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In these equations a..{ ay,az) is the normal stress acting on a plane
perpendicular to the x-(y-,z-) axis, E.c is the normal dilatation in the
direction of x, i.e., the change of the spacing of two planes per-
pendicular to the x-axis, initially of unit spacing. "yz is the shear
stress in the direction of y in a plane perpendicular to the z axis; it
is equal to the shear stress in the z direction in a plane perpendicular
to the y-axis ("YZ = "Zy). Yyz is the displacement in the direction
of y of two planes of unit distance normal to the z-axis; it is equal
to the (relative) displacement in the z direction of two planes
perpendicular to the y-axis (YYZ = YZy)·

If the equations are resolved with respect to the strain components
E and y, six corresponding equations are obtained:

E:: = Sl1 ax + SI.2ay + Sl3az + s14"Yz + SI5"zX + S16"XY }

. (7/2)
Yyz = S14ax + S24ay + S34az + S44"yz + S45"zx + S46".ry

The parameters Cik are designated as moduli, the parameters Sik

as coefficients of elasticity.

8. Simplification of the Equations of Hooke's Law as a Consequence
of Crystal Symmetry

The equations expressing Hooke's law can be greatly simplified
if the symmetry of crystals is taken into account. Nine different
groups are obtained, for which the matrices of the moduli of
elasticity are shown in Table 1. The table also indicates the
distribution of the thirty-two crystal classes over these nine groups.

TABLE I
Matrices of the M od1~liof Elasticity of Crystals Corresponding

to Symmetry
Group 1. Class * Cl' 8 •• triclinic system (twenty-one constants).

Cll Cl' C'3 Cl4 Cl. C,.

Cl' C •• C'3 C •• C •• C ••

C13 C'3 C33 C3• C3• C3•

Cl4 C24 C34 C •• C •• C ••

C,. C25 C3• C45 C •• C ••

C,. C •• C3• C •• C •• C ••

Group 2. Class Cn C., C.,,, monoclinic system (thirteen constants).
Cll c" C'3 0 0 c,.
c" C2• c'3 0 0 c••
C'3 c'3 C33 0 0 c3•

o 0 0 c.. c.. 0
o 0 0 c.. c.. 0
Cl. C.. c3• 0 0 c••

* For the symbols of the various crystal classes cf. detailed treatises on
crystallography .
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TABLE I-continued
Croup 3. Class C2., V, V., rhombic system (nine constants).

ClI Cl2 cl3 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C•• 0 0
0 0 0 0 C55 0
0 0 0 0 0 CGG

Group 4. Class C3, C3.,. hexagonal system (trigonal sub-group) (seven
constants)_

Cll Cl2 C'3 C" -C25 0
c12 cll C'3 -C14 C25 0
C'3 C'3 C33 0 0 0
c14 -c14 0 Ca 0 C25

-C25 °25 0 0 C•• C14
0 0 0 C25 CH HCll - cl2)

Group 5. Class C3" D3• D3d, hexagonal system (trigonal sub-group)
(six constants).

Cll C'2 C'3 C14 0 0
Cl2 Cll C'3 -0[4 0 0
C13 C13 C33 0 0 0
C14 -Ct4 0 °4'1 0 0
0 0 0 0 C44 CH

0 0 0 0 C14 HCll - cl2)

Group 6. Class 03/1' D3/j, Co, C6Jh Gov, Do, DOh; hexagonal system
(five constants).

ClI Cl2 C13 0 0 0
C12 Cll C'3 0 0 0
C'3 C'3 °33 0 0 0
0 0 0 C44- 0 0
0 0 0 0 C44 0
0 0 0 0 0 HCll - C,2)

Group 7. Class C•• 8 •• C.h, tetragonal system (seven constants).
Cll C'2 C'3 0 0 c'G
e12 Cll C'3 0 0 -C16

C'3 C'3 C33 0 0 0
0 0 0 C•• 0 0
0 0 0 0 c•• 0
C'G -C16 0 0 0 CGG

Group 8. Class C••• Vd. D., D.h• tetragonal system (six constants).

Cll C'2 C'3 0 0 0
Cl2 Cll C'3 0 0 0
C'3 C'3 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C•• 0
0 0 0 0 0 C6G

Group 9. Class T, T,,, Td• 0, 0,,, regular system (three constants).

Cll C'2 C12 0 0 0
C

'
2 Cll Cl2 0 0 0

C'2 C'2 ell 0 0 0
0 0 0 C44 0 0
0 0 0 0 c•• 0
0 0 0 0 0 c••
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This arrangement can also be applied to 8i1e with the following
slight modifications:

In the Groups 4, 5 and 6 the relationship 866 = 2(811 - 812)

replaces C66 = ~(C11 - C12); in Group 4, 846 = 2825 replaccs C46 =
C25; in Groups 4 and 5, 856 = 2814 replaces C56 = Cu-

In each case the crystal is set up in such a way that any single
axis of highest symmetry is the z axis, and a digonal axis, if any,
the y axis of the system of co-ordinatcs. From the elastic para-
meters relative to this co-ordinate system it is possible to calculate
directly the stresses (or deformations) in the co-ordinate axes and
planes. If, on the other hand, it is desired to calculate thc deforma-
tions from the stresses (or the rcvcrse) for any directions or planes,
then a new system of co-ordinates is based on these directions or
planes, and the elastic parametcrs with reference to the principal
system of co-ordinates must be transformed to this new system.
The transformation formulre are generally complex, and for further
particulars the reader is advised to consult the detailed discussions
of the subject referred to in the bibliography.

The following table of moduli of elasticity is obtained for an
isotropic solid:

Cn c12 C12 0 0 0
C12 cn C12 0 0 0
c12 C12 cll 0 0 0
0 0 0 C44 0 0
0 0 0 0 C40l 0
0 0 0 0 0 C44

in which C44 = t(c11 - C12). The same arrangenwnt is also valid for
the coefficients 8ik with 844 = 2(811 - 812),

This matrix, which is independent of the choice of the co-ordinate
systcm, contains only two independent parametcrs. The relation-
ship between these quantities and the constants used in the litera-
ture of the strength of materials, namely, Young's modulus E,
modulus of shcar G, and Poisson's ratio [1, is given by the equations

E=J:., G =l:.. [1 =812•
8n 844 811

From this it follows that [1 = :a - 1.

