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Introduction

Mechanical alloying provides a technique for the pro-
duction of dispersion strengthened alloys having interesting
chemical compositions and unique properties. The process
consists of blending elemental powders with master alloy
powders in an attritor, and ball milling the mixture under
a dry and protective atmosphere. The resulting alloyed
powder is highly cold worked and can be homogeneous in
its microstructure.! On completion of mechanical alloying,
the powder is canned, extruded, and hot rolled to bars or
hot and cold rolled to sheet.

Mechanically alloyed oxide dispersion strengthened
(MA-ODS) alloys are already available in commercial
quantities. The technique is nevertheless somewhat unusual
and a large number of important phenomena are not yet
understood. Experimental measurements of the mechani-
cal properties of the alloys, for example, have not been
systematically coordinated to reveal a definite pattern with
respect to the numerous variables thought to be important
in understanding the service behaviour of the alloys. The
objective of the present work was to investigate whether
an artificial neural network? could be trained to predict
the ultimate tensile strength, yield strength, and elongation
of MA-ODS ferritic steels as a non-linear function of these
variables. In Table 1 the chemical compositions are given
of some commercial MA-ODS steels which are most
represented in the data used for the present analysis.>!

This paper is presented first with an introduction to the
method, followed by a description of the process by which
the optimum model was obtained in each instance. The
final section is concerned with the use of the models to
ensure that the perceived relationships are metallurgically
significant.

Technique

Most workers are familiar with regression analysis, where
data are ‘best fitted’ to a specified relationship which is

Table1 Chemical composition of some commercial
MAODS steels, wt-%

Steel Cr Al Mo Ti Y203 Fe

MAS56 200 45 05 05 Bal.
MAS57 140 03 10 0-27 Bal.
DY {DT2203Y05) 130 16 2:2 05 Bal.
DT (DT2906) 130 15 29 Bal.

usually linear. The result is an equation in which each of
the inputs x; is multiplied by a weight w;. The sum of all
such products and a constant @ then gives an estimate of
the output y = Z; w;x; + 0. It is well understoood that there
are dangers in using such relationships beyond the range
of fitted data.

A neural network is a more general method of regression
analysis. As before, the input data x; are multiplied by
weights, but the sum of all these products forms the
argument of a hyperbolic tangent. The output y is therefore
a non-linear function of x;, the function usually selected
being the hyperbolic tangent because of its flexibility.
The exact shape of the hyperbolic tangent can be varied
by altering the weights (Fig. la). Further degrees of non-

(a) (b)

f{xi}

1 athree different hyperbolic tangent functions - ‘strength’
of each depends on weight, and b combination of two
hyperbolic tangents to produce more complex model
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2 Complex model shown may fit data, but in this
instance a linear relationship may be all that is
justified by noise in data
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INPUTS OUTPUT

3 Typical network used in analysis: connections
originating from only one input unit are illustrated
and two bias units are not illustrated

HIDDEN UNITS

linearity can be introduced by combining several of these
hyperbolic tangents (Fig. 1b), so that the neural network
method is able to replicate almost arbitrarily non-linear
relationships. It is well known that the effect of chromium
on the microstructure of steels is markedly different at high
concentrations than in dilute alloys. Ordinary regression
analysis cannot cope with such changes in the form of
relationships.

A neural network is ‘trained’ using a set of examples
of input and output data. The outcome of the training is
a set of coefficients (weights) and a specification of the
functions which in combination with the weights relate the
input to the output. The training process involves a search
for the optimum non-linear relationship between the input
and the output data and is computer intensive. Once the
network is trained, estimation of the outputs for any given
inputs is very rapid.

One of the difficulties associated with blind data
modelling is that of ‘overfitting’, in which spurious details
and noise in the training data arc overfitted by the model
(Fig. 2). This results in solutions that generalise poorly.
MacKay'*'® has developed a Bayesian framework for
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4 Yield strength analysis: variation in model perceived
noise level ¢, as function of number of hidden units
(i.e. complexity of model) - several values are presented
for each set of hidden units because training for each
network was started with various random seeds

neural networks in which the appropriate model complexity
is inferred from the data.

