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A bainite sheaf does not have a simple geometry, making it difficult to characterise or calculate its

fundamental properties, such as the total amount of interfacial area per unit volume. The sheaf is,

in the language of fractals, a rough object in which the area is a function of how the measurements

are made. Micrographs taken at a variety of resolutions have been analysed to reveal how the

area scales with resolution. It is found that although the interface is rough, it is far less so when

compared with what might be expected from a fractal object. In other words, the ideal fractal,

where self-similarity propagates over an infinite range of observation does not apply to the bainite

sheaf.
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Introduction
A fascinating aspect of the bainite reaction in steels is
that it occurs by a subunit mechanism in which a platelet
of ferrite grows to a limited size, even though there is no
impingement with obstacles such as austenite grain
boundaries. The transformation then propagates by the
nucleation and growth of another subunit, the collection
of subunits being known as a sheaf.1 The reason why
each platelet has a limited size is that the shape
deformation accompanying transformation is plastically
accommodated in the austenite beside the plate.2,3 This
results in the creation of an intense dislocation debris
which renders the interface immobile, and hence the
subunit mechanism of sheaf growth.

The subunits within an individual bainite sheaf are in
fact contiguous, as shown by the tracing in Fig. 1, made
using an actual transmission electron microscope image
of a bainite sheaf.2,4,5 It follows that the shape of the
austenite c/bainitic ferrite ab interface is far from smooth;
there are many published micrographs showing the
convoluted outline of a bainite sheaf (e.g. Figs. 2 and 3
of Ref. 4).

A smooth object is one whose properties do not change
with resolution, for example, the perimeter of a perfect
circle. Measures such as perimeter and surface area are
not well defined for objects which are rough, because they
depend on the resolution of the measuring technique. The
surface area of a brick is a function of the method used to
measure the area; the brick is said to be a rough object.

We examine here the roughness of the surface of
a bainite sheaf, using elementary fractal analysis, as
reviewed recently in Ref. 6.

Method
The essence of the problem is to measure on micro-
graphs, the perimeter presented by bainite sheaves per

unit of micrograph area, using a variety of resolutions.
The authors have accumulated many micrographs of
bainite at a variety of resolutions over the years,
especially for a Fe–0.43C–2.02Si–3Mn (wt-%) steel,
austenitised at 1200uC for 10 min followed by partial
isothermal transformation to bainite over the tempera-
ture range of 192–295uC. These were exploited in the
study using two methods.

Box counting
The fractal dimension D of a two-dimensional pattern
can be determined by superimposing a square grid on
the image,6 and counting the number of boxes per unit
area Ni that includes the interface, given a particular
square size (i.e. resolution) ei

D~
ln Ni

ln e{1
i

(1)

with a 95% confidence limit given by 2s~+2=N
1=2
i . D

can therefore be obtained from the gradient of a plot

of ln e{1
i against ln Ni. Figure 2 thus gives D51.71.

Because the analysis is based on micrographs, the D
value is for a one-dimensional fractal curve, D1D&1:71.
A bainite sheaf is in practice a three-dimensional object,
therefore it is estimated that D3D^2zD1D~3:71.

Intercept method
A mean lineal intercept is another parameter which can
be used to characterise the ab/c sheaf interface. Random
lines are superimposed on the micrographs and the
segments resulting from the intersection of the lines with
the sheaf interface that is measured and averaged by the
total number of intercepts. -L is simply related to the
amount of surface per unit volume SV by the stereo-
logical relation7

SV~
2

-L
(2)

SV is related to the measurement resolution
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SV~S0eDT{D (3)

where S0 is the surface/volume ratio of a smooth object
of topological dimension DT and D is the corresponding
fractal dimension of a rough object. For a smooth
object, DT5D. The 95% confidence limits in the lineal
intercept measurements (and hence in SV), can be

estimated as 2s~+2sL= -LN
1=2
i , where sL is the standard

deviation of the intercepts.
A plot of ln SV versus ln (e21) (Fig. 3) gave

D2DT50.59 so that, because DT53 for a three-
dimensional sheaf. It is interesting that D is similar to
the value of 3.71 found using the box counting method.
Equation (3) along with the equation of the line in Fig. 3
can now be used to determine the surface area due to
sheaves of bainite as a function of the resolution.

Model for fractal sheaf
Suppose that a bainite sheaf has a fractal character, i.e.
smaller plates are observed within larger plates, and that
this continues to be the case at every step of magnifica-
tion. It would be useful to determine the fractal dimen-
sion in such a scenario for comparison against the
experimental data presented above.