D. Cauchy' 8 Relation8
The equations of Hooke's law for the triclinic crystal contain

twenty-one constants. The number is reduced to fifteen, however,
c
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if the internal displacements of the constituent simple lattices are
disregarded. This introduces six new relationships, known as the
Cauchy relations, which formerly were obtained on the assumption
that the central forces depended solely on the distance between the
particles. The six equations are as follows:

According to Born's theory these equations are valid if a crystal is
so constituted that each particle is a centre of symmetry. Since
this condition must persist for any distortion, relative displacements
of the constituent simple lattices are excluded by virtue of the
structure of the crystal.

Tables Il and III contain the moduli of elasticity of various
materials. It will be seen that the behaviour of the ionic crystals
is in accordance with what would have been expected from their
structure.

TABLE Il

Validity of the Cauchy Relations for the Cubic Ionic Crystals

Materia!'

:Moduli of elasticity
in lO" dyn/cm.2.

References.

(a) Cauchy relation C" = c•• demanded by theory.
Sodium chloride 4·94 1·37 1·28 (2)

3·30 1·31 1·33 (2)
Potassium chloride· {3·70 {0.81 {0.79 (2)

3·88 0·64 0·65 (3)
bromide 3·33 0·58 0·62 (2)
iodide 2·67 0·43 0·42 (2)

(b) Cauchy relation C" = c•• not demanded by theory.

Fluorspar. ': I 16·4 4·48 3·38 (4)
Sodium chlorate 6·5 -2·10 1·20 (5)
Pyrite. 36·1 -4·74 10·55 (4)

With metals, on the other hand, there is a very marked discrepancy
between C12 and C44 even in cases where the validity of the Cauchy
relation is demanded (Table IlIa) [cf. especially (1)]. Particular
attention is drawn to this failure of the lattice theory in the case of
metals. It may be that, owing to the ease with which they can be
displaced, the valency electrons should be regarded as independent
constituents of the lattice, since it is difficult to doubt Born's second
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assumption relating to the stability of the lattice when deriving the
Cauchy relations.1

Fm isotropic solids the six Cauchy equations are reduced to one:
Poisson's equation cn = 3C12, so that in this case only a single
constant survives. For Poisson's ratio the general value obtained

TABLE III
Validity of the Cauchy Relations for Metal Crystals

Material.

Moduli of elasticity
in 1011 dyn/cm_2•

References. I Poisson's
I ratlO,l'-.

,

Material.

(a) Cubic metals. Cauchy relation CI2 = c•• demanded if central forces
assumed.

Copper 17·0 12·3 7·52 (7) 0·34
Silver 12·0 8·97 4·36 (8) 0·37
Gold p9'4 { 16·6 { 4-00 (6) } 0'42018-7 15-7 4·36 (8)
Aluminium 10-82 6.22 2'8. (6) 0'343
a-Brass (72% Cui 14·7 11·1 7·2 (9)
a-Iron 23·7 14·1 11·6 (10) 0·280
Tungsten. {51'3 {20'6 { 15·3 (11) } 0·1750·1 19'8 15·1 (12)

J\foduli of elasticity in 1011
dyn/cm.2• Refer- Poisson's

1------,------,-----,---,----1 ences. ratio, 1'-.

------~-I~~I~I~I~----,----
(b) Hexagonal metals. Cauchy relations Cll = 3c12; C•• = C13not

demanded.

Magnesium {5'65. 1011 {6.96 { 1·68 { 1·81 {5·87 (13)
5-94 6-09 1·14 2·03 5·94 (14)

Zinc { 16·3 C'65 {3.79 {5·08 {6-23 (15) } 0-3315-9 9·69 4·00 4·82 6·21 (11)

Cadmium. { 12-1 {14-43 p.85 { 4-42 {5'13 (15) } 0·3010·9 11·94 1·56 3·75 4'60 (11)
- ---

is then I.l. = t. With certain plausible assumptions, however, the
constants of a quasi-isotropic crystal aggregate can be derived as
mean values from the elastic parameters of the single crystal (cf.

1 T1'anslat01"s footnote.-According to the modern theory of metals (cf.,
e.g., Mott and Jones, 'Theory of Metals and Alloys, or A. H. Wilson, Theory of
Metals), the cohesive forces in metals are far from being central forces, and
there is no reason to expect the va.lidity of the Cauchy relations.
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Section 81). If the Cauchy relations apply in this case, Poisson's
equation is applicable to the crystal aggregate as a first approxi-
mation. Consequently, when measuring quasi-isotropic fine crystal-
line material, the deviation which is observed from the value for
Poisson's ratio p. 1/4, provides a criterion for the validity of the
Cauchy relations in the case of the single crystal. For this reason
Table III contains the values for Poisson's ratio, determined on
polycrystals, together with the parameters of the single crystal; the
parallelism between deviation from Poisson's ratio of 1/4, and non-
validity of the Cauchy relations, will be immediately apparent.

10. Determination of the Elastic Parameters

The elastic parameters are determined with the aid of the elastic
constants of single crystals of various orientations. These elastic
constants are, as for any solid: Young's modulus (E) and the
modulus of shear (C), the definition of which applies without
modification to crystals. [E = the tensile stress that would be
necessary to double the length of the specimen, C = the shear stress
that would develop on the periphery of a cylindrical specimen
having a length and diameter = 1 when twisted round an angle of
1 radian (57'3°).] The elastic moduli of single-crystal specimens
are obtained experimentally by the same methods as are used for
testing isotropic solids. The determination of characteristic acoustic
frequencies-a method of testing which recently has been much in
use-offers particular advantages [transverse, longitudinal, torsional
vibrations (16), (17); cf. (18) and (19) for the corrections which have
to be applied in this case).

