Answers to Examples Class 2: Stereographic Projections

Calcium Chloride

Figure 1: Structure projected along [001]. The Bravais lattice is P (the Ca at the origin has a different environment to that at the centre of the unit cell. Diads parallel to [001] go through each Ca and down the centres of the four sides of the cell containing [001]. (002) planes at z = 0 and $\frac{1}{2}$ are mirrors. (200) diagonal glide (n) planes cut at $x = \frac{1}{4}$ and $x = \frac{3}{4}$. (020) diagonal glide (n) planes cut at $y = \frac{1}{4}$ and $y = \frac{3}{4}$. 2₁ screw axes lie in the glide planes at heights $z = \frac{1}{4}$ and $z = \frac{3}{4}$ (only the former is illustrated).

Figure 2: Translational symmetry neglected in determining point group, which is mmm. Point symmetry of Ca is 2/m and that of Cl is m.

Calcite

c/a = 0.854, and (0001): $(10\overline{1}1) = \tan^{-1} \frac{2c}{\sqrt{3}a} = 44.6^{\circ}$. The $\{10\overline{1}1\}$ poles can be plotted using a Wulff net.

(0001) : $(01\overline{1}2) = \tan^{-1} \frac{c}{\sqrt{3}a} = 26.2^{\circ}$

Figure 3: Required stereogram

Since calcite is trigonal $(\overline{3}m)$, there are two poles in the northern hemisphere related to $(10\overline{1}1)$ by symmetry. From an inspection of Fig. 3, the trace of $(0\overline{1}11)$ on the plane $(01\overline{1}2)$ is Q. The traces of both $(10\overline{1}1)$ and $(\overline{1}101)$ are at P, which is 90° from Q.

When light is incident normally on $(01\overline{1}2)$, the vibration direction for the ordinary ray is in the plane $(01\overline{1}2)$ and normal to the unique triad axis, i.e. Q. The extraordinary ray will therefore have its vibration direction along P. P and Q are therefore the principal vibration directions.

Figure 4: Principal vibration directions and traces.

(0112) section of a thin crystal of calcite

Coincidence Site Lattice

Figure 5: Referring to the lattice consisting of dots, and defining x to be horizontal pointing left, and y to be vertical pointing up, with z normal to the diagram, the basis vectors of the shaded CSL cell are [210], [120] and [001].

$$(Y J X) = \frac{1}{5} \begin{pmatrix} 4 & \overline{3} & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
(1)

Since the integer 5 is required to make all the elements of this matrix integral, $\Sigma = 5$.