Consider each platelet (subunit) within a sheaf to have
a thickness t and an elliptical shape with semiaxes a and
b. A sheaf is formed by stacking planar arrays of these
ellipses with intervening regions of retained austenite
(Fig. 4). The thickness of the austenite layers is defined
by the fraction of bainitic ferrite in the microstructure.

In a fractal scenario, each subunit would contain smaller
platelets and this process would continue ad infinitum as
the magnification is increased. Each set of identical
subunits is henceforth called a generation.

Construction of the fractal requires scale invariance
under isotropic dilatation (a, b and t simply scale to la,
lb and lt where l is a constant).

The problem now is to find how the surface area of
the ab/c interfacial area within the sheaf scales with
resolution. After some lengthy algebra,8 for the nth
generation

NVn
~NV1

(l3)n{1 (4)

where NVn
is the number of nth generation platelets per

unit volume

Vn~panbntnNV1
(l3)n{1 (5)

where Vn is the total volume of the nth generation of
platelets and the amount of ab/c interfacial area per unit
volume, owing to the nth generation of platelets is given

1 Outline of subunits near tip of bainite sheaf

2 Plot to determine fractal dimension of traces of ab/c

sheaf interfaces determined using box counting

method

3 Plot to determine fractal dimension of traces of ab/c

sheaf interfaces determined using intercept method

4 Hypothetical sheaf consisting of planar array of ellipti-

cal plates (subunits), with planar arrays stacked with

intervening retained austenite in three dimensions:

each elliptical platelet will contain other generations of

smaller platelets to form fractal pattern
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by

SVn
~

2panbnz2tan
p 1

2
a2

nzb2
n

� �� �1=2
n o

NV1
(l3)n{1

L2
cTc

(6)

where Lc is the length of a square sectioned austenite
grain, Tc is the thickness of the austenite grain and ta is
the thickness of a planar array of ellipses, so that
t2ta5tc becomes the thickness of the intervening
austenite layer. The results from equation (6) using
Lc5100 mm, Tc50.2 mm, tc/ta50.2 and the parameters
listed in Table 1, are given in Fig. 5. Because the slopes
of all the lines is unity, it follows using equation (3) that
D54. An identical fractal dimension was found using an
array of square instead of elliptical plates,8 therefore the
details are not reproduced here.

Discussion
The important result is that the surface area of a bainite
sheaf as measured experimentally does not increase as
rapidly as would be expected when the fractal dimension
is 4. This is physically correct because there is no
mechanistic reason why the subunit structure should
extend to ever finer scales.

The practical difference between a fractal dimension
of 4 as opposed to 3.59 is illustrated in Fig. 6. In this, the
equation of the straight line in Fig. 3, i.e.

ln SV~0:59 ln e{1z5:4 (7)

was used to calculate how the amount of ab/c interface
would scale with resolution, and the case for D54 was
calculated using a slope of unity instead of 0.59 in
equation (7). It is evident that SV rises far more rapidly
for D54 as resolution is increased, and a point will be
reached where all the free energy available is consumed
simply in the creation of interfaces. Therefore, although

the bainite sheaf has a rough interface, it does not
possess a fractal character. This means that there must
be a limited number of generations of subunits. From a
physical point of view, it is expected and observed that
there should exist only two generations, leading to a
bimodal distribution of subunit sizes.9 The largest
generation represents the platelets which have formed
to the point where their growth is stifled by mechanical
stabilisation.2,10 The much smaller platelets are the
suboperational embryos which have yet to make it into
the rapid growth stage.9

Summary
The fractal dimension of the surfaces of bainite sheaves
has been estimated to be approximately 3.6–3.7,
determined by making measurements over a large range
of spatial resolutions (102521029 m). Modelling a
bainite sheaf as a fractal in which self-similarity
propagates over an infinite range of observations gives
a fractal dimension of 4. Such a character is not
physically reasonable. Comparison between the mea-
surements and model indicates that the real sheaf
contains much less detail and roughness than the perfect
fractal. The bainite sheaf cannot therefore be regarded
as consisting of many generations of subunits, but at the
same time cannot be seen as a smooth object with a fixed
surface area independent of magnification.
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Table 1 Data used to generate Fig. 5

l a, mm b, mm ta, mm

2 50 1 0.1
3 33.3 0.66 0.066
4 25 0.5 0.05
5 20 0.4 0.04
10 5 0.1 0.01

5 Surface per unit volume as function of resolution in

this case with e5an and parameter l

6 Comparison of measured variation in SV versus that

calculated for an ideal fractal
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