The theory of crystal elasticity yields two equations for j and ~

as functions of the angles formed by the axis of the bar with the
axes of the crystal (orientation); the coefficients of these equations
are the elastic constants Sik. The problem consists in representing,

as far as possible, the observed dependence of ~ and b upon the

orientation by a suitable choice of the Sik. A check for the resulting
Sik values is provided by their connection with compressibility.
For the cubic compressibility K, which is independent of orienta-
tion, this relationship is as follows for the trielinic crystal:
K = S11 + S22 + S33 + 2(S12 + S23 + S31)' It is customary, how-
ever, to measure the linear comprcssibility S (the change of length
in certain directions under hydrostatic pressure), which is usually
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dependent on direction. Only in the case of cubic crystals does a
crystal sphere remain a sphere under hydrostatic pressure.

The following expressions give the theoretical dependence of E,
G and S upon the orientation for cylindrical specimens of cubic and
hexagonal crystals:

Oubic crystals :

it = 8'33 = 811 - 2[(811 - 812) - t844] }

(Y1
2
Y2

2 + Y2
2
Y3

2 + Y3
2
Y1

2

b = t (8'44 + 8' 55) = 844 + 4[(811 - 812) - ~844] }

(Y1
2
Y2

2 + Y2
2
Y3

2 + Y3
2
y]2)

S = 811 + 2812

Hexagonal crystals:

it = 8'33 = 811(1 - Y3
2
)2 + 833Y34 + (2813 + ,

844)Y32(l - Y32)Jb = t (8'44 + 8'55) = 844 + [(811 - 812) - t844](l - }

- Y32) + 2(811 + 833 - 2813 - 844)Y32(l - Y32)

S = 811 + 812 + 813 - Y32(811 - 833 + 812 - 8d

In the case of the cubic crystals, YIY2Y3 represent the cosines of
the angles formed by the axis of the specimen with the three edges
of the cube (Y12 + Y22 + Y32 = 1); in the case of the hexagonal
crystal only the direction-cosine Y3 of the angle formed with the
hexagonal axis appears, since the elastic properties have rotational
symmetry with respect to the six-fold axis.



CHAPTER III

PRODUCTION OF CRYSTALS

Methods of obtaining large crystals have been greatly improved
in the past twcnty years, and we are to-day in a position to produce
crystals of many metals and alloys i.nalmost any size and form by a
great variety of methods. In the following discussion of the new
methods of growing crystals the processes have been grouped accord-
ing to the state of aggregation from which crystallization takes place.

A. PRODUCTIO OF CRYSTALS FROM: THE SOLID STATE:
THE RECRYSTALLIZATION METHOD

The term recrystaIIization usually means the renewed forma-
tion, generally at elevated temperatures, of the crystal structure
of crystalline materials. Numerous experiments have shown that
this renewal of the crystal structure does not occur with cast metals
that are completely free from internal stresses (20, 21). If, however,
a specimen which cannot recrystallize is plastically deformed, it
acquires the capacity for renewing its texture. This recurs as a
result of nucleus formation followed by the consumption of the old
grains by the new ones.

In additi.on to this recrystallization due to deformation (" work
recrystallization "), there is a phenomenon known as" grain growth"
which leads to renewal of the texture, and which is exhibited by
fine-grained recrystallization-structures or by finely powdered metal
compressed at high temperatures. This process is not initiated by
the formation of new crystal nuclei, but consists instead of the
preferential growth of individual grains, in certain directions, at
the expense of the others. It results from the instability caused by
the higller surface energy of the polycrystal as compared with the
single crystal.

As regards their structural mechanisms, both types of recrystal-
lization are phenomena of atomic rearrangement.

11. Recrystallization after Critical Plastic Deformation

If recrystallization, after cold working, is used as a method for the
production of large crystals, it will, of course, be necessary to ensure
that the number of nuclei is kept to a minimum. Since this number

22
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increases with the degree of strain, only small percentages of cold
work should precede the annealing. A further necessary condition
is that the deformation should be as homogeneous as possible so
that a uniform capacity for recrystallization will result. To achieve
this, a uniformly fine-grained structure is indispensable.

In order, therefore, to produce single crystals by recrystallization
after cold working, it is necessary initially to obtain in the specimen,
whether sheet, wire or tensile test bar, as fine and uniform a grain
size as possible. If the required texture is not present in the initial
material, it must be produced by previous recrystallization. A short
annealing for about t- hour at a fairly low temperature after sub-
stantial cold working, or heating above a transformation tempera-
ture usually suffices for this purpose. Mter the specimens have
been prepared in this way the most suitable percentage of working
must be determined by subjecting them to small deformations of
varying magnitude (usually elongations between t and 4 per cent.
are necessary), the utmost care being taken to exclude any additional
strain, such as bending. The ensuing annealing treatment must
also be carried out under very careful control with a view to reducing
the number of nuclei to a minimum. For instance, annealing should
begin at temperatures below that at which recrystallization starts,
although for solid solutions they should be above the solubility limit.
Metals that tend to oxidize easily should be annealed in a current
of H2 or in t·acuo. By increasing the temperature very slowly
(20-50° per day) one of the first nuclei formed may be induced to
grow through the entire specimen, at the same time avoiding the
formation of further nuclei. It is good practice to maintain a
slight temperature gradient in the furnace (eccentric location of
the specimens; if heating takes place under a strcam of gas, the
resultant temperature gradient suffices), since in this way the forma-
tion of further nuclei is avoided. Towards the end of the annealing
period, which usually lasts for several days, the temperature can be
increased more rapidly, and the operation is concluded by heating
for a brief period just below the melting point (or a transformation
temperature, a solidus line or a eutectic temperature) in order that
small grains which generally are still present may be consumed by
grain growth. Cooling should usually take place inside the furnace
in order not to damage the crystals, which are particularly sensitive
at high temperatures. Subsequent etching develops the boundaries
of the newly formed crystals and ensures the removal of any small
grains that may still be present on the surface. By comparing the
specimens which have been subjected to varying degrees of working,
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the critical working percentage at which crystals of maximum size
can be obtained is determined (see Fig. 14).

In general, little of a positive nature can be said regarding the

1"10. 14.-H.ecrystallizatjon of Aluminium; }{elationship between Grain.
Size and Plastic Strain.

