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Abstract 

We have constructed a Bayesian neural network model that predicts the change, due to 

neutron irradiation, of the Charpy ductile-brittle transition temperature (ΔDBTT) of low 

activation martensitic steels given a 40-dimensional set of data from the literature. The 

irradiation doses were < 100 displacements per atom (dpa). Results show the high 

significance of irradiation temperature and (dpa)1/2 in determining ΔDBTT.  Sparse data 

regions were identified by the size of the modelling uncertainties, indicating areas where 

further experimental data are needed.  The method has promise for selecting and 

ranking experiments on future irradiation materials test facilities. 
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1. Introduction 

Ideally, one would like to predict the behaviour of radiation-damaged materials in 

future fusion power plants using mechanistic models [1], allied with the experimental data 

from past and present facilities as well as future ones (e.g. the International Fusion Materials 

Irradiation Facility (IFMIF) [2]).  The fusion materials problem is an example of a complex 

technology where the science is not fully established because of the large number of variables 

that determine the ultimate properties, and where ignoring any of these variables could lead 

to a loss of vital information [3]. The fracture toughness of irradiated steel is currently 

impossible to predict given a detailed description of the chemical composition, heat 

treatment, neutron irradiation parameters, irradiation temperature etc. Commonly used 

methods for empirical data fitting are limited by the need to specify a priori fitting functions 

and are therefore incapable of capturing unforeseen nonlinear couplings between variables, 

thus limiting their validity when making predictions outside the data range of the models.  

In treating data, there are two kinds of errors to consider. Noise is the familiar scatter 

which results when an experiment is repeated. It arises because there are variables which are 

not controlled. Uncertainty arises because there may exist many mathematical functions 

which adequately represent a set of experimental data, but which behave differently in 

extrapolation. This modelling uncertainty becomes large when data are sparse or badly 

scattered and is of prime importance when dealing with non-linear fitting because it 

highlights the problems of extrapolation and interpolation.  

This paper describes development of a Neural Network (NN) model for the ductile-

brittle transition temperature shift (ΔDBTT) in irradiated Low Activation Martensitic (LAM) 

steels. We have previously modelled the tensile properties of such steels using a NN [4]. 

Toughness is related to the ability of a material to absorb energy during fracture. The Charpy 

test involves the measurement of the energy required to fracture a square section notched bar. 
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Ferritic steels have a DBTT in which the fracture mode changes from ductile at high 

temperatures to brittle at low temperatures, and this can be measured by conducting Charpy 

tests at different temperatures. 

 

2. The Database and Network Design 

Data on the impact properties of LAM steels were compiled from the literature [5], 

including leading candidate alloys such as F82H (8Cr) and Eurofer 97 (9Cr) as well as the 

conventional T91 (9Cr-1Mo), EM10 (9Cr-1Mo) and 2.25Cr bainitic grades. This resulted in a 

total of about 450 experimental sets for the ΔDBTT data, Table 1. The inputs include: 

chemical composition, a parameter to describe the cold-work of the steel, heat treatment data, 

neutron irradiation dose φirr (dpa) and irradiation temperature Tirr. Some missing data 

prevented us from including the following inputs: dose rate, helium content, tensile yield 

stress and fracture mode. We have restricted the data to sub-sized Charpy specimens with 

cross sections ranging from 3.3 x 3.3 mm to 3 x 4 mm.  

Details of neural networks have been given by numerous authors and relevant 

descriptions of applications in the materials science field appear in [3]. In summary, a typical 

NN consists of an input layer (in this work with ~ 40 nodes, corresponding to the inputs in 

Table 1), a “hidden” layer in which the number of nodes (typically 2-15 nodes) determines 

the complexity of the model, and an output layer giving ΔDBTT. The dataset was randomly 

partitioned into equal-sized training and test sets. The network is created using the training 

data and its ability to generalize assessed using the test data. Unlike conventional regression, 

the training does not simply find a “best fit” set of network weight coefficients, but, instead, 

assigns a probability distribution of weights to the network. This approach has the advantage 

that the parameters describing the distribution give a measure of the modelling uncertainty.  
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Excessively simple or complicated models lead to large errors in predicting the test 

data. The correct level of model complexity corresponds to a minimum in this error and to 

find this we used a Bayesian inference method [6] to penalise over-complexity. The 

performance was further improved by making predictions using a committee of different 

neural networks [3, 4].  

 

3. Results 

3.1 Model Training and Performance 

Figure 1 shows the ability of the best 14-member committee model to predict ΔDBTT. 

There are very few outliers, i.e., points whose ±1 σ modelling uncertainties do not intersect 

the line of unit slope.  