The Bayesian framework for neural networks has two
further advantages. First, the significance of the input
variables is automatically quantified. Consequently the
significance, perceived by the model, of each input variable
can be compared against metallurgical theory. Second, the
predictions of the network are accompanied by error bars
which depend on the specific position in input space. These
quantify the certainty of the model regarding its predictions.

The neural network method has recently been applied
to many materials problems, for example: the impact
toughness of C-Mn steel arc welds by Bhadeshia et al:!”
an analysis of the strength of nickel base superalloys by
Jones and MacKay;'® austenite formation in steels by
Gavard et al;'® yield and ultimate tensile strength of steel
welds by Cool et al;*° fatigue crack growth rate in nickel
base superalloys by Fujii et al.;*! mechanical properties in
the heat affected zone of power plant steels by Cool and
Bhadeshia;** prediction of martensite start temperature by
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5 Yield strength analysis: variation in test error and log
predictive error as functions of number of hidden
units — note that larger log predictive error indicates
superior model

Materials Science and Technology August 1998 Vol. 14




Badmos et al.

Neural network models for tensile properties of Fe alloys 795

0.0875 0.08750
(a) (b)
0.0840 <
0.08312
S 0.0805 ~ 5 1
= : = 0.07875 -
& 0.0770 - K |
] 0.07438 -
0.0735 4
0.0700 — — T 0.07000 — | S
0 2 4 6 8 10 0 2 4 6 8 10
Model Rank Number of models in each committee

a test errors of top 10 yield strength models, and b corresponding test errors for committee models

0.6 0.6

= (a) = (b)
o | 0 i
S s
z Z 3
0.3 034 3
= = )
A L] =
) E 2 - 4
T e !
2 0.0+ g 004
= ]
F 2
=B 1 o -
= =
= P
£ -03 2 03
] < 3
g =
& 1 N 1
z. z

‘06 I T T T T T T T ‘0‘6 T T T T T T

-0.6 -0.3 0.0 0.3 0.6 -0.6 -0.3 0.0 0.3 0.6
Normalised experimental yield strength Normalised experimental yield strength
0.6 0.6

= (c) = {d)
= =
£ £
v (0.3 < 034 ]
- = |
- - - E
= - [
A ot
2 0.0+ 2 0.0 5
= =
b £
=¥ b = i
= =
= 4
£ 0.3 S £ 0.3
= =
= £
= - [ 4
= =
rd Z

-0.6 . : : I : : : -0.6 T i . . : :

-0.6 -0.3 0.0 0.3 0.6 -0.6 -0.3 0.0 0.3 0.6

Normalised experimental yield strength

Normalised experimental vield strength

a single model, training data set; b single model, test data set; ¢ committee, training data set; d committee, test data set

Normalised predicted yield strength versus normalised experimental results using a, b single best model and ¢, d
optimum committee

Materials Science and Technology August 1998 Vol. 14




796 Badmos et al.

Neural network models for tensile properties of Fe alloys

Vermeulen er al;** prediction of the continuous cooling
transformation diagram of some selected steels by
Vermeulen et al;** and prediction of the measured temper-
ature after the last finishing stand in hot rolling by
Vermeulen et al *

Analysis

Both the input and output variables were normalised within

the range +0-5 to —0-5. The normalisation is obtained

through a procedure which is expressed quantitatively as
X = Xonin

Xy=—— 05 . .. (D

X,

max ~ Ymin

where x5 is the normalised value of x, which has the
minimum and maximum values given by x,;, and x_..
respectively. The normalisation is not necessary for the
analysis but it facilitates the subsequent comparison of the
significance of each of the variables.

Figure 3 shows a typical network. Each network consists
of input nodes (one for each variable x), a number of
hidden nodes. and an output node. Linear functions of the
inputs x; are operated on by a hyperbolic tangent transfer
function

hi=tanh(2w;j”xj+()E“) P 4
i

so that each input contributes to every hidden unit. The
bias is designated 6, and is analogous to the constant that
appears in linear regression analysis. The strength of the
transfer function is in each case determined by the weight
w;;. The transfer to the output y is linear

‘_\‘=Zu'fj2}hi—§—0'3’ e )]

The specification of the network structure, together with
the set of weights, is a complete description of the formula
relating the input to the output. The weights are determined
by training the network. The training is carried out using
a data set D= {x™ "™} by adjusting the weights w to
minimise an error function, e.g.

|
ExW) =53 Y [ —p(x™ W . . . .. . (4)

This objective function is a sum of terms, one for each
input-target pair {x, 1}, measuring the degree of correlation
between the output y{x; w} and the target ¢ (Ref. 16). The
parameter m denotes each input—output pair.

