work-hardening was observed in a similar sample. Thus, the

primary difference between S1 and S2 is simply the strain-tempering of the

former sample which leads to a different macroscopic stress-strain curve.

Tomota et al. observed a similar increase in austenite lattice-plane strain

with loading in TRIP-aided multi-phase steels [161]. Two reasons for this

observation were suggested. The first, is the stress partitioning between the

ferrite and austenite; the second was the preferential martensitic transfor-

mation in carbon-low austenite regions. The latter has the effect of shift-

ing austenite peaks due to compositional change. The authors concluded

that stress partitioning was responsible for the current observation on the

grounds that there were no obvious non-symmetries in austenite peak profile

and even after applying high plastic deformation, the peak profile could still

be fitted with a Gaussian function.

However, in the current investigation this was not the case as seen below.

Figure 5.7 represents the {110}αb
and {111}γ peaks in the axial spectrum

of sample S2 at zero-load condition. The two-peak fitting was performed
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Figure 5.5: Change in the lattice-plane strain vs applied stress in sample
S1. The horizontal line denotes yield.
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Figure 5.6: Change in the lattice strains vs applied stress in S2. The hori-
zontal line denotes the yield point level. Spectra were acquired in the axial
direction.
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through fitting to a time-of-flight profile function which is composed of a

convolution of Gaussian, Lorentzian and single exponential functions.

When a single {111}γ was fitted, the fit was poor as can be seen in fig-

ure 5.7(a). On the other hand, when two {111}γ peaks were assumed, the

fit was far more satisfactory with negligible residuals (figure 5.7(b)). The

two {111}γ peaks represent C-high and C-low austenite respectively. To test

this hypothesis, the fit was performed for the γ+αb doublet in diffraction

spectra acquired up to failure. The result is shown in figure 5.8. Indeed the

low-carbon austenite fraction, being less stable than the high-carbon type,

diminishes with loading.

Matas and Hehemann observed two lattice parameters for the retained

austenite corresponding to the heterogeneous distribution of carbon in the

austenite [163].

As shown in figure 5.6(b), in the plastic strain regime, the lattice-plane

strain of reflections {220}γ and {111}γ initially increased with loading, how-

ever, then decreased. This divergence has been ascribed to the development

of internal compressive stresses triggered by martensite transformation [160].

This behaviour was not observed in sample S1.

The discrepancy in the lattice-plane strain of reflection {220} just before

fracture could be an experimental error.

5.4.3 Sample S3

Sample S3 was examined only up to a macrostress level of 1893 MPa which

corresponds to 0.021 macroscopic strain (figure 5.9). Few spectra were

recorded with applied stress in excess of that of the proof strength. The

{200}αb
and {200}γ reflections exhibit the lowest diffraction elastic moduli,

consistent with Allen et al. [164].

Unlike samples S1 and S2, the elastic lattice strain of austenite reflec-

tions diverges well ahead of the onset of macroscopic yield (figure 5.9), with

the austenite reflection {111} deviating from linearity at approximately 700

MPa. This is indicative of a higher degree of structural anisotropy.

It is important to mention that, in stress measurements, when the lattice

strain is attributed to the macroscopic stress applied in the plastic regime,
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(a)

(b)

Figure 5.7: Two-peak fitting of {110}αb
and {111}γ in S2, as-heat-treated.

Axial diffraction spectrum.

the use of a reflection line which is known to be relatively insensitive to

residual intergranular stresses is recommended [159].

In case of FCC and BCC iron, {311}γ and {211}αb
lattice planes respectively

are favoured since they exhibit a linear strain behaviour with ‘at least’ uni-

axial loading [165].

As shown in figures 5.5(b), 5.6(b) and 5.9(b), indeed the austenite lattice

plane {311} exhibits an intermediate strain behaviour with applied stress
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Figure 5.8: The evolution of low-carbon and high-carbon populations of
the retained austenite with strain in sample S2. Diffraction spectra were
acquired from bank 1.

compared with that of {200}γ and {111}γ .

The possibility of strain-induced transformation into martensite has been

considered through monitoring the evolution of austenite reflections inten-

sities with applied stress as shown in figure 5.10. The intensity of reflection

{200}αb
is also presented for comparison. The strain-induced martensite

transformation is naturally accompanied by a reduction in austenite inten-

sities. As shown in figure 5.10, apparently the transformation only starts to

take place at as high macroscopic stress level as 1657 MPa (vertical line).