(From top to bottom: 0, 2, 4, 6, 8 and 10% extension.) (22.)

yield of this process, since the growth of the crystals depends to a
very large extent upon the composition and purity of the material
used. In the most favourable cases, however, it may amount to
almost 100 per cent. Arbitrary control of the orientation of the
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crystals, i.e., of the position of the lattice in the specimens, is
impossible. As a rule the whole field of orientation can only be

TABLE IV
Crystal Production by Recrystallization aftel' Critical Cold

Working

Metal or
alloy.

Mg

l\Jg-solid solu-
tions with
AI, Zn, Mn,
Al and Zn

AI~(99·5) *

AI-solid solu-
tions with
Zn (up to
18·6% Zn)
and Cu

Fe~0·13% C
0·4% :\In
0·02% Si
0·03% S
0·02% P

Fe~0'10% C
0'4% 1\ln
traces Si
0·021% S
0·021% P

Fe (Armco)
0·03% C
0·025% :\In
traces Si
0·025% S
0·01% P
0·06% Cll

Pre- treatment,
initial

grain size.

~120 grains/mm.'

Lengthy annealing
just below eutec-
tic temperature;
7-10% stmin,
followed by brief
annealing

I I
I ~100 grains/mm.' I

Pre-heat for pro-
tracted period at I
9500 C in H,.
About 120 grains/
mn'l.2: _ I

Critical
,vorking,
% elonga-

tion.

0·2

0·2-0·3

1·6

1-2

1·5

3·25

2·75

2·75

Annealing
conditions.

From 3000 to 6000

C. in 6 days
Anneal only in the

range of homo-
geneous solid
solution; daily
increase in tem-
perature 20-500

C.
Start at 4500 C. ;

increase temper-
ature by 250 fday
to 5000 C. Then
1 hour at 6000 C.

500-5500 C.

In 6 clays from
4500 to 5150 C.

A few days at
8800 C.

4 clays at 8800 C.

I
I
I Increase from 5300

to 8800 in 4 days,
then 2 days at
8800 C.

Refer.
ences.

(28)

(29)

(22), (23)

(30), (31)

(32)

(33)

(3.,1,)

(35)
cf. also

(36)

•

* The production of crystals of very pure aluminium (99'99 per cent.) has
hitherto been attended by difficulties.

covered by increasing the number of specimens. In certain cases,
however, this method fails, and the crystals obtained have similar
orientations. This is due to the difficulty, and sometimes even the
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impossibility, of obtaining a jine-grainecl stn~ctt~t'e of random orienta-
tion before the start of critical straining, and so avoiding the con-
sequences of a preferred orientation.

The quality ofthe crystals obtained in this way is greatly influenced
by that of the original material. Since all stresses are removed by
the protracted anneal, it should be possible to satisfy requirements
in regard to physical perfection. Owing to lack of experimental
data it is not yet feasible to compare such crystals with those
obtained by other methods.

The difficulties due to segregation, which occurs when crystals of
solid solutions with a wide melting range are produced from the
molten state, do not arise in the recrystallization method. Finally,
the freedom which this method allows in the shaping of the specimen
can be ofgreat advantage in certain cases. It is a fundamental disad-
vantage of the work-recrystallization method that it involves plastic
deformation, since brittle material is excluded from such treatment.

The main development of this method of growing crystals
originates from (23) and (22) (cf. also 24). Details of the conditions
employed by various authors will be found in Table IV. Apart
from the metals mentioned in the table, the method has been
adopted also with copper (25, 26) and ~.brass; howcver, large
crystals completely free from twins could not be produced in copper.

Using the same treatment it is possible to obtain from drawn
tungsten wire those industrially important lamp filaments which
consist of large crystals whose grain boundaries lie at small angles
to the wire axis (27). The same texture can also be achieved without
straining before the final anneal, if certain small additions are made
to the base material. This method, however, should not be included
among those described in the present section. It represents the
transition to the methods of grain growth discussed in the following
section.

12. Crystal Prodnction by Grain Growth
The method of producing crystals by grain growth has been

employed mainly in the case of tungsten. The so·called "Pintsch
wires" are produced from a uniform and fine-grained tungsten
powder which has been mixed with thorium oxide (approximately
2 per cent.) of maximum fineness; a bonding substance is added,
and the mixture is then extruded through diamond dies to fine
threads [(37), (38)]. Mter drying, these are moved at the rate of
up to 1 mm. per second through a very hot and narrow zone (2500°C.)
as a result of which the crystal growth starts at the end of the wire
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and then proceeds continuously. The furnace consists of a few
coils of a spiral of tungsten wire, heated electrically in a hydrogen
atmosphere. A second method of effecting continuous local heating
consists in passing a current through the sintered wire which is to
be transformed into a crystal by moving it slowly over two adjacent
contacts. There is still some doubt as to the function of the thorium
oxide which must be added if the method is to succeed. The thickness
of the crystals obtained in this way amounts to as much as 0·1 mm.

By another method (39), which can also be regarded as a typical
grain-growth process, tungsten powder is pressed into bars at a
pressure of 4000 kg.jcm.2, sintered and then heated for about an
hour just below the melting point (3268° C.) in a moist hydrogen
atmosphere. By this method it is sometimes possible to convert
the entire bar into a single crystal. Although thermal instability is
the cause of crystal growth, the water-vapour content of the pro-
tective gas also performs a very important function, the significance
of which, however, is not yet fully understood. Grain growth can
also be materially assisted by additions to the base material (e.g.,
Th02) [(40), (41)].

B. PRODUCTION OF CRYSTALS FROM THE MOLTEN STATE
For the purpose of description, methods of growing large crystals

from the molten state will be divided into two groups: processes in
which solidification of the whole melt is suitably induced in the
melting crucible, and those in which parts of the melt are made to
solidify outside the crucible.

