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1. Introduction

It is often said that a welded joint covers the eatire field
of metallurgy and all states of matter. Here we focus on the
weld deposit, which is the additional metal added to a weld-
ed joint in order to make it integral. There are few aspects
of welding that can be treated in isolation, but the deposit is
the part that is clearly separated from the rest of the assem-
bly by the fusion surface. Consequently, its metallurgy can
be treated somewhat independently, particularly with
respect to the development of microstructure in the solid-
state. We shall see nevertheless that this microstructure
can have long-range consequences on the entire engineer-
ing assembly.

This paper is about the numerical modelling of weld
deposits once solidification is complete. As in all technolo-
gy, the problem is complicated and has to be faced at a
level consistent with the technological goals. The ordinary
method of science can fail in these circumstances whereas
modelling is a pragmatic approach appropriate to the tech-
nology. The two procedures are contrasted in Fig. 1 and
described in detail elsewhere” -the main point is that it is
necessary to combine a large variety of techniques and
methods of approximation, as will be evident in the discus-
sion that follows.

A good deal of effort has, over the last 16 years, been
spent on systematically archiving detailed reviews in the
famous Graz symposia on the numerical modelling of weld
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phenomena, resulting in eight published volumes contain-
ing both the detail and essence of the methods. For brevi-
ty, the present review makes liberal reference to these
tomies. We begin by considering the most common weld-
ing alloys and then continue with the science which is not
yet mature.

2a Common Welding Alloys

Solute additions to the vast majorily of weld metals must
be kept at a minimum to avoid the risk of brittle fracture.
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Their yield strengths therefore usually lie in the range
350-550 MPa, with occasional higher values achieved at the
expense of toughness, Fig. 2.

The microstructure of such weld metals consists of mix-
tures of allotriomorphic ferrite (@), Widmanstitten ferrite
(@,), acicular ferrite (@,) and the so-called microphases
(small quantities of retained austenite and martensite)?.
Allotriomorphic ferrite is weak, and Widmanstiitten ferrite
suffers from poor toughness. This leaves acicular ferrite as
a good strengthener which also has the ability to frequently
deflect cracks; its fraction in the microstructure should
therefore be as large as possible. The techniques for calcu-
lating the microstructure are now well-established and com-
prehensively reviewed'"?. The basic method is based on
thermodynamics, nucleation and growth kinetics and over-
all transformation kinetics (Fig. 3a), with some accounting
for the formation of inclusions* ¥. The heat-flow models for
representing the actual process vary from empirical to a
full treatment of heat and fluid flow'®. The underlying theo-
ry is based on the atomic mechanisms of phase transforma-
tions as reviewed in" = ', There are of course, other inter-
pretations of the mechanisms of transformations in welds
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Fig. 3 (a)Flow chart illustrating the steps in the cal-
culation of weld microstructure®. TTT and
CCT stand for time-temperature-transforma-
tion and continuous cooling transformation
diagrams, g is related to the thickness of o
layers, M, B; and W, to martensite. bainite
and Widmanstitten ferrite-start tempera-
tures. 7, and T, are the start and finish tem-
peratures for allotriomorphic ferrite. (b) An
illustration of the agreement between the
calculated and measured microstruciures of
arc-welds. (c) An example calculation taking
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particularly regarding the nature of acicular ferrite™ ', but
these are qualitative and cannot be used in predictive mod-
els, nor have they been established from a fundamental
point of view.

The method?® has been used particularly in the design of
arc-welding consumables in industry, laser welds using
fillers'® and has even been reproduced at TWI'". It is illus-
trated in Fig. 3b, c.

It is possible to deduce some elementary mechanical
properties directly from a description of the microstruc-
ture™. The total strength of a single-pass weld consists of
contributions from the intrinsic strength of pure iron, solid
solution strengthening and microstructural contributions
(grain dimensions, defects) from the variety of phases. The
method makes use of standard deformation theory but

(a)

(=)

.Fig. 4 An iilustration of the complexity of the
function (of two inputs) that can be creat-
ed using a simple neural network with just
four hidden units. The two figures are gen-
erated from the same mathematical func-
tion but different weights (w). y =tanh [wx,
- 21+ tanh {x,2 - 2}+ tanhjwx, + 2}+ tanh {22
- w1

frankly, in terms of the required accuracy, is only capable of
giving a good estimate of the yield strength. Plasticity,
elongation, the ultimate tensile strength, fatigue, creep or
any complex property cannot be calculated in this way.
There is no theory which has the rigour or sophistication to
handle the large number of variables which are known to
control such properties.