A value which is higher than the yield strength (1575 MPa). This indi-

cates the exceptional austenite stability against stress-assisted martensitic

transformation. Nevertheless, there is a certain anomaly with the {111}γ

reflection intensity which initially increases with applied stress. Indeed this

observation was previously reported in the literature where it was ascribed

to grain rotation [160].
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Figure 5.9: Change in the lattice-plane strain vs applied stress in S3. Diffrac-
tion spectra were acquired in the axial direction.
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reflection.

5.5 Summary

Three differently processed bainitic steel samples were investigated using in

situ neutron diffraction during the course of deformation. The following

points may be summarised:

1. Preferential martensitic transformation, evolution of texture and grain

rotation were observed as deformation proceeded.

2. The generation of hkl-specific compressive internal stresses in the austen-

ite has been observed.

3. As previously observed using X-ray diffractometry, lattice distortions

have been confirmed.

4. Compositional changes were observed in the austenite as a result of

deformation. The change in the average austenite carbon content is a

result of preferential transformation of the low-carbon austenite.
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5. Anisotropy in austenite grains response to plastic deformation was

observed. This could be explained in terms of intergranular stresses.



Chapter 6

Conclusions and Prospects

The present steels, in the as-transformed condition, offer an incredible com-

bination of strength and ductility due to their high carbon content and

proper alloying which enabled the formation of bainite at very low tem-

peratures, yet within reasonable holding times. The result of the low-

temperature transformation was the generation of a nanoscale microstruc-

ture in bulk samples.

This novel microstructure was obtained without excessive or expensive al-

loying. The high-Si concentration, and in some steels combined with Al,

enabled a complete suppression of cementite during bainite transformation.

These factors all support commercial exploitation.

The current work aimed at the further development of these remarkable

steels in terms of strength and ductility. Strain-aging was adopted and found

to result in a considerable improvement in strength without appreciable loss

in ductility. As such, a superior combination of strength and ductility was

possible via affordable, easy to produce, nanostructured steel with mechani-

cal properties comparable to the far more expensive types of maraging steels

and dimensionally limited metallic glasses.

Through optimising composition and processing routes, a wide spectrum

of mechanical behaviour was observed, outperforming many commercially

available steel grades.

A better assessment of the evolution of texture with plastic deformation

was carried out using X-ray and in situ neutron diffraction. The implica-

tion on correct estimation of phase fractions was discussed and successfully
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dealt with using the Rietveld and Dickson methods. The impact of heavy

deformation on erroneous estimation of lattice parameters, especially that

of the austenite, was described. Evidence of a change in the austenite lattice

parameter with plastic strain was also established. There are contributions

both due to compositional change and from possible residual stresses which

should not be ruled out. The response to plastic strain of two populations

of carbon-rich and carbon-poor austenite was observed. This confirmed the

findings by Matas and Hehemann [163].

The following points could be studied further:

1. Some less attended areas, for example, high-cycle and low-cycle fatigue

properties, and the mechanical properties of steel structures strained

prior to bainite transformation.

2. The texture developed in the plastically deformed steel structures

could be investigated further using traditional pole figures.

3. The tempering behaviour of the current steels is not fully studied in

the literature and a comprehensive study using transmission electron

microscopy would be beneficial.

4. It would be interesting to attempt to model the mechanical behaviour

of the current steels taking into account the present findings and var-

ious processing parameters.



Appendix A

Thermal Analysis

The work presented here deals with the tempering of carbide-free bainite.

Differential scanning calorimetry, X-ray diffraction and scanning electron

microscopy have been used to characterise the process.

A.1 Differential Scanning Calorimetry

Many phase transformations are accompanied by the generation or absorp-

tion of heat, which can be monitored using techniques such as differen-

tial scanning calorimetry (DSC). It works by assessing the heat flow be-

tween a sample and an inert reference during a specified temperature pro-

gramme [166].

A sample weighing a few milligrammes is heated at a constant rate

(isochronal annealing [167]) or studied isothermally.

A.1.1 The Zero-line

An isochronal DSC output is shown schematically in figure A.1.

The zero-line is measured without the sample to reflect the thermal

behaviour of the measuring system [166]. Deviations from the zero-line when

the experiment is repeated with a sample indicate activity in the sample.