The training for each network is started with a variety
of random seeds. The value of a term o, gives the frame-
work estimate of the overall noise level of the data. The
complexity of the model is controlled by the number of
hidden units and the values of the regularisation constants
(o), one associated with each of the inputs, one for biases,

Table 2 Variables used in analysis of yield strength
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8 Normalised predicted vield strength versus
normalised experimental results for whole data set
after retraining using optimum committee

and one for all weights connected to the output. The noise
level decreases monotonically as the number of hidden
units increases. However, the complexity of the model also
increases with the number of hidden units. A high degree
of complexity may not be justified if the model attempts to
fit the noise in the experimental data. MacKay'?13:13:1 hag
made a detailed study of this problem and defined a
quantity (the ‘evidence’) which acts as an indicator of the
probability of a model. In circumstances where two models
give similar results for the known data set, the more
probable model would be predicted to be that which is
simpler; this simple model would have a higher value of
evidence. The evidence framework is used to control the
regularisation constants and o,. The number of hidden
units is set by examining performance on test data. A
combination of Bayesian and pragmatic statistical techniques
1s therefore used to control the complexity of the model. A
further procedure used to avoid the overfitting problem
was to divide the experimental data randomly into two
equal sets, namely, the training and test data sets. The
models are developed using the training data only., The
unseen test data are then used to assess how well the model
gencralises. A good model would produce smilar levels of
error in both the test and training data whereas an
overfitted model might accurately predict the training data
but badly estimate the unseen test data. Once the correct
complexity of the model has been determined using this
procedure, it can be retrained using all the data with a
small but significant reduction in the error.

Variable Range Mean Standard deviation
Chromium, wt-% 13-20 17-30 320
Aluminium, wt-% 0-4-5 2-62 2:23
Titanium, wt-% 0-5-3-50 103 0-86
Molybdenum, wt-% 0-15 0-35 0-66
Yittria, wt-% 0-05 0-41 0-15
Recrystallisation temperature, °C 20-1330 697 595
Recrystallisation time, s 0-120 28-44 3338
Aging temperature, °C 20-800 163-3 303

Aging time, s 0-2888 327 739

Cold work, % 0-70 10-43 19-64

Test temperature, °C 0-1200 5621 340-4

Strain rate, s~° 3x1078-3x1072 9-89 x 10~* 25 %1073
Yield strength, MPa 63-1600 497 388
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The test error T, is a reflection of the ability of the
model to predict the target values in the test data

Ta=05} (ya—ta)? (5)
where y, is the set of predictions made by the model, and
f, the corresponding target {(experimental) values previously
unsecen by the model.

It is popular to use the test error (sum squared error)
as the default performance measure whereby the model
with the lowest test error is considered to be the best.'® In
many applications there will be an opportunity to make a
prediction with error bars rather than a simple scalar
prediction, or maybe to carry out an even more complex
predictive procedure. It is then reasonable to compare

Table 3 Ranking by test error of 10 best models of
yield strength

Ranking Hidden units Seed Test error Log predictive error
1 14 100 0-0764770 23075
2 10 100 0-080370 222-37
3 1" 100 0-082443 217-96
4 16 30 0-083116 228-67
5 6 30 0-083576 218-:03
6 8 100 0-083781 217-81
7 13 10 0-083790 220-32
8 15 30 0-084411 221-84
9 13 100 0-085464 21876
10 6 10 0-086566 21826
Table4 Test errors of committees organised for

estimation of yield strength: note that test error
of best committee is less than that of single
best model