13. Crystallization in the Crucible
Tammann observed that if a melt of bismuth was cooled slowly

in a glass tube, a single crystal of about 20 cm. length could be
obtained (42). In succeeding years this process was perfected by a
number of investigators. Glass vessels which had been drawn out
at one end to a capillary tube were used. Solidification took place
in the interior of a vertical tubular furnace containing two heating
coils which could be switched on independently, thereby enabling
solidification to start at the thinned-down end of the tube (43) :
see also (44) to (47). The sketch of another melting vessel of glass
which has been frequently used is shown in Fig. 15. The cavity
A is charged with the metal to be melted and then drawn out at its
front end D into a tube to which an air-pump is connected. After
the parts Band C have been heated in an electric furnace to about
50-100° C. above the melting point of the metal, and the air has
been exhausted from the entire vessel, the metal contained in A,
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H,

m

H,

Nz
FIG. 16.-The Growth of Crystals in
Tubes; Selection Based on Speed of

Growth (49).
Kcl(.: variously orientated crystal

nuclei on the surface of the melt.

8 A~~ x ;d=

which projects from the horizontal furnace, IS melted in a gas
flame. The occluded gases are then driven off by shaking the
molten mass, an operation which, for bismuth, must be prolonged

for 1 hour. The furnace is
now brought into a vertical
position so that the metal
flows down to the lower end,

FIG. 15.-Sketch of Vessel for the Pro-
duction of )Ietal Crystals [see (48)]. its quantity being so deter-

mined that finally a small
amount of the melt remains in A, while all impurities, such as oxide
skins, etc., are kept away from the actual melting chamber E. The
vessel is now sealed at D, and crystallization is initiated by slowly
lowering it (rate oflowering 4-60 mm. pCI'hour). The purpose of the
capillary between C and E, as in the case of the melting chamber
mentioned above, is to allow only
one of the initially formed crystals
to penetrate to the chamber E
in which crystallization actually
occurs. The capillary works selec·
tively, so that of the nuclei which
first appear the one which ulti-
mately develops is that for which H,

the di reetion of maximum speed of
growth encloses the smallest angle
with the axis of the tube, as is
shown in Fig. 16. Itis seen clearly
how crystals with small axial rates
of growth are eliminated.

With a view to securing the maxi-
mum liberation ofgas when produc-
ing crystals of metals and alloys of
high melting point (copper, cobalt,
nickel, the precious metals),
vacuum furnaces were used repeat.
edlyin which the melt, contained in
a crucible made of carbon or alu-
mina, was moved slowly through a
graphite heating tube [(50), (51)]. The charge ofthe whole crucible
can solidify in vacuum to large crystals (52) if provision is made for
solidification to begin exclusively at one point, and for the heat to be
withdrawn at a suitable speed mainly from this point, which may be,
e.g., a conical depression in the crucible. In this case the size ofthe
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crystals is limited solely by the quantity of the material (size of the
furnace). A copper crystal weighing 6 kg. was obtained by these
means. Later the process was considerably improved [(53), (54)].
A high-frequency furnace was used, care being taken to avoid
turbulence in the melt; the vacuum was improved to 1/100 mm.
Hg; and, in particular, the orientation of the growing crystal was
influenced. Indeed, whereas control of the orientation of the crystal
is practically impossible with the crucibles already described
(although it might conceivably be effected by tilting, at various
angles, the capillary tubes at the lower end of the melting vessel,
thereby exploiting the selective growth), the crucible design in use
at present is such that the orientation of the crystal can be deter-
mined in advance by inoculation. For this purpose a small hole is
drilled into the base of the graphite crucible, and into this hole a
piece of crystal of the desired orientation is inserted. Heating is so
regulated that only the upper portion of this crystal melts, so that
crystallization proceeds from the seed crystal which serves as an
artificial nucleus. It is, of course, always necessary to adjust the
rate of cooling, or the speed at which the crucible is lowered through
the furnace, to the speed of crystallization.

By this method single crystals have been produced from a large
number of pure metals [Cu, Ni, Ag, Au, Mg, Zn, Cd, Hg (55, 56), Sn,
Sb, Bi, Te] and alloys (ex- and ~-brass, Cu-Al, Cu-Sn, Au-Ag,
Au-Cu, Au-Sn, Fe-Ni, Sb-Bi, Austenite).

If satisfactory crystals are to be obtained by this method care
must be taken, by degassing the melts thoroughly, to avoid micro-
porosity during crystallization. However, the segregation which
occurs when producing the crystals of alloys cannot be avoided
when crystallization proceeds from the melt. The material of the
crucible must be chosen with the utmost care, both with a view to
restricting contamination of the metal, and ensuring that the crystal
will not be damaged when it is removed from the crucible. The
production of completely undamaged, stress-free crystals by this
method is in any case very difficult, and there has been no lack of
experiments to ensure a still more careful handling of the crystal
in the course of its production.

Of the methods evolved with this object in view there are four
types [(57), (58)]. In the first method, the rod of metal which is to
be converted into a single crystal is placed on a copper plate in which
a temperature gradient has been produced by one-sided heating.
First of all the rod is melted by adequate heating of the plate;
owing to its surface tension and the presence of a thin oxide skin it
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will retain its cylindrical shape. Crystallization is initiated at the
cooler end of the plate by gradually decreasing the current. The
orientation of the growing crystal can be influenced at will by
contacting the melt with a " seed crystal" which has been placed
at a swtable angle and which, of course, must not be completely
melted down. By the second method the metal rod, which has
been placed in a wide silica tube, is moved slowly through a narrow
heating coil in a manner similar to that described in Section 12,
melting and crystallization taking place consecutively. According
to the third and simplest method the metal rod is put in a narrow
cylindrical cavity bored into a copper block which is heated on one
side only and which can be cooled under control. In both these
cases it is possible to influence the orientation by the use of a swtable
seed crystal. The fourth variant of the process (58) purports to
improve upon the other three by eliminating also the stresses which
emanate from the oxide skin. To this end the metal is melted
down and solidified in a graphite channel placed in an evacuated
silica tube which is moved slowly through the furnace. A current
of purified hydrogen is passed through the tube. Each specimen is
remelted several times before being brought into contact with the
seed crystal. In this case the shape of the crystal is determined by
the shape of the graphite channel. It is remarkable that hitherto
this treatment should have been used only for bismuth, and (recently)
tin (59).