In the present work, the determination of the zero-line was not necessary

since the calorimeter used the TzeroTM technique by which the measured

curve is automatically corrected for thermal effects caused by the DSC ap-

paratus. All further discussions assume a zero-line correction.
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Figure A.1: An isochronal DSC curve. Ti is the initial peak-temperature;
Tp is the peak-maximum temperature and Tf is the final peak-temperature.

A.1.2 The Baseline

Any enthalpy change can be determined by integrating the area under the

heat capacity vs temperature thermogram. The baseline is that between Ti

and Tf if there is no enthalpy change [166].

Figure A.2 shows a peak with the baseline constructed.

Figure A.2: Construction of the baseline [166].
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The method used to estimate the baseline in present work is as fol-

lows [168]:

If the degree of reaction α(T ) is known approximately, the change in the

slope of the baseline under a peak between Ti and Tf may be expressed as:

(

dQ

dT

)

bl

= (1 − α)

(

dQ

dT

)

Ti

+ α

(

dQ

dT

)

Tf

(A.1)

where the subscript bl stands for ‘baseline’.

It follows that Qbl can be given as:

Qbl = (1 − α)Qi,ex + αQf,ex (A.2)

where Qi,ex and Qf,ex are the extrapolated parts of the measured curve as

shown in figure A.2. In order for Qbl to be calculated, Qi,ex and Qf,ex are

extrapolated as polynomials between Ti and Tf .

Figure A.3 shows an example of a baseline construction for a peak mea-

sured in the scanning mode with calculated enthalpies and peak character-

istic temperatures.

It is important to note that peak-maximum temperature is not neces-

sarily the absolute maximum temperature (shown underlined), which is the

temperature at the maximum difference between the measured DSC curve

and the interpolated baseline.

A.1.3 The Specific Heat Capacity

Heat capacity is related to thermodynamic quantities such as free energy and

entropy. The specific heat capacity can be estimated from the measured heat

flow rate as follows [166]:

cp =
Cp

ms
=
Qm −Q0

msΦ
(A.3)

where Qm is the measured heat flow rate, Q0 is the heat flow rate corre-

sponding to the zero-line, ms is the sample mass and Φ is the heating rate.

This assumes that the substance studied remains inert.
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Figure A.3: DSC thermogram of Sp9c heat-treated at 200◦C and pre-
strained to 0.01 strain. The heating rate used was 30◦C min−1. Calculated
areas under the peaks are shown.

A.1.4 Activation Energy

The activation energy (E) was calculated using a Kissinger-type method [169]:

ln
T 2

f ′

Φ
=

E

RTf ′

+ constant (A.4)

where Tf ′ denotes the temperature at which a specified degree of phase

transformation is attained, E is the activation energy and R = 8.3144 J

mol−1 K−1 is the gas constant. Using data from different heating rate exper-

iments, the activation energy of a reaction can be determined by monitoring

the change in Tf ′ and plotting ln
T 2

f ′

Φ
vs 1

RTf ′
, the slope of which yields the

activation energy E.

Tf ′ was taken to be the peak-maximum temperature Tp. Except when

Tp could not be determined due to overlap with other reactions, Ti was used

instead.
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A.2 Experimental Procedures

TA Instruments heat flux DSC Q 1000 was used. Dried nitrogen flow at

50 ml min−1 helped minimising oxidation during tempering. The measured

temperature on heating was calibrated using the melting point of pure in-

dium. Heat flow rate calibration was carried out using sapphire which al-

lowed the determination of the cp(T ) function for comparison against pub-

lished data.

Three alloys have been analysed, Sp9c, Sp10c and Sp11c, with a variety

of initial bainite microstructure and both in the undeformed and deformed

states. The deformed samples were cut from tensile test specimens described

in Chapter 3. When the tensile tests had been conducted to failure, the DSC

samples were cut from as close to the fracture surface as possible.

Samples with weights ranging from 9–50 mg were characterised. Each

sample was placed in an aluminium pan which was closed by lightly pressing

an aluminium lid, thereby limiting the analysis to <600◦C. An empty pan

with known mass was used as a reference.

Two running modes have been used for the assessment of kinetic param-

eters; the isothermal and isochronal modes, the latter at 10, 20 and 30 ◦C

min−1 constant heating rates. Isothermal experiments were carried out by

equilibrating at 300◦C for 2 h.

After the DSC runs, samples were prepared for metallographic investiga-

tion, details of which can be viewed elsewhere, and etched with nital (2%).