Mumber of models in committee Test error

0-07648
007309
0-07128
007137
0-07104
007170
007221
0-07257
0-07322
0-07403

SWRONOU AWK 2

—-

models in terms of their predictive performance as measured
by the log predictive probability of the test data. Under
the log predictive error, as contrasted with the test error,
the penalty for making a ‘wild’ prediction is much less if
the wild prediction is accompanied by appropriately large
error bars. Assuming that for each example m the model
gives a prediction with error (y™, 6™), the log predictive
error (LPE) is
LPE=Y {%(x““’ — ylm)2 i o™ + log[(2n)" Za;.ﬂ“]}
o (6)
When making predictions, MacKay'® has recommended
the use of multiple good models instead of just one best
model. This is termed forming a committee’. The committee
prediction ¥ is obtained using the expression

1
,‘_L;}'i

where L is the size of the committee and y; is the,estimate
of a particular model i. The optimum size of the committee
is determined from the validation error of the committee’s
predictions using the test data set. The test error of the
predictions made by a committee is calculated by replacing
the y, in equation (5) with y.

(7

Yield strength model

The technique was applied to the variables given in
Table 2 for the analysis of the yield strength. There were
232 data, 12 input variables, and one output which is the
yield strength. The major alloying elements (chromium,
aluminium, titanium, and molybdenum) are expected to
influence the yield strength primarily via solid solution
strengthening. In some alloys molybdenum, titanium, and
chromium also precipitate as an intermetallic compound, ¥
phase (FeCrTiMo) after a low temperature aging treatment.®
Yttrium oxide is present as a very fine dispersion and must
enhance strength at all temperatures by impeding the glide
of dislocations. The recrystallisation heat treatment has
a very severe effect on the microstructure since it changes
an ultrafine primary recrystallised grain structure to a struc-
ture that is coarse and columnar. Cold work is naturally
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The plots of the predicted values versus experimental
values using the training and test data sets for the single
best model and the committee are shown in Fig. 7. Figure 8
shows the plot for the committee after retraining using the
whole data set.

The significance of each of the input variables perceived
by the various models contained in the committee is shown
by o, in Fig. 9. The parameter o, is rather like a partial
correlation coefficient in that it represents the amount
of variation in the output that can be attributed to any
particular input parameter and does not necessarily represent
the sensitivity of the output to each of the inputs.
As expected, the yield strength correlates strongly with
temperature.

Ultimate tensile strength
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10 Ultimate tensile strength analysis: variation in model
perceived noise level g, as function of hidden units
(i.,e. complexity of model) - several values are
presented for each set of hidden units because
training for each network was started with various
random seeds

expected to increase the yield strength; the data set included
a variety of methods of cold deformation including rolling
and swaging. The yicld strength of body centred cubic
metals is particularly sensitive to temperature because of
the large Peicrls barriers to dislocation motion. A further
temperature dependence originates from the possibility of
the climb of dislocations over dispersoids. There may in
unrecrystallised alloys be an additional effect due to the
onset of dynamic recrystallisation.

The plot of ¢, as a function of the complexity of the
models is shown in Fig. 4. Note that a number of values
are presented for each hidden unit because the training
process was started using different randomly selected seeds
which determine the starting values of the weights. The test
error and log predictive error versus number of hidden
units are shown in Fig. 5.

The numerical data for the top ten models ranked by
their test error are given in Table 3. Table 4 gives the test
errors of the ten committees formed, starting with the best
model and progressively increasing the number of models
in the committee. The plots of the test errors of the top ten
models and those of the committees are shown in Fig. 6
plotted on the same scale to show the usual reduction in
test error when an appropriate committee is formed. The
committee consisting of five top ranking models has the
least test error and was used for the study of the yield
strength presented below.

The neural network technique was applied to the ultimate
tensile strength (UTS) data given in Table 5. The variables
are identical to those used for the yield strength analysis.
It would ideally be of interest to include the strain hardening
coefficient since this determines the plastic instability which
defines the ultimate strength. However, no such data could
be found in the published literature. There were 12 input
variables and one output variable, the ultimate tensile
strength. A total of 232 data were used. As before, the data
were divided equally and randomly into test and training
data sets, the training data set being used to train the model
and the ability of the model to generalise being examined
by checking its performance on the unseen test data.

Figure 10 shows the plot of &, versus hidden units. As
expected, the inferred noise level decreases monotonically
as the number of hidden units increases.

Figure I1 shows the variation of test error and log
predictive error as functions of the number of hidden units.
The calculated test error reaches a minimum at 16 hidden
units and the log predictive error also exhibits a maximum
at the same number of hidden units. This would have been
the optimum model had a single model been used for the
analysis.