So far we have described methods employed mainly for producing
crystals from metals. Naturally they can also be adaptcd to the
production of salt crystals. For instance, a furnace has been
described (60) in which the melt is shaped like a pIano-convex lens,
in which the isotherms run parallel to the surface of the melt.
Solidification proceeds uniformly from the bottom of the lens
upwards. Large crystals have been produced in this way from
sodium nitrate, potassium nitratc and sodium chloride, as well as
from bismuth and zinc. By a further development of this method
the internal stresses which lead to a tearing of the crystal can be
eliminated (61). The following particulars are available of a mcthod
which has already been adopted for a large number of ionic crystals
(sodium chloride, sodium bromide, potassium iodide, rubidium
chloride and lithium fluoride) (62). A platinum tube, closed at the
lower end and cooled internally by ail', is immersed in the melt to
the depth of a few millimetres. If the temperature has fallen to
about 70° above the melting point of the salt, intensified cooling
will cause crystallization to start on the platinum tube. When the
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diameter of the hemisphere which has crystallized out (Fig. 17)
amounts to about four times that of the platinum tube, the cooler is
raised with the aid of a micrometer screw until the surface of contact
between the crystallized spherolite (I) and the melt is composed of
one crystal only. Mter this the greater part of the melt is made to
crystallize by increased cooling (Il). The operation is broken off
before the crystal reaches the wall of the crucible. If this method
is to be successful a period of growth of several hours will be needed
for crystals averaging 3 cm. in size, and the temperature of the
furnace (supply by accumulator battery) and of the cooling stream
must be kept constant.

P?·otective tube
Withdrawal rod Z

Cooling with
CO. or N.

S Electric Furnace ~., ~":
FIG. IS.-Diagram showing the Method
of Producing Crystals by Drawing from
the Melt. According to Czochralski

[see (65)].

FIG. I7.-Illustrating
the Production of Salt
Crystals According to
(62). Shape of the
Crystal " Pears"
Obtained in this Way.

T

-~-
Zinc
melt

R
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14. Production of Crystals by Drawing from the Melt

Czochralski (63) initiated a process which, although originally
devised for the determination of the speed at which metals crystal-
lize, was later much used for growing crystals. In this method a
small rod (glass, clay or, better still, a seed crystal), immersed in the
melt and serving as a centre of crystallization, is slowly and steadily
raised. If the temperature of the melt is only slightly above the
melting point, and if the rod is lifted slowly enough, there will
adhere to it a small molten thread which crystallizes above the
surface of the melt. The length of the crystals obtained in this way
is limited by the dimensions of the apparatus: in shape they are
approximately cylindrical.

Fig. 18 illustrates the type of equipment subsequently used
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[(64), (65)] for producing crystal wires of a number of metals of low
melting point. Through a small disc of mica (G'), perforated in
the centre and weighted, a thread of molten metal is drawn, which
is cooled just above the disc by a current of inert gas. In order to
obtain crystals of maximum uniformity great care must be taken
not only to maintain a constant melt temperature and constant
speed of drawing and cooling but also to avoid vibrations. The
diameter of crystal wires so obtained can be varied between about
0·2 and 5 mm., according to the conditions of heat removal. The
requisite crystal orientations are obtained by using seed crystals
with suitable lattice orientations. If intimate contact is main-
tained between melt and seed crystal (removal of the oxide skin),
then the seed crystal will in most cases continue to grow. The role
of the speed of drawing is still not fully explained. A specd of
about 1 cm. per minute would appear to be smaller than the mini-
mum rate of crystallization of the metals employcd. This repre-
sents, of course, the natural upper limit of the speed of drawing.

By this method abundant material has been obtained for experi-
ments, including crystals of Zn, Cd, Sn, Bi, Zn-Cd and Zn-Sn alloys.

The orientation of crystals produced in this way is always subject
to slight but constant variations along the wire (66), caused, it is
believed, by variations in the temperature gradient above the melt
[cf. also (67)]. The maximum differences in orientation observed
in zinc crystals 30 cm. long amounted to approximately 10°; how-
ever, if the experimental conditions were held constant they did not
exceed about 2°.

The drawing method is also frequently used to-day for the pro-
duction of salt crystals (68). In their case special cooling is usually
unnecessary. The orientation of the growing crystal bars or
" pears" can be materially influenced by inoculation.

The drawing process as described above cannot be used for
reactive melts. For magnesium crystals, therefore, it is customary
to employ a carbon tube which is immersed deep in the metal (the
surface of which is covered with a protective layer) and is then slowly
withdrawn (69). For protective purposes, this tube is enclosed in
an iron tube, open at the bottom. This is provided at the top end
with a cock which must be closed bcforc withdrawal from the melt.

C.OTHER METHODS OF GROvVING CRYSTALS
15. Crystal Growth by Precipitation from Vapour

When producing crystals from vapour it is customary to start
with an existing seed crystal upon which the material is deposited.
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In the case of tungsten the decomposition of the WC16 vapour is
used. By one process (70) the tungsten hexachloride is reduced by
hydrogen according to the equation

WCl6 + 3H2 = W + 6HCl.

Another method (71) makes use of the thermal decomposition of
WCl6 into its two components, which takes place at temperatures
above 1500° C. In both cases a thin tungsten crystal (Pints ch wire)
is used as a seed crystal, which, according to its orientation, grows
into a 4-, 6- or many-sided crystal bar with a thickness of up to
about 10 rum. By this method it is possible to deposit alternating
layers of tungsten and molybdenum. In a similar manner crystals
of Ta, Fe, Zr and Ti have also been precipitated from vapour (72).

The production of zinc and cadmium crystals by sublimation is
described in (73). By this method six-cornered crystals with regular
faces can be obtained without the use of seed crystals.

16. Crystal Growth by Electrolytic Deposition
This process, which is applied to tungsten (74), is similarly based

on the use of a " Pintsch " wire as a seed crystal, the wire serving as
a cathode in the axis of the cylindrical sheet of tungsten which
constitutes the anode. Sodium tungstate forms the electrolyte, its
decomposition being effected at 900° C. with a current density of 150
mA/cm.2.

This concludes the description of methods for the production of
crystals. Processes for growing salt crystals from the solution have
not been included in this review; for information on this subject
see the summary given in (75).