A JEOL JSM-5500 LV scanning electron microscope (SEM) operated at 10

and 20 kV was used in secondary electron imaging mode to investigate struc-

tural variations after tempering. Given that samples underwent tempering

during the DSC investigation, phase identification, in particular austenite

and martensite, should be less ambiguous [170].

Phase fractions and austenite lattice parameters have also been carried

out using X-ray diffractometry.
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A.3 Analysis

A.3.1 Reactions in Isochronal Mode

Peaks in DSC thermograms represented exothermic reactions. Apparently

there are no reported DSC investigations on the tempering of carbide-free

bainitic steels. Fe-C, Fe-C-Cr and Fe-C-Cr-Mo martensites have been stud-

ied using DSC [139, 140, 167, 171, 172].

Gojić et al. used thermal analysis to study a hot-rolled carbide-containing

bainitic steel (Fe-0.4C-0.85Mn-0.33Si-1.02Cr-0.24Mo wt%) [172]. The ther-

mal events observed in the present work in the isochronal mode with Φ =

10◦C min−1 were speculated to be:

• Segregation and clustering of carbon atoms;

• precipitation of transition carbides ε/η;

• decomposition of the retained austenite;

• precipitation of the θ-carbide (cementite).

Given the lack of reports in the literature regarding the tempering be-

haviour of fully bainitic carbide-free steels studied by DSC, the interpre-

tation of observed peaks is speculative and further experimental evidence

is thus required. Nevertheless, the results obtained stimulate the need for

further research and direct observations.

Segregation & Clustering of Carbon Atoms

In carbon-supersaturated martensite, tempering is preceded by the redis-

tribution of carbon atoms from an ordered interstitial sub-lattice to lower-

energy sites such as dislocations and grain boundaries [139, 173].

In low-alloy low-carbon martensitic steels, this event is the first stage of

tempering, although with a high MS temperature, the segregation of carbon

atoms may already have occurred during quenching as the martensite forms,

a process known as ‘auto-tempering’ [174].
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Precipitation of ε/η-carbides

Further tempering leads to the precipitation of transition metastable car-

bides. A 1.3 wt% C martensite tempered at 120◦C for 5–40 days was found

using X-ray diffraction to precipitate ε-carbide (Fe2.3C) [175]. On the other

hand, a further TEM study revealed a different orthorhombic η-carbide or

η-Fe2C [176]. Ohmori and Tamura reported the precipitation of the hcp

ε-carbide [177]. A more recent study by Han et al. confirmed the precipi-

tation of the η-carbide or η-Fe2C in early stage of Fe-C martensite temper-

ing [167]. It seems that ε/η carbides form in most steels containing more

than 0.2 wt% [174]. On the other hand, a huge dislocation density can

prevent precipitation by acting as strong traps for carbon.

Decomposition of Retained Austenite

The observed second stage during the tempering process is the decomposi-

tion of retained austenite, characterised by a large heat release (figure A.4).
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Figure A.4: DSC thermograms of Sp9c sample transformed into bainite at
300◦C and subsequently strained to failure.

The decomposition products are ferrite plus fine carbides in the prior

fine austenite regions, and pearlite in larger γ regions [138].
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However, according to Speich and Leslie, retained austenite decomposition

may be bainite [174].

In the work of van Genderen et al., γ decomposition resulted in a more

carbon-enriched austenite plus ferrite [139].

Precipitation of θ-carbide

The last thermal reaction observed is a peak which might denote the pre-

cipitation of cementite (θ-carbide, orthorhombic). This reaction could be

accompanied by or after the decomposition of austenite. Transition carbides

formed in earlier stages dissolve [139] allowing the more thermodynamically

stable, the cementite, to form in a reaction which is largely accompanied

by length reduction rather than heat release. This pronounced dimensional

change makes dilatometry a complementary tool to DSC [140].

The morphology of cementite particles is plate-like which is detrimental

to mechanical properties. Further tempering leads to particle coarsening

and spheroidisation [178].

In the present work, cementite probably started to precipitate in the

range 510–531◦C.

Effect of Heating Rate on DSC Measurements

As shown in figure A.4†, a higher heating rate shifts the peak to a greater

temperatures, as expected in any thermally activated reaction.

Effect of Alloy Composition

The main difference between the steels studied is the Co and Al concen-

trations. Therefore, it was expected to observe differences in terms of the

kinetic parameters during tempering.