A committee model was used. Based on the values of the
test error and log predictive error, four models were selected
as the best. The models were ranked using their test error
values as presented in Table 6.

The optimum number of models in the committee was
determined from the calculated validation errors of:the
different possible committees. Figure 12 shows the variation
of the test error of the best models as a function of their
position on the ranking table and the test error of the
committees as a function of the number of models. Tt is
evident that forming a committee reduces the test error,
and hence improves predictions.

As shown in Fig 12 the committee consisting of the
top three models shows the least test error and was used

Table5 Variables used in analysis of ultimate tensile strength (UTS)

Variable Range Mean Standard deviation
Chromium, wt-% 13-20 17-19 322
Aluminium, wt-% 0-46 2-54 2:24
Titanium, wit-% 0-5-3-50 11 087
Malybdenum, wit-% 0-156 0-37 0-58
Yttria, wi-% 0-0-5 0-41 0-15
Recrystallisation temperature, °C 20-1330 684 594
Recrystallisation time, s 0-120 2756 3324
Aging temperature, “C 20-800 1747 3117

Aging time, s 0-2888 361 781

Cold work, % 0-70 10-47 1971

Test temperature, °C 0-1200 5611 3476

Strain rate, s~ 3x10°%-3x1072 11x1073 25x 1072
UTS, MPa 70-7-1680 575-3 407-3
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11 Ultimate tensile strength analysis: variation in
test error and in log predictive error as functions
of number of hidden units - note that larger log
predictive error indicates superior model

for the analysis. The agreement between the predicted
and experimental values for the training and test data sets
is shown in Fig. 13 for the single best model and the
committee.

The committee models were then retrained on the
whole data set starting with the weights determined
from the previous training exercise. Figure 14 shows the
plot of the predicted values versus experimental values
for the whole data set after the retraining. The retraining
is shown to have significantly improved the model with
the reduction in error bars and the apparent absence of
outliers.

Table 6 Ranking according to test error for four best
models of ultimate tensile strength

Ranking Hidden units Seed Test error Log predictive error
1 16 30 0042786 250-73
2 15 30 0-045080 25015
3 16 100 0-046607 250-49
4 15 100 0047735 25145
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12 a test error of four best ultimate tensile strength
models and b corresponding test errors for
committees of models

The significance of each of the input variables perceived
by the various models contained in the committee is shown
by a,, in Fig. 15. The test temperature is shown to have the
largest o, for all three models in the committee. This shows
that the models have recognised a pattern correctly because
temperature is more widely varied than any other input in
the database. Moreover, temperature is known to affect
strength very significantly.

Elongation model

The ultimate tensile strength and yield strength were included
as input variables in addition to the 12 input variables
used in the strength analysis (Table 7). The inclusion of
the strength parameters became necessary after the initial
attempts to train the network without these parameters
failed to produce acceptable results. The reason for this
behaviour is obvious, in that the ductility of a material is a
function of strength. The database consists of 232 examples
and the noise level in the data is as plotted in Fig. 16a.

Materials Science and Technology August 1998 Vol. 14




800 Badmos et al.

Neural network models for tensile properties of Fe alloys

0.6
| fal
w044
5 ]
g
2 024
=
= 1
= -0.0 1
= d
2
= -02 -
£
£ d
Z 04 - :
'06 i T T | ! [ T T ' I !
06 -04 -02 -00 02 04 06
Normalised experimental UTS
0.6
| (c}
wn 0.4 -
[
:) | =
S 024
g
_E p
&
2 -0.0 +
= i
o
& =
= -0.2 -
£ |
s
Z 04 ®
06 ——7T—7T——F 71—
06 -04 -02 00 02 04 06

Normalised experimental UTS

13 Normalised predicted ultimate tensile strength versus normalised experimental results using a, b single best model

and ¢, d optimum committee

Test error and log predictive error as functions of hidden
units are shown in Fig. 16b and c.

The numerical data for the ten best models ranked
according to their log predictive errors are given in Table 8.