3.2 Significance of Individual Inputs 

It is useful to examine the significance (Fig. 2) of each input in contributing to the 

output; this is estimated from the variance of the network σw, and is roughly equivalent to a 

partial correlation coefficient [6]. The normalizing and tempering temperatures and times are 

found to be significant inputs in predicting ΔDBTT. ΔDBTT is more strongly correlated with 

Tirr than simply with dose. This result suggests that thermal mobilization of irradiation 

defects plays a greater role than their absolute density, but the trend is also consistent with the 

possible operation of irradiation damage recovery processes mitigating the ΔDBTT shift for 

higher irradiation temperatures. The significance of the physically-motivated function 

(dpa)1/2 is larger than for dpa alone. A function of this form is consistent with models [5] 

either for solute depletion in a precipitation hardening mechanism, or with an excluded 

volume effect for the accumulation of knock-on damage defects. 

The C and Cr concentrations are perceived to be important by all committee 

members. The addition of Cr alone provides very little solid solution strengthening, but C and 
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Cr together promote carbide formation; it is well known that both elements determine the 

sequence of carbide precipitation reactions [7]. Notice that in the case of Al, B, Co, Ta, Nb, 

Ni and P, there is some lack of consensus between the members of the committee, indicating 

less reliable conclusions with these inputs.  

 

3.3 Model Predictions 

There are many possible ways of using the model to make predictions.  In this section, 

we discuss some of the more interesting of these.  

3.3.1 Effect of Irradiation Temperature 

The ΔDBTT model shows that Tirr is the input parameter with the highest significance. 

Figure 3 shows its effect on ΔDBTT where the experimental points are shown to compare 

well with the model prediction (lines) for T91 and HT-9 (12Cr-1Mo-VW) steels with φirr of 

13 and 26 dpa. The overall trend is a decrease of ΔDBTT with Tirr. This is expected since 

recovery processes operate more readily at high temperatures. This is also consistent with the 

fact that ΔDBTT reaches an asymptotic limit with Tirr, once the competing processes of 

recovery and defect creation become steady. The C concentration in HT-9 is 0.2%wt, twice 

the value of that in the T91 (0.09%wt), which could possibly explain why the asymptotic 

limit is higher for HT-9 than T91.  

3.3.2 Effect of irradiation dose 

Figure 4 shows the effect of irradiation dose on ΔDBTT for Eurofer for three values of 

the Tirr. At the lowest Tirr = 250°C, ΔDBTT increases linearly with dose.  However, at the 

higher Tirr of 350°C, there is evidence of a possible recovery: the slope decreases and at a 

higher Tirr of 450°C the ΔDBTT curve shows saturation and maximum shift of 100°C at ~ 20 

dpa, with a decrease at higher doses.  
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3.3.3 Effect of Chromium Concentration 

The variation of ΔDBTT with Cr concentration is shown in Fig. 5 for three values of 

Tirr. A clear minimum occurs at a concentration of ~ 9 wt-%.  The database has been checked 

to see whether ΔDBTT is linked to the unirradiated DBTT, but no correlation was found. The 

result is important in that it suggests there is an optimum chromium concentration to 

minimise in-service embrittlement. There is evidence [8] that for the higher Cr concentrations 

(~12 wt-%), hardening occurs via the formation of fine-scale Cr-rich α′ precipitates. The 

hardening will give rise to ΔDBTT > 0. The situation is less clear for low Cr concentrations. 

3.3.4 Effect of Tantalum Concentration 

Tantalum was originally thought to produce carbide precipitates and thus confer 

strengthening in steels. However most of the Ta remains in solution after normalizing [9], 

and the Ta is believed to promote austenite grain refinement, thus improving fracture 

toughness. Although there was no strong NN committee consensus as to the significance of 

Ta concentration, we have nevertheless made a prediction. Figure 6 shows the predicted 

ΔDBTT, for three values of Tirr. Despite large uncertainties, the trend is towards lower 

ΔDBTT at higher Ta concentrations at all Tirr. 

 

4. Summary and Conclusions 

 A neural network model has been created to estimate the ΔDBTT for a database of 

RAFM steels, accepting, as input, an approximately 40-dimensional vector of material and 

irradiation parameters.  The model needs no a priori fitting function. The model not only 

reproduces some well-established relationships but has also revealed some trends and 

features. These include: 

 The ability to find the significant input parameters in controlling ΔDBTT.  The input 

with the highest significance is Tirr and the physically-based function (dpa)1/2 is also 
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important. Chemical composition (e.g. C and Cr as well as other elements) and pre-

irradiation heat treatment effects are also significant. 