As shown in figure A.5, the apparent heat capacity of the more alloyed

steels Sp10c and Sp11c were greater than Sp9c. It is also apparent the

occurrence of peak shift towards greater temperatures with Sp10c and Sp11c

compared with Sp9c.

†Except for θ-carbide precipitation due to overlap with other reactions, arrows in DSC
thermograms point to the initial reaction temperature.
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Figure A.5: DSC thermograms of studied steels tempered in the scanning
mode.

Figure A.6(a) exhibits the microstructure of Sp9c following the DSC

experiment. For comparison, figure A.6(b) represents the sample prior to

heat-treatment.
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(a)

(b)

Figure A.6: SEM micrographs exhibit: (a) sample Sp9c, unstrained and
tempered and (b) same sample, untempered. Samples underwent bainite
transformation at 250◦C for 15 h prior to DSC experiment. Tempering was
carried out within the range 100◦C to 600◦C with the rate 10◦C min−1.
Note the absence of the austenite in the tempered condition.

Effect of Bainite Transformation Temperature

Figure A.7 shows the DSC curves of Sp9c samples transformed into bainite

at different temperatures.

The possible precipitation of transition carbides (arrowed) was delayed
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Figure A.7: Measured DSC curves demonstrate the possible effect of trans-
forming bainite at different temperature on subsequent tempering kinetics.

for the steel transformed at 300◦C compared with steel transformed at

250◦C, however, the reaction was more prominent and overlapped with the

subsequent peak presumably denoting the decomposition of austenite. Since

the dislocation density in bainite formed by transformation at 300◦C is less

than that formed at 250◦C [2], ε/η-carbide precipitation is favoured in the

former.

Austenite carbon content Cγ was determined using X-ray diffraction and

found to be 1.6 and 1.2 wt% carbon for the alloy transformed at 300 and

250◦C respectively. According to measured Cγ , the retained austenite in

Sp9c sample transformed at 250◦C should be less stable in comparison

with Sp9c-300◦C. The would-be γ-decomposition peak-maximum temper-

ature was 480.4◦C in the former compared with 486.6◦C in the latter.

As shown in figure A.7, a peak following the proposed γ-decomposition

peak was observed in both samples. This peak is speculated to denote

carbide precipitation. There is a striking difference between the two samples

at this stage presumably due to the difference in Cγ .

Figure A.8 shows SEM micrographs of Sp9c-300◦C.
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(a)

Figure A.8: Sp9c sample heat-treated at 300◦C, unstrained. Sample was
continuously heated within the range 100–600◦C at 10◦C min−1. The
bainitic structure is clearly visible with some bainite sheaves being etched
preferentially. Arrow points to a possible austenite grain.

Effects of Strain

As presented in figure A.9, only deformed steels exhibited an early stage

thermal reaction during tempering, presumably stands for carbon segrega-

tion (arrowed). This could be due to the presence of the strain-induced

martensites.

The microstructure of Sp9c-300◦C pre-strained to 0.1 ε is shown in fig-

ure A.10.

Figure A.9(b) clearly shows a different tempering behaviour at later

stages marked also by peak shift towards lower temperature as the degree

of pre-strain increased.

Upon deformation, austenite grain features smaller crystallites due to

the introduction of dislocations. It is therefore possible that these dislo-

cation bands provide nucleation sites which facilitate the decomposition of

austenite into ferrite. It is known that the deformation of austenite in the

intercritical annealing region initially accelerates the decomposition into bai-

nite [179, 180].
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Figure A.9: DSC curves measured for sample Sp9c heat-treated at different
temperatures and strained to various strain levels.

Table A.1 demonstrates that the activation energy of austenite decompo-

sition in the fractured sample was slightly higher than that in the unstrained

sample.
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1
2
9

Unstrained Fractured

Φ = 10 Φ = 30 Φ = 10 Φ = 30
Events ◦C min−1 ◦C min−1 E ◦C min−1 ◦C min−1 E

Ti Tp Ti Tp (kJ mol−1) Ti Tp Ti Tp (kJ mol−1)

Segregation — — — — — 148 191 156 200 203.4 (Ti)
of C atoms

Precipitation
of ε/η 329 — 210 — — — — — — —

Decomposition 454 487 471 505 287.8 (Ti) 368 459 397 475 292.9 (Tp)
of γ 284.7 (Tp)

Precipitation
of θ 530 — 548 — 333.1 — — — — —

Table A.1: Kinetic parameters of sample Sp9c heat-treated at 300◦C for 6 h, unstrained and fractured. Heating range was
100–600◦C.
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Figure A.10: SEM micrograph shows the structure of sample Sp9c trans-
formed at 300◦C for 6 h and strained up to 0.1 strain. Tempering was carried
out by heating from 100 to 600◦C with Φ = 10◦C min−1. Arrows point to a
bainite sheaf (right) and a tempered-martensite grain (left).