Table7 Variables used in analysis of elongation
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a single model, training data set; b single model, test data set; ¢ committee, training data set; d committee, test data set

Although the ranking of the models was by their log

predictive error the optimum committee was determined
using the validation error. The test errors of the ten

committees are given in Table 9 and Fig. 17 shows the test <

v
Variable Range Mean Standard deviation
Chromium, wt-% 13-20 17-45 319
Aluminium, wi-% 0-4'5 274 2:20
Titanium, wt-% 0-5-3-50 102 0-86
Molybdenum, wt-% 0-15 035 0-58
Yttria, wt-% 0-05 042 015
Recrystallisation temperature, °C 20-1330 729 585
Recrystallisation time, s 0-120 28-92 3372
Aging temperature, “C 20-800 171 309
Aging time, s 0-2888 3548 778
Cold work, % 0-70 11-4 22:59
Test temperature, °C 0-1250 561-4 3402
Strain rate, s 3x10°3-3x 1072 13x 1073 27 %1072
UTS, MPa 70-7-1680 545 390
Yield strength, MPa 63-1600 468 367
Elongation, % 0-8-49-29 1213 818
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error versus ranking for the best models, and the test errors
of the committees.

As shown in Fig. 17b the committee consisting of the top
six models shows the least test error and was therefore
selected as the optimum model. Figure 18 shows the plots
of the predicted values versus experimental values for
the single best model and the committee. The plot for the
committee after retraining the committee models using the
whole data set is shown in Fig. 19.

Figure 20 shows the plot of the model perceived signi-
ficance of the variables ¢, for the six models contained
in the committee. Test temperature can be seen to have a
marked effect on elongation. This is expected and it is
exciting to note the consistency with the patterns shown
in the yield and ultimate strength models. The perceived
influence of yield strength on elongation is slightly greater
than that of ultimate tensile strength on elongation. This is

Table 8 Ranking by log predictive error for 10 best
models of elongation

Ranking  Hidden units Seed Test error Log predictive error
1 14 50 017988 161-23
2 14 30 0-19329 160-86
3 11 30 0-21316 159-76
4 13 50 0-20960 159-47
5 8 100 0-19966 15805
6 7 50 0-18807 157-47
7 5 100 021390 156-42
8 4 30 0-21008 155-44
9 10 100 020382 155-81
10 10 10 020522 15451
Table9 Test errors of committees organised for

estimation of percentage elongation: note that
test error of best committee is less than that of
single best model

Model in committee Test error

017987
0-17642
0-17930
017921
0-18035
0-17368
0-17504
017702
0-17639
0-17726

—
[=T0s e R B R ) R P ]

expected metallurgically since it is the difference between
the yield strength and UTS that relates to the uniform
component of elongation.

Application of models

Attempts were made to use the committee models to
predict the influence of the variables on the ultimate tensile
strength, yield strength, and percentage elongation of the
iron base MA-ODS alloys and to determine whether the
perceived relationships are reasonable from the point of
view of the established metallurgical information. All the

3
| H Model 1
B Model 2

24 B Model 3

Ti
Mo K

Al B

&]

Y,0; §

Annealing temperature BN

Annealing time PR
Aging time §
Cold work R
Strain rate |

Aging temperature
Test temperature @

15 Model perceived significance of input parameters for committee model trained on all ultimate tensile strength
data: g,, values for all members of committee are presented for each variable
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units (i.e. complexity of model) - several values are
presented for each set of hidden units because
training for each network was started with various
random seeds (note that higher value of log
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17 a test errors of top 10 elongation models and
b corresponding test errors for committees of models

results are presented along with the +1 standard deviation
predicted error bars.

EFFECT OF TEMPERATURE

Figure 21 shows the predicted effect of test temperature
on the yield strength, ultimate strength, and elongation of
MAB956 for both recrystallised and unrecrystallised conditions.