 The tendency for ΔDBTT to decrease and saturate with increasing Tirr > ~ 450°C. 

 Recovery process for samples with high Tirr and high doses. 

 A clear minimum in ΔDBTT with Cr concentration after irradiation. 

 Evidence for a reduction in ΔDBTT with Ta concentration after irradiation. 

The model is far from comprehensive since it is constructed from an imperfect database. 

We were forced to exclude some data through incompleteness, highlighting the need for 

authors to report experimental data as fully as possible. Nevertheless, results show the 

sensitivity of ΔDBTT to all the inputs.  

Future work will cross-correlate the model with our previous model [4] for the tensile 

yield stress, and predict and compare ΔDBTT with observation.  This procedure should 

expose any biases that are related to the use of sub-sized Charpy specimens. This knowledge 

is important since proposed test facilities, such as IFMIF, are constrained in their high flux 

irradiation volumes. We believe that the NN method could be of value in choosing optimal 

experiments in this context [10]. The strength of the NN approach is to recognize and assign 

large modelling uncertainties in sparsely populated regions of the data space, thus allowing 

proposed experiments to be ranked in terms of information content. 

As new materials data are reported, it will be possible to refine the model and reduce its 

uncertainties.  Models of this type make the very best use of published information, its noise 

and permit extrapolation to the conditions of future fusion power plant. 
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Table1. Variables and their statistics used in developing the ΔDBTT model 

Input Data Range Mean ± s.d. 

Normalising temperature (°C) 0 - 1100 1024.6 ± 95.7 

Normalising time (h) 0 - 2 0.67 ± 0.33 

Tempering  temperature (°C) 0 - 780 740.2 ± 83.0 

Tempering time (h) 0 - 2.5 1.71 ± 0.502 

Coldwork (%) 0 - 27 0.941 ± 4.958 

C (wt-%) 0.005 -  0.2 0.115 ± 0.025 

Cr (wt-%) 0 - 12 8.85 ± 1.951 

W (wt-%) 0 – 2.12 1.009 ± 0.889 

Mo (wt-%) 0 - 1 0.207 ± 0.340 

Ta (wt-%) 0 - 0.48 0.033 ± 0.046 

V (wt-%) 0 - 0.314 0.218 ± 0.064 

Si (wt-%) 0 - 0.4 0.173 ± 0.123 

Mn (wt-%) 0.04 - 1.35 0.496 ± 0.269 

N (wt-%) 0.0007 – 0.06 0.018 ± 0.012 

Al (wt-%) 0.001 - 0.054 0.015 ± 0.015 

B (wt-%) 0 - 0.009 0.003 ± 0.003 

Co (wt-%) 0.0024  - 0.02 0.006 ± 0.004 

Cu (wt-%) 0.0017 – 0.035 0.012 ± 0.011 

Nb (wt-%) 0.0001 – 0.2 0.035 ± 0.065 

Ni (wt-%) 0.005 - 2 0.181 ± 0.332 

P (wt-%) 0.002 - 0.016 0.007 ± 0.005 

S (wt-%) 0.0002 - 0.008 0.004 ± 0.002 

Ti (wt-%) 0.001 0.006 ± 0.003 

Zr (wt-%) 0 - 0.059 0.007 ± 0.017 

Irradiation  temperature (°C) 60 - 550 352.7 ± 71.041 
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Irradiation dose (dpa) 0 - 100 5.42 ± 10.21 

Range of ΔDBTT (°C) (-)39 - 335 67.21 ± 63.66 
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Fig 1.  Model-predicted change in DBTT (ΔDBTT after irradiation) versus the 
measured value.  
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Fig. 2. Perceived model significances for ΔDBTT of heat treatment parameters, irradiation 
parameters and chemical element composition. The histograms represent the mean significance of 
all 14 committee members for each parameter and the error bars the standard deviation within each 
group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 3.  Variation of ΔDBTT with irradiation temperature, comparing model 
predictions (lines) with the data (points) for T91 and HT-9 steels at 13 and 26 
dpa.  
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Fig 4. Model prediction: variation (with modelling uncertainties) of ΔDBTT 
with the irradiation dose for Eurofer for three irradiation temperatures. 

 
 
Fig 5. Model prediction: variation (with modelling uncertainties) of ΔDBTT 
with the Cr concentration for Eurofer for three irradiation temperatures and a 
dose of 10 dpa. 
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Fig 6. Model prediction: variation (with modelling uncertainties), of ΔDBTT on 
the Tantalum concentration for Eurofer for three irradiation temperatures and a 
dose of 10 dpa. 