The conventional way to deal with this difficulty is regres-
sion analysis in which experimental data are best-fitted to
some function which is usually linear. Very many such
relations can be found in the literature, for example*-®. A
better approach is a neural network™:

* there is no need to specify a function to which the data
are to be fitted. The function is an outcome of the
process of creating a network;

* the network is able to capture of almost arbitrarily non-
linear relationships (Fig. 4);

* with Bayesian methods, it is possible to estimate the
uncertainty of extrapolation. ‘

Robust neural network models of the mechanical proper-
ties of weld metals® ® have been incredibly successful in
avoiding experiments in the design of new materials, well
outside of the range of data included in the creation of the
models. One example is a weld metal for fire-resistant
steels, invented without any prior experiments™. Another
is the tough high-nickel alloys®* . Many of the models are
freely available on MAP®,

8, Strength: Unconventional
Microstructures

As described previously, there are many components fo
strength. The microstructural component is only 27 MPa
when the fraction of allotriomorphic ferrite is V=1, 486
MPa when V,_ =1 and 406 MPa when V_=1. Since the
intrinsic strength of pure iron is about 220 MPa at ambient
temperature, and since the ability to solid solution strength-
en is limited by hardenability considerations, it is not sur-
prising that the vast majority of welds based on these
microstructures have strength in the range quoted above
Fig. 2 shows that there are few alloys which exceed a yield
strength of 800 MPa. The term “high-strength” is there-
fore reserved for welds whose yield strength exceeds 800
MPa. '

To achieve even greater strength, it is necessary to sup-
press transformations to lower temperatures. This induces
greater nucleation rates and leads to a refinement of
microstructure. It also becomes possible to obtain phases
such as lower bainite and martensite. Martensite is tradi-
tionally avoided because of its association with poor tough-
ness in welds, but it should be recognised that not all
martensite is brittle even in the untempered form. Instead,
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we shall see that embrittlement is more to do with poor
alloy design so martensite need not be avoided in an effort
to make stronger weld metals. Consider the classic case of
welding alloys used in the manufacture of submarines
which have high-strength tempered martensitic hulls.
These typically have the composition Fe-0.05C-2Mn-0.3Si-
0.45Cr-3Ni-0.6Mo wt% with a microstructure that is a mix-
ture of bainite and martensite* ®, The carbon concentra-
tion is kept low, at a value not much greater than the maxi-
mum solubility in ferrite. Although the concentration
exceeds the solubility, it is well known that excess carbon
is trapped at defects in the bainite and martensite, to such
an extent that the effective solubility is almost the same as
the total concentration®. It is possible in these circum-
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Fig. 5 (a) Calculated contours showing the com-
bined effect of manganese and nickel on the
calculated toughness for -60T. of weld metsi
produced using arc welding with a heat input
of 1 kdmm, with a base composition (wt%)
0.034 C, 0.25 Si, 0.008 8. 0.01 P, 05 Cr.
0.62 Mo. 0.011 V. 0.04 Cu. 0.038 0. 0.008
Ti. 0.025 N, and an interpass temperature of
250T.

(b)The results of subsequent experiments for
welds A, B, and C.

105

stances, to completely avoid cementite precipitation®. To
summarise, low-carbon martensite need not be brittle-
indeed, commercial welding alloys of the type described
above are strong (yield 860-1000 MPa) and tough (60-70 J
at -607C).

Unsuccessful attempts have been made* *” to go beyond
these properties, by increasing the nickel concentration,
based partly on the prevailing opinion that the addition of
nickel to ferrite leads to an improvement in the toughness.

The problem was resolved when it was realised through
mathematical models* * that nickel is only effective in
increasing toughness when the manganese concentration is
small. This is illustrated in Fig. 5, where the contour plot
shows the impact energy at -60C for welds A (7Ni-2Mn), B
(9Ni-2Mn) and C (7Ni-0.5Mn); the details are described
elsewhere’ * ®  Experiments validated the predictions so
detailed studies were commenced to understand the mech-
anism of the Ni-Mn phenomenon.

4. Coalesced Bainite

The mechanism by which a combination of high man-
ganese and nickel concentrations leads to a deterioration in
strength has been studied in detail by Keehan and co-work-
ers® 2. It appears that when the transformation tempera-
tures are sufficiently suppressed, leaving a narrow gap
between the bainite and martensite-start temperatures, a
coarse phase labelled coalesced bainite forms.

Coalesced bainite occurs when adjacent small platelets of
bainite (“sub-units”) merge to form a single, larger plate.
This striking change in form occurs at large undercoolings.
Since adjacent sub-units of bainite have an identical crystal-
lographic orientation, they may merge given sufficient dri-
ving force to sustain the greater strain energy associated
with the coarser plate, and if there is nothing to stifle the
lengthening of the sub-units®. The first condition is satis-
fied by the large undercooling. The second implies that
coalescence is only possible at the early stages in the trans-
formation of austenite, when growth cannot be hindered by
hard impingement with other regions of bainite.