The predicted patterns are fairly reasonable. There is no
significant reduction in strength until about 500°C. Similarly,
there is no noticeable change in elongation until the region
corresponding precisely to the decrease in strength, when the
elongation increases. This is consistent with the established
property that increasing temperature leads to a decrease in
strength and an increase in elongation. However, the sharp
decrease in strength and corresponding sharp increase
in elongation is peculiar although well known.®'° An
explanation that the sharp changes occur at a temperature
where the dislocation density is effectively reduced would
have been appropriate had the pattern not been the same
for both the recrystallised and unrecrystallised conditions.
It may be that dislocation climb over the fine yttria
particles becomes prominent in the regime where the sharp
reduction is observed. The alloy can be seen to show higher
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18 Normalised predicted percentage elongation versus normalised experimental results using a, b single best model

and ¢, d optimum committee

percentage elongation in the unrecrystallised condition
than when recrystallised. This seems unusual as the alloys
in the unrecrystallised condition are harder and would be
expected to be less ductile. However, this result is consistent
with extensive experimental work by Alamo et al.!® which
indicates that it is the coarse columnar grain structure
which leads to poor ductility in the recrystallised alloys.
The experimental strengths and percentage elongations
of the various commercial MA-ODS ferritic steels are
compared in Fig. 22. The heat treatment conditions of the
alloys are as for commercial applications. The DT and DY
alloys are subjected to an aging treatment to precipitate
phase for higher strength. This effect is correctly predicted,
with higher ultimate strength for DT and DY than for
MAZ956 which contains no y phase. The DY alloy contains
yttria particles whereas DT does not, and this explains the
higher strength of DY compared with DT. As can be seen
the yield strength of MA956 is higher than that of DT
despite the presence of y phase in the latter. This is because
of the yttria particles in MA956 and clearly demonstrates
that the effect of dispersoid strengthening is primarily on

the yield strength rather than on the ultimate strength. The
plots of percentage clongation further demonstrate the
effects of dispersoids, with DT showing greater ductility
because yttria particles are not present. It can then be
summarised that yttria particles increase yield strength and
reduce ductility and that the lower ductility in DY, in
which both y phase and yttria particles are present, occurs
as a result of the yttria particles.

EFFECT OF TITANIUM, MOLYBDENUM, AND
YTTRIA CONTENT

Figure 23 shows the effects of titanium, yttria, and molyb-
denum on the yield strength, ultimate strength, and
elongation of MA956. The ultimate strength and yield
strength increase with titanium content; elongation, however,
appears insensitive. The increase in strength with increasing
titanium is generally thought to occur via y phase but
this is not formed in MA956, in which the titanium has a
solid solution strengthening effect, thus affecting both the
ultimate and yield strength almost equally. The effect of
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19 Normalised predicted percentage elongation versus
normalised experimental results for whole data set

after retraining using optimum committee

yltria content is slightly more pronounced on the yield
strength than the ultimate tensile strength, although the
error bars are large. The bar charts of the model perceived
significance of variables for the yield strength and ultimate
strength 1n Figs. 9 and 15 respectively show a stronger yttria
effect for the yield strength than the ultimate strength, in
agreement with the above observations. The results of an
experimental work by Kawasaki et al.?® on the effect of
dispersoids on tensile deformation of Fe-20Cr oxide dis-
persion strengthened alloys has helped to establish the
reliability of the predicted patterns. Addition of vttria
particles was reported®® to increase the 0-2% yield stress
over the entire experimental temperature range (300-
1073 K), and at temperatures higher than 673 K the
increment of work hardening due to the dispersoids was
found to be small. The ultimate tensile strength is a function

of work hardening and this probably explains why the
predicted effect of dispersoids on the ultimate tensile
strength 1s generally less pronounced than for the yield
strength. These predicted types of behaviour with respect
to titanium and yttria concentrations are significant as they
seem to corroborate the explanation given above for the
predicted tensile properties of the different MA-ODS steels.
Titanium, through y phase, is responsible for the higher
ultimate strength of DT and DY compared with MA956.
The higher yield strength for MA956 than for DT and the
higher ductility of DT compared with MA956 and DY are
because of the yttria particles in MA956 and DY. Strength
and elongation are shown to be insensitive to molybdenum
content in MA956. Apart from providing solid solution
strengthening, molybdenum is a constituent in 7 phase and
as such increasing its concentration is expected to contribute
positively to strength. However, y phase formation depends
on the titanium concentration, which is very low in MA956;
an increase in the molybdenum concentration may not,
therefore, have any any effect. The model seems to have
recognised correct patterns.