A.3.2 Isothermal Mode

Figures A.11 and A.12 exhibit heat flow curves of steels Sp9c and Sp11c with

bainitic structures transformed at 250◦C, unstrained and strained measured

in the isothermal mode at 300◦C and held for 2 h.

As can be expected, the pre-strained samples showed an early decom-

position of the strain-induced martensite. Note the relatively greater slope

of the peak’s leading edge in the pre-strained Sp9c sample which suggests a

faster reaction rate compared with that in the Sp11c fractured sample.

The tempering behaviour of the unstrained samples was different with a

gradual heat release with time.

It can be noticed from figure A.11 that, given the difference in the re-

action or the rate by which the heat during tempering is released, the mi-

crostructure of alloy Sp11c, unstrained, exhibits a better stability against

tempering compared with that of Sp9c; same strain condition. This resis-

tance to tempering could be ascribed to the high Co content in alloy Sp11c.
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Figure A.11: Measured DSC curves in isothermal mode. See text for more
details.

The Possibility of Austenite Decomposition

The decomposition of the retained austenite during the isothermal holding

at 300◦C for 2 h was minute as presented in table A.2.

Sp9c-250◦C-15 h aγ (nm) Cγ (wt%) Vγ

0 strain 0.36134 1.16 0.27
0 strain+tempering 0.36181 1.33 0.26

0.1 strain 0.36247 1.55 0.14
0.1 strain+tempering 0.36282 1.68 0.13

Table A.2: Microstructural parameters following isothermal heating at
300◦C for 2 h.

Furthermore, as can be observed from table A.2, the austenite carbon

content increases after straining and or tempering.

As previously mentioned in the last chapter, during straining, austen-

ite lattice parameter increases which might be ascribed to compositional

changes caused by selective transformation into martensite which preferen-

tially takes place in austenite regions which are relatively poor in carbon [60].
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(a) Sp9c-250◦C-unstrained. Tempered at 300◦C for 2 h.

(b) Sp11c-250◦C-unstrained. Tempered at 300◦C for 2 h.

An increase in aγ as a result of tempering can be a result of austenite carbon-

enrichment.

From the aforementioned findings, it is possible to consider carbide pre-

cipitation during the isothermal tempering unlikely. Table A.3 presents
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(c) Sp9c-250◦C-0.1 strain. Tempered at 300◦C for 2 h.

(d) Sp11c-250◦C-Fractured. Tempered at 300◦C for 2 h.

Figure A.12: Isothermal mode curves which demonstrate the rate of mi-
crostructural change during tempering. It is apparent that for pre-strained
steel structures, tempering for about 1 hour brings about the necessary
structural changes.
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Phase Mass fraction

BCC_A2 (ferrite) 0.957
GRAPHITE 0.004
M7C3 0.028
MC_SHP (MoC) 0.001
C2Cr3 0.009

Table A.3: Phases present at equilibrium in alloy Sp9c held at 300◦C. M
stands for metal atom which is mainly Mn for M7C3 carbide. Note the
absence of cementite.

equilibrium phases in alloy Sp9c when held at 300◦C.

Figure A.13 shows microstructural changes following the isothermal hold-

ing at 300◦C for 2 h of the samples presented in table A.2.
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(a) Decomposed austenite region which features the bainitic struc-
ture (right) and an austenite grain with partial decomposition (left).
Unstrained structure.

(b) A tempered-martensite grain. Pre-strained structure.

Figure A.13: SEM micrographs of sample Sp9c heat-treated at 250◦C, un-
strained and 10% strained. Both structures were isothermally held at 300◦C
for 2 h.
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A.4 Summary

The following points may be summarised from the present work:

1. As might be expected, tempering kinetics of carbide-free bainitic steels

resemble that of martensitic steels except for the early carbon enrich-

ment stage which was believed to present in strained steel structures

only.

2. Thermal effects which probably are associated with the precipitation

of transition carbides were observed. However, further experimental

evidence is needed.