D



CHAPTER IV

DETERMINATION OF THE ORIENTATION OF
CRYSTALS

The orientation of a crystal is the position of the lattice with
reference to directions conveniently defined by the form of the
crystal specimen. Whereas with crystals bounded by natural
faces the position of the lattice is immediately obvious £i'omthe face
angles (goniometrically measurable), with crystals of irregular shape
it must be determined by special methods. Often it is only a ques-
tion of determining the orientation of the lattice with reference to a
single prominent direction of the crystal specimen (e.g., the longi-
tudinal direction of a cylindrical crystal rod) which is fixed by
the angle it makes with the principal crystallographic axes. In
the following pages we shall describe methods for determining the
orientation of opaque crystals, with special reference to the
investigation of metal crystals.

A. MECHANICAL AND OPTICAL }IETHODS

17. Symmetry of Pet'Cussion-fig~lres. Investigation of Light
Reflected ft'om Ct'ystal Sutfaces

Orientation can be determined by mechanical tests only if a plane
face is present on the specimen under investigation. The percussion-
figure resulting from plastic deformation reveals the crystallographie
nature of the plane normal (76).

Orien~ation can be determined much more precisely by inyestigat-
ing a crystal surface which, by etching, has been covered with
crystallographically regular etch pits. These pits can also be
replaced by a surface relief, consisting of microscopic or submicro-
scopic negative crystals, such as occurs, for instance, when metal
crystals solidify from the melt. The first method of examining
such a surface, i.e., the determination by microscopical means of the
shape of the etch pits on plane surfaces (77), is no more powerful
than the percussion-figure method. The same if;true of the "maxi·
mum lustre" method (78, 79), which uses the intensity of the light
reflected from the etched surface. The specimen under investiga.
tion, exposed to oblique parallel light, is rotated around the axis of
the microscope. From the number of alternations in intensity in
the course of a complete revolution, the sym metry properties of the
plane normal are deduced.

34
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Whereas the above methods are restricted to certain simple cases
and are dependent for their success on the presence of plane faces
on the crystals, orientation can also be determined by investigating
reflected light in the more general case [(80), (81)]. Since the
principle is the same for both methods, the variant referred to in (81),
which is the simpler and more commonly used of the two, will be
described in detail. The crystal under investigation (we assume
this to be a cylindrical rod) is placed in a hole drilled radially in a
wooden sphere, and illuminated with parallel light (sunlight). The
crystal is turned, together with the sphere, until a reflexion of
maximum intensity is obtained. This direction is indicated by
means of an adjustable mirror which is placed tangentially on the
sphere, and which is also brought into the reflecting position, its
point of contact with the sphere being marked. As a result of
reflexions from several different faces a pole figure is obtained on the
sphere, from which, assuming the interfacial angles of the crystal
to be known, the position of the lattice in relation to the longi-
tudinal axis of the crystal can be deduced. The only precaution
needed is in regard to double reflexions, which, however, can be
easily recognized. Direct readings of the desired angles can be
obtained if the surface of the sphere bears a suitable network of
meridians and parallel circles. It is obvious that this method can
also be used to determine the crystallographic orientation of a
polished surface; in this case the specimen must be attached
tangentially to a pole of the sphcre. A small systematic error arises
in using this method owing to the fact that the normal of the
reflecting crystal face does not pass through the centre of the sphere.
The correction to be applied is discussed in (82), where particulars
are also given of an extension of the method, using polarized light.

B. X-RAY METHODS

Very great possibilities for the investigation of orientation arc
opened up by the use of X-rays.

18. The Diffraction of X-rays by Crystal Lattices
A detailed account of the diffraction of X-rays by crystal lattices

will be found in the relevant literature. Here we shall deal only
with the features important to our special application-the deter- .
mination of crystal orientations. The main progress which has
resulted from the application of X-ray methods to the examination
of solids has been in thc determination of their internal structure.
The distribution of the various structurcs among the elements of
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the periodic system, together with numerical values of the lattice
dimensions of the more important metals and of some ionic crystals,

(a) Cubic face-centred_ (b) Cubic body-centred.

I
I
I
I•.,..J""

(c) Hexagonal
close-packed.

(d) ~-Tin.
FIG. 19 (a)-(d).-Principal :Metallic Lattices.

b J 1 j ~ J J ONa @CZ
a b

FIG. 20.-Lattices of (a) Sodium Chloride and (b) C::esium Chloride.

will be found in Tables XL-XLII at the end of the book. A few
of the principal lattice types are shown in Figs. 19 and 20.

The diffraction of a beam of X-rays in a crystal can be regarded,
according to Bragg, as refiexion of the rays from the different lattice
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planes of the crystal. The reflexion of X-rays differs from ordinary
optical reflexion (in which the angles of incidence and of reflexion
are the same and lie in the same plane) in that it does not occur at
all angles of incidence. It can occur only when the wavelength (A)
of the incident beam, the spacing (d) of the reflecting lattice plane,
and the glancing angle 1 (6/2) satisfy the condition.

n. A = 2d . sin 6/2 (Bragg's equation; n = 1, 2, 3 ... )

Consequently a crystal at rest, if exposed to X-rays of a single
wavelength, will not normally yield any reflexion, since none of the
lattice planes will be at an angle to the ray which corresponds to d.
There are two ways by which the requirements of Bragg's equation
can be satisfied. (1) By using "white" X-rays the wavelength
can be varied (Laue photographs); and (2) where monochromatic
radiation is employed, by rotating the crystal (Bragg) the lattice
planes can be made to pass through the reflecting position (rotation
photographs). On the other hand, on irradiating a fine-grained
crystal powder (polycrystalline ma.terial) the conditions for reflexion
are satisfied even when the specimen is at rest, owing to the com-
pletely random orientation of the individual grains (Debye-
Scherrer, Hull photographs).