EFFECT OF CHROMIUM AND ALUMINIUM

The predicted effects of chromium and aluminium on the
tensile properties of MA956 are shown in Fig. 24. Changes
in concentration have negligible effects on the strength and
elongation of MA956. However, the error bars are so large
that 1t is not possible to reach a satisfactory conclusion.
Large error bars occur as a result of either noisy data or
sparse data. It is suspected that both of these factors are
responsible for the absence of a significant relationship for
chromium or aluminium.

EFFECTS OF RECRYSTALLISATION
TEMPERATURE AND TIME

The effects of the recrystallisation temperature and recrys-
tallisation time on the yield strength, ultimate stremgth,
and elongation are shown in Fig. 25. As expected the
ultimate strength decreases with increasing recrystallisation
temperature or time. The yield strength seems insensitive
to the recrystallisation temperature. The elongation shows
a significant increase with the recrystallisation temperature.
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20 Model perceived significance of input parameters for committee model trained on all percentage elongation data:
a,, values for all members of committee are presented for each variable
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elongation of MA956

EFFECTS OF COLD WORK AND STRAIN RATE

Figure 26 shows the predicted effects of cold work and
strain rate on the ultimate strength, yield strength, and
elongation of MA956. As expected, increasing cold work
increases the ultimate strength and the yield strength and
a saturation level is predicted above which further cold
work does not lead to an increase in strength. Although
the error bars are large for the elongation, the predicted
pattern is that expected, showing decreasing ductility with
increasing cold work. The large error bar is due to the
very limited number of examples where cold work is varied
in the database. The strength and elongation are found to
be insensitive to low strain rate, but at high strain rate the
strengths increase and elongation decreases accordingly
with increasing strain rate. These results are in excellent
agreement with published experimental work.?’

Summary

Tensile property data for mechanically alloyed, oxide
dispersion strengthened ferritic stainless steels have been

analysed using a neural network technique within a Bayesian
framework. The analysis, although empirical, can after
appropriate training and with the use of a committee of
models produce results which are metallurgically reasonable.

The present authors’ experience of the neural network
method suggests that it has considerable potential for useful
applications in materials science. It is particularly useful in
circumstances where there is extreme complexity, such that
physical models can not be constructed within a reasonable
timescale.

Neural networks are frequently used for regression
problems in which continuous variables are modelled. They
can also be applied to classification problems where the
variables to be predicted adopt discrete values.?®

The technique is extremely powerful; it can in principle
produce a model for a random set of points. There are
many models available, for example, on the worldwide web
or from commercial sources. Care must however be taken
to select those which incorporate an effective strategy for
avoiding the problem of overfitting the data. Methods in
which the error bar depends on the position in the input
space are particularly reliable.

Materials Science and Technology August 1998 Vol. 14




808 Badmos et al.

Neural network models for tensile properties of Fe alloys

1200
& 980 -
()
o> 7604 L | T4+l 1
t SIS,
S 540 - LI—I’L%’}
S 1 [TT1
2 1]
s 3204 1° MA956
- J Recrystallisation time = 60 min
Test Temperature = 20°C
100 T : T '| T | T
1000 1100 1200 1300 1400
Recrystallisation temperature ( °C)
1200
- YS
= 1 e VTS
S __
2 980 -
75
& |
=
= 760
o
= |
=
£ 540
7
= |
2
= 3201 yja0se
4 Recrystallisation temperature = 1330°C
Test Temp: 20°C
]00 es!t e"llp T [ T I T 1 T

0 25 50 75 100
Recrystallisation time (min)

125

40
MA9S6
1 Recryst. time: 60 s.
Test Temp: 20°C
30
s
= 20
=
=)
=
S d
=
10 H
O T r T [ T I T | T
1150 1200 1250 1300 1350 1400
Recrystallisation temperature ( 0C)
40
MA956
g Recryst. Temp: 1330°C
Test Temp: 20°C
30 +
=
£ 20 4
<
g0
= |
2
10
0 E 1 J | T T | y
0 25 50 75 100 125

Recrystallisation time (min)

25 Effects of recrystallisation temperature and recrystallisation time on tensile properties of MA956

Finally, the neural network, like all regression methods,
is a purely mathematical tool which cannot necessarily
distinguish between cause and effect. The selection of
appropriate inpuis and outputs is important in deducing
physically sound relationships.
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