3. A minor decomposition of austenite into bainite is likely, as has been

suggested earlier [174].

4. The event of austenite decomposition does not necessarily involve the

precipitation of carbides accompanied with ferrite formation, rather,

austenite enrichment takes place combined with the formation of fer-

rite. This finding is in agreement with the result reported by Han et

al. [167].

5. Generally, studied steels exhibited a strong tempering resistance.

6. Both elements Co [181] and Al resulted in peak shifts towards greater

temperatures implying a higher degree of structural stability.

7. Tempering kinetics were accelerated by decreasing the temperature at

which bainite transformed.

8. The austenite phase was observed to be fairly stable when held at

300◦C for 2 h regardless the degree of pre-strain.

9. Sp11c was apparently more stable against tempering at lower temper-

atures, however, it is more sensitive when heated at relatively higher

temperatures. The opposite is true for steel Sp9c.
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Mechanical Stability of

Austenite

The TRIP phenomenon occurs when upon mechanical loading, γ transforms

into martensite or any product which leads to a transformation strain.

Mechanical loading to a level below the macroscopic yield strength can

assist on existing nucleation sites in austenite so as to render them oper-

ative [182]. These nucleation sites would normally be activated by under-

cooling below the MS temperature. This is ‘stress-assisted’ transformation.

On the other hand, the transformation process can be induced by plastically

deforming the austenite, i.e. ‘strain-induced transformation’. The latter is

true as long as deformation temperature is kept below Md which is the tem-

perature above which no transformation takes place, and straining simply

plastically deforms the austenite islands.

The purpose of the present work is to demonstrate the success of the

model proposed by Sherif et al. [155] in predicting the mechanical stability

of retained austenite in TRIP-assisted steels. On the other hand, it was

believed important to assess the model’s applicability to other steel systems,

for example, bainitic steels.

B.1 Models for Strain-induced Transformation

B.1.1 Sugimoto et al. Model

Another important relationship was proposed by Sugimoto et al. [55]:
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ln{V 0
γ } − ln{Vγ} = kγε (B.1)

where kγ is an empirical constant. Equation B.1 has been used to assess the

extent of martensitic transformation. However, in spite of its usefulness, it

lacks general applicability since experimental data are needed to derive the

fitting parameter kγ for each alloy and temperature.

As shown in figure B.1, kγ is found to decrease as the deformation tem-

perature increases.

Figure B.1: Plot of the parameter kγ in equation B.1 versus deformation
temperature [55]. Steel a has MS = −61 ◦C and for b MS = −7 ◦C.

B.1.2 Sherif et al. Model

In a recent model, a suggestion was made to explain the mechanical sta-

bility of the retained austenite [104, 155]. The transformation behaviour

of austenite was ascribed to the free energy available for transformation,

i.e. kγ in equation B.1 should depend on ∆Gγα
′

. The magnitude of the

free energy can be expressed as ∆Gα
′
γ . Equation B.1 can be re-written as

follows [104, 155]:

ln{V 0
γ } − ln{Vγ} = k1∆G

α
′
γε (B.2)
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Consequently, kγ = k1∆G
α
′
γ where k1 is a constant, derived to be equal to

0.00446 mol J−1 which is alloy-independent. The value of k1 was derived

by fitting equation B.2 to experimental data of steels with broad range of

chemical compositions and deformation temperatures [104, 155].

The free energy term in equation B.2 captures the effect of austenite chem-

ical composition and deformation temperature. The model should be used

at temperatures above MS , up to about 200◦C. According to Sugimoto et

al. [55], beyond a temperature of about 200◦C kγ no longer decreases with

temperature (figure B.1). An interesting outcome of the model is that, if

the free energy available for transformation is zero, regardless the degree of

plastic straining, martensite transformation can no longer be induced, i.e.

the temperature at which deformation took place is the Md temperature.

Therefore, it has been possible to establish an adequate model which

is capable of predicting the transformation behaviour of retained austenite,

particularly its mechanical stability as a function of plastic strain.

Further Validation

The model was further assessed using TRIP-aided steel data form the lit-

erature. Figure B.2 shows the result of the predictions made for data from

Radu et al. [183]. Despite that the carbon content in austenite was not

given, the model did predict austenite fractions adequately. Ferrite carbon

content was assumed to be 0.03 wt% and Cγ was predicted using:

Cγ =
x̄− 0.03(1 − V 0

γ )

V 0
γ

(B.3)

Given an initial volume fraction of austenite 0.136, Cγ = 1.21 wt%.