(a) THE ROTATING-CRYSTAL METHOD

19. Basic Form~tlce
The use of the rotating-crystal method for determining orientation

is illustrated in Fig. 21 in terms of the geometry of the reference
sphere [(83), (84) and (85)]. We observe the reflexion of the
incident beam by the lattice plane (hkl) from which it is reflected
at the glancing angle 6/2. The plane normal, therefore, makes an
angle of (90-6/2) with the incident beam at the moment ofreflexion,
and the geometrical locus of the normal for all possible reflecting
positions of the plane (hkl) is the circle of reflexion which is shown
in the illustration as Rk• In the course of the rotation of the crystal
about a geometrically important direction (longitudinal axis), which
in Fig. 21 is chosen at right angles to the incident beam, the normal
describes about the axis of rotation a double cone, whose inter-
section with the reference sphere is represented by the two parallel
circles at polar distance p. The points at which the circle of reflexion
intersects these two circles indicate the positions of the plane normal

1 The glancing angle is the angle between the incident beam and the
reflecting plane; consequently it is complementary to the angle of incidence
of 900 used in optics.
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at the moment of reflexion. Since the plane normal bisects the
angle between reflected and incident beams, and is co-planar with
them, the positions of the reflected rays are unequivocally deter-
mined. They make with the incident beam the angle of deviation 0,
and therefore lie on a cone with vertical angle 28, having the incident
beam as axis. The intersection of this cone with the photographic
film gives the" Debye-Scberrer ring" of this plane, which represents
the geometrical locus of the reflexion for all possible positions of the
plane. This takes the form of a circle if a plate is used at right
angles to the incident beam. However, if a cylindrical film is

FIG. 21.-Determination of O,.iontation by :V[eansof the Rotating-crystal
Method.

employed, the axis of which would normally also be placed at right
angles to the incident beam, then a curve of the fourth order is
obtained. When the axis of the cylinder and the incident beam
coincide, the curve degenerates into a circle; this in turn becomes a
straight line when the film is laid out flat. Corresponding to the
rcflexion positions (1-4) of the reflecting plane, the reflected beams
are also symmetrical in relation to the plane of the incident beam
and axis of rotation, and to the "equatorial plane ", which is
perpendicular to the plane of incidence.

If the film cylinder is perpendicular to the beam, the diagram
contains the Debye-Scherrer rings of all the reflecting planes. The
magnitude of the angle of deviation of X-rays on reflex ion at a
plane (hkl) is found by inserting the lattice-plane spacing (d) into
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Bragg's equation (Section 6). The higher the indices and, con-
sequently, the smaller the spacing of the lattice plane, the greater
is the angle of deviation (6) of the beam, which may be as much as
180°.

The intensity of the Debye-Scherrer rings depends on many
factors, including primarily the structure-factor, which, however,
will not be further discussed. Table V contains the indices of the
lattice planes of the more important lattice typcs, arranged in order
of increasing 6 angles of the corresponding Debye-Scherrer rings.

TABLE V
Sequence of Debye-Scherrer Rings for some of the Metallic

Lattices

Cubic. Close-packed hexagonal.

Face-centred. Body-centred. cIa = 1·633 cIa = 1·86 (Zn).
(=2 V}).

111 110 1010 0002
200 200 0002 1010
022 112 1011 1011
113 022 1012 1012
222 013 1120 1013
004 222 1013 1120
313 213 2020 0004
024 004 1122 1122

-

The problem of orientation now consists in determining, by
measurement of the positions of the reflexions on the diagram, the
angle between the normal to the reflecting planes and the axis of
rotation.

From the triangle E1D (Fig. 21) we obtain first for the unknown
angle p between face normal and axis of rotation the equation

cos p = cos 6/2 cos () (19/1)

in which ()represents the angle between the plane of the incident
beam and the axis of rotation, and that of the incident beam,
normal, and reflected beam. The angle () can be determined in
various ways, according to whether the photograph has been
recorded on a plate or cylindrical film. In the case of the plane
shown in Fig. 21, the determination is very easy. ()can be measured
either directly with a protractor, or calculated by measuring the
distance between diffraction spots (reflexions). Let P be the distance
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of the plate from the specimen, and n and m the rectangular co-
ordinates of a refiexion (diffraction spot) with reference to the
vertical and horizontal lines of symmetry of the diagram; it then

follows that tg'S = ~n or, if the radius r (= Ptg8) of the Debye-;:.m
Scherrer ring is introduced, on which the four refiexions lie, then

mcos 'S = - and finallyr
_ cos 8/2

cos p - 2P. tg8· 2m (19/2)

Consequently, if the distance of the plate and the indices of the
refiecting lattice plane (8) are known, measurement of the distance
2m between two refiexions parallel to the axis of rotation will give
the desired angle between plane normal and axis of rotation.
Should it be necessary to determine orientations in large numbers,
it is recommended that the relationship between p and 2m be repre-
sented in graphic or tabular form.

If the photograph is recorded on a cylindrical film of radius R,
the axis of which is parallel to the axis of rotation of the crystal
(perpendicular to the incident beam), then, if 2m represents the
distance between refiexions (parallel to the axis of the cylinder), the
following equation is obtained:

1 m
cos p = 2 sin 8/2· vm~ (19/3)

Before we proceed to illustrate, by means of examples, the
practical application of X-ray technique to the determination of
orientation, it will be useful to offer some further observations on
the method under discussion.

20. Oblique Photographs
In the first place, as may be seen from Fig. 21, it may happen that

the plane normal no longer intersects the refiexion circle when the
crystal is rotated. This will occur when the angle p is smaller than
8/2. For p = 8/2 the two parallel circles make contact with the
refiexion circle at two points, and two refiexions are obtained on the
vertical axis of the diffraction pattern, lying symmetrically above
and below the equator. In the most frequent case of 8/2 < p < 90°,
the four refiexions referred to above will appear. As p increases,
they will approach the equator ofthe Debye-Scherrer ring belonging
to the plane, where ultimately for p = 90°, each pair of refiexions
combines to form a single reflexion. Consequently the refiexions
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for all those planes which belong to the zone of the axis of rotation
will lie on the equator. In order to ensure that reflexions shall
occur in all cases (including cases where p < fJ /2) the axis of rotation
of the crystal is fixed at an angle (900

- fJ/2) to the incident beam
(Fig. 22). Symmetry relative to the equator disappears in these
"oblique photographs" (83). The required angle p is obtained
from the triangle E1D by means of the relation

cos p = sin2 fJ/2+ cos2 fJ/2cos 0 (20/1)
o can again be measured directly on the plate, or it can be calculated,

FIG