Examples Class 2: Stereographic Projections

Calcium Chloride

The orthorhombic unit cell of CaCl₂ has a = 0.624 nm, b = 0.643 nm and c = 0.420 nm with ion positions at

Ca: 0,0,0 $\frac{1}{2},\frac{1}{2},\frac{1}{2}$.

Cl: x, y, 0 $\overline{x}, \overline{y}, 0$ $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2}$ $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2}$

with x = 0.325 and y = 0.275. Fig. 1 is an accurate projection of this structure on (001).

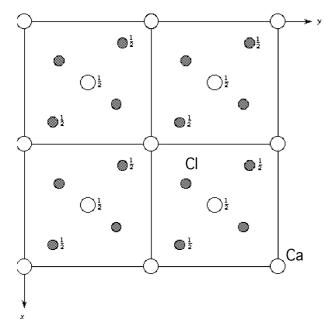


Figure 1: The structure projection for calcium chloride

- 1. What is the Bravais lattice of this structure?
- 2. Locate all symmetry elements present in the structure and hence determine those along [100], [010] and [001]. What is the point group of the crystal structure?
- 3. Determine the point symmetries of the Ca and Cl ions and express them on sketch stereograms.

Calcite

Calcite is trigonal with c/a = 0.854 and $\{10\overline{1}1\}$ cleavages. It belongs to the crystal class $\overline{3}m$.

- 1. Show that (0001) : $(10\overline{1}1) = 44.6^{\circ}$ and (0001) : $(01\overline{1}2) = 26.2^{\circ}$.
- 2. Draw an accurate 127 mm diameter stereogram centred on 0001, as illustrated in Fig. 2. Show on it the poles of the $\{10\overline{1}1\}$ cleavage planes and their corresponding traces. Add the pole of a section parallel to $(01\overline{1}2)$ along with its trace.
- 3. From an inspection of your stereogram, draw a sketch of the permitted vibration directions relative to the cleavage traces when light is incident normally on the $(01\overline{1}2)$ section of a thin crystal of calcite.

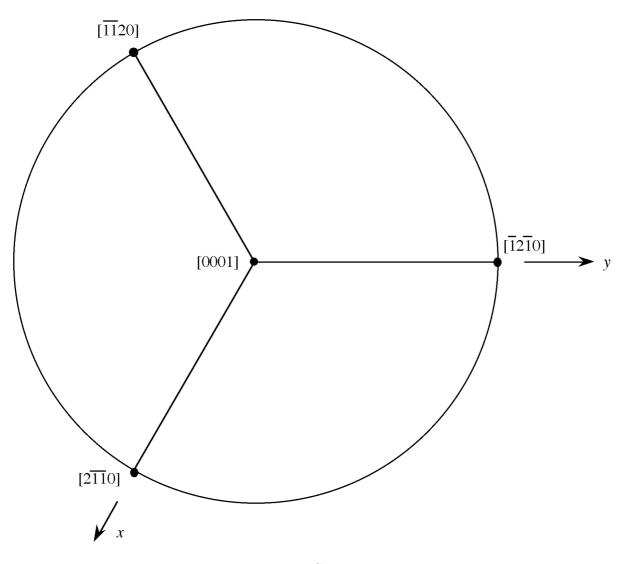


Figure 2: Stereogram

Coincidence Site Lattice

Fig. 3 is a template of a primitive cubic lattice (basis symbol 'X') projected onto (001). Fig.4 on the transparency is identical (basis symbol 'Y') but with the dots replaced by crosses. You are provided with a transparency pen.

By rotating the transparency with respect to the template, determine the Σ value of the coincidence site lattice produced by a rotation of 36.9° about [001]. What are the basis vectors of the CSL in terms of the primitive cubic lattice?

The rotation matrix relating the two primitive cubic lattices for a right-handed rotation θ about a unit axis $[u_1 \ u_2 \ u_3]$ is given by:

$$(Y J X) = \begin{pmatrix} u_1 u_1 (1-m) + m & u_1 u_2 (1-m) + u_3 n & u_1 u_3 (1-m) - u_2 n \\ u_1 u_2 (1-m) - u_3 n & u_2 u_2 (1-m) + m & u_2 u_3 (1-m) + u_1 n \\ u_1 u_3 (1-m) + u_2 n & u_2 u_3 (1-m) - u_1 n & u_3 u_3 (1-m) + m \end{pmatrix}$$
(1)

where $m = \cos \theta$ and $n = \sin \theta$

Verify the Σ value obtained graphically using this matrix.

•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	٩
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٩
٠	•	٠	٠	•	•	٠	٠	٠	•	٠	•	٠	٠	•	4
-	-	-	-	-	•	-	•	-	•	-	•	-	-	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	4
-	•	-	-	-	•	-	•	-	•	-	•	-	-	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	۰	٠	٠	٠	٠	•	•	٠	٠	۰	•
•	•	•	•	•	•	•	٠	٠	•	•	•	•	٠	•	
•	•	•	•	•	۰	•	•	•	٠	•	•	•	٠	•	٩
•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	-	•	-	•	-	•	-	•	-	•	•	•
•	•	•	•	•	I	•	•	•	•	•	•	•	•	•	٩
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٩
•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	4
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٩
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٦
•	٠	•	•	•	۰	•	•	•	•	•	•	•	•	•	•
-	•	-	-	•	•	-	•	-	•	-	•	-	-	•	•
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٩
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٩

Figure 3: Template 1

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	x	×	×	×	×	×	×	×	×	x	×	×	×
x	×	×	x	×	×	x	×	×	×	×	×	x	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	x	×	×	×	×	×	×	×	×	х	×	×	×
x	×	×	x	×	×	x	x	×	×	×	×	x	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
x	×	×	x	×	×	x	×	×	×	×	×	х	×	×	×
x	×	×	х	×	×	x	×	×	×	×	×	х	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
x	×	х	х	×	×	x	×	×	x	х	x	х	×	×	×
x	×	×	х	×	×	x	×	×	×	×	×	х	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
x	×	×	x	×	×	x	×	×	×	×	×	x	×	×	×
x	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	x	×	×	×	×	×	x	×	×	x	×	×	×
x	×	×	x	×	×	x	×	×	x	×	×	х	×	×	×
x	×	×	x	×	×	x	×	×	×	×	×	х	×	×	×
×	×	×	x	×	×	×	×	×	x	×	×	x	×	×	×
x	×	×	×	×	×	x	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	x	×	×	×	x	×	×	×	×	x	×	×	×
x	×	×	x	×	×	x	x	×	x	×	×	x	x	×	×
						Figu	re 4: 7	Fempl	ate 2						