Therefore, free energies were calculated using MTDATA. Only uniaxial ten-

sion data were used.

The model was also applied to in situ X-ray diffraction data of TRIP-

aided steel reported by Zhao et al. [184]. Steel composition had the com-

position 0.17C-1.46Mn-0.26Si-1.81Al wt%. Cγ = 0.93 wt% corresponds to

∆Gα
′
γ = 2856 J mol−1 at room temperature. Figure B.3 shows the result.

As shown, within experimental error, the model successfully predicted the

evolution of the austenite fraction vs plastic strain.
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Figure B.2: Application of Sherif et al. model to experimental data
from [183]. Correlation coefficient 0.82 and standard error ±0.025.
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from [184].
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Applicability to Fully Bainitic Steels

Since Sherif et al. model has been successful in predicting austenite me-

chanical stability in TRIP-aided steels, it was believed important to test

the model’s validity in a different class of steels, for example the current

bainitic steels. In principle, the model assesses austenite decomposition on

the basis of its chemical free energy. Therefore, it was anticipated that the

model would be successful with other steel systems. Figure B.4 shows a

reproduction of experimental data previously presented in Chapter 3, with

the model’s predictions. ∆Gα
′
γ values were 1166, 2165 and 2549 J mol−1

for samples transformed to bainite at 300, 250 and 200◦C respectively.

As shown in figure B.4(a), the predictions were excellent except at the

fracture strain where the model under-estimated the austenite content. It

is apparent that the predictions were less successful in samples transformed

at lower bainite transformation temperatures.

Since the model does not account for the heterogeneity in mechanical be-

haviour of individual phases, it is bound to over-estimate austenite content

where the austenite grains are embedded within stronger matrix since the

austenite in this case sustains greater plastic strain [185]. As previously

mentioned throughout this work, bainite transformed at lower temperature

is finer and stronger having higher dislocation density.

This explains the success of the model when applied to TRIP-aided steels

since the allotriomorphic-ferrite matrix in that type of steels is softer than

the austenite. This under-estimates the austenite content. On the other

hand, at a given macroscopic plastic strain level, the austenite is under

greater stress which is not accounted for in the free energy term in the

model, leading to under-estimation of the free energy consequently over-

estimation of the austenite content. Interestingly, it seems that these two

inaccuracies in the model cancel out each other.
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Figure B.4: Experimental and calculated austenite fractions vs plastic strain
in steel Sp9c.
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B.2 Summary

The model proposed by Sherif et al. can adequately be used for assessing

the austenite mechanical stability in a wide range of TRIP-aided steels. The

applicability to fully bainitic steels has been demonstrated.

The weaknesses of the model in terms of the absence of a mechanical

contribution to the driving force for the martensitic transformation and the

effect of phases other than the austenite have been identified.

Nevertheless, the model seems to be sufficient for TRIP-aided steels.
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[111] C. Garćıa-Mateo. Unpublished research, 2003.

[112] W. Parrish. In A. J. C. Wilson, editor, International Tables for

Crystallography, volume C, pages 46–66. Kluwer Academic Publish-

ers, 1992.

[113] R. Jenkins and R. L. Snyder. Introduction to X-ray Powder Diffrac-

tometry. John Wiley & Sons, New York, 1996.

[114] A. J. C. Wilson. J. Sci. Instr., 27:321, 1950.

[115] C. Dong, F. Wu, and H. Chen. Correction of zero shift in powder

diffraction patterns using the reflection-pair method. J. Appl. Crys-

tallogr., 32:850–853, 1999.

[116] M. U. Cohen. Rev. Sci. Instrum., 6:68–74, 1935.



BIBLIOGRAPHY 155

[117] H. P. Klug and L. E. Alexander. X-ray Diffraction Procedures. John

Wiley & Sons, New York, 1954.

[118] B. D. Cullity and S. R. Stock. Elements of X-ray Diffraction. Prentice

Hall, New Jersey, third edition, 2001.
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[138] C. Garćıa-Mateo, M. Peet, F. G. Caballero, and H. K. D. H.

Bhadeshia. Tempering of hard mixture of bainitic ferrite and austen-

ite. Mater. Sci. Tech.-Lond., 20:814–818, 2004.

[139] M. J. van Genderen, M. Isac, A. Böttger, and E. J. Mittemeijer. Aging
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