Fig. 8 Coalesced bainite in 8 7Ni-2Mn wt% weld
metal:e-22,
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Experiments have now confirmed that the coarse, coa-
lesced bainite appears in weld metals containing large con-
centrations of both manganese and nickel, such that the
bainite forms at temperatures very close to the martensite-
start temperature® *, [t leads to a deterioration in tough-
ness and can be avoided by careful modifications of compo-
sition, for example, by reducing the manganese concentra-
tion when the nickel concentration is high.

5. Welding Alloys for Fatigue
Resistance

Fatigue depends on many factors, one of the more impor-
tant being the presence of residual stresses in the context
of welded structures. Early work by Jones and Alberry**
indicated that such stresses can be mitigated by compen-
sating thermal contraction strains using transformation
plasticity*®. Ohta et al.* ™ designed a welding alloy with an
exceptionally low transformation temperature (My), in
which martensitic transformation in an unconstrained spec-
imen starts at about 180C and is just completed at ambient
temperature (Table 1). By contrast, normal welding alloys
have M= 500 - 400C. As illustrated in Fig. 7a, the net
strain (&) on cooling between M, and ambient temperature
is a contraction in the case of the high-M; “conventional”
alloy, whereas there is a net expansion for the new welding
alloy. This results in a large residual tensile stress for the
high-M; sample and a compressive one for the low-M; alloy
(Fig. 7b).

When tests were done on welded sections, the structures
joined using the low-M; weld metal gave a much higher
fatigue strength (Fig. 8). This improvement is attributed to
the compressive residual stress which reduces the effective
stress-range that the structure experiences during fatigue
testing. The results are speclacular for engineering; bene-
fits of the order illustrated in Fig. 8 will lead to radical
changes in design and lifing philosophies for structural
components. The achievement is based entirely on the fact
that the reduction of the transformation temperature allows
the shape deformation to compensate for the accumulated
thermal contraction strains. The work done in Japan has
recently been confirmed by Eckerlid et al.®' and Lixing ef
al®.

Welding alloys used in civil constructions have to meet a
range of requirements other than fatigue. Work is now

Table 1 The chemical compositions (wt.9). and mea-
sured M, temperature of conventional and
novel welding alloys. After Ohta et al.

Aloy Crmi% i Mn N Mo Cr MS/.C
Convenlional  0.10 03 0% - - - 590
10CrIONI 0025 032 070 010 013 100 180

needed to develop a system which gives a good portfolio of
properties, such as strength, fatigue strength and tough-
ness. Apart from this, the theoretical treatment usually
adopted for transformation plasticity is rather weak, relying
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on the assumption that the transformation strain is an
isotropic volume change. This is not appropriate for dis-
placive transformations of the type that occur in high-
strength weld deposits® * *», where the shape strain due to
the formation of bainite or martensite is very large, a shear
of about 0.26 on the habit plane and a dilatational strain
directed normal to the habit plane of about 0.03. It is neces-
sary to use the proper transformation strain and the crystal-
lographic theory to calculate the extent by which transfor-
mation plasticity is able to accommodate the stresses that
develop due to constraint in welded joints. Such a theory
should not only be able to predict the anisotropic transfor-
mation strains but also the crystallographic texture result-
ing from the development of a biased microsiructure when
those crystallographic variants which comply with the
external stress are favoured. An advance has recently been
made in this respect® which with further work, promises to
be a useful approach for weld deposits designed to mitigate
residual stresses.

The need for good theory is emphasised by the fact that
the current low-transformation-temperature weld metals
provide rather small transformation strains (0.01), largely
because the degree of stress-induced bias in the
microstructure is rather small. It has been demonstrated
that the potential of transformation plasticity is much
greater than this®. The science needs to be developed to
allow greater variant selection in the welding alloys.

6. Summary

Modern research has tended to emphasise fashions, for
example the current trend for everything prefixed with the
adjective nano. History tells us that many of these fashions
are short-lived and fail to achieve the exaggerated claims
made at their birth. I hope that in this review I have
demonstrated that the mathematical modelling of steel
weld deposits has lived up to expectations over some 30
years of continuous research. Furthermore, the methods
are now routinely used in industry and academia alike, with
novel products emerging as a result of predictions rather
than accidents of research.

In this review, I have covered conventional weld metal
microstructures consisting of allotriomorphic ferrite,
Widmanstiitten ferrite and acicular ferrite, together with
associated properties. This is now a mature field with mod-
els which are sufficiently sophisticated and accurate to be
applied across a broad range of requirements.

I have also covered two fields which are emerging, that
of exceptionally strong weld metals dependent on bainitic
and martensitic microstructures, and welding alloys
designed to mitigate residual stresses. It would be appro-
priate to review these in another ten years time, perhaps in
another special issue of the Proceedings of the Japan
Welding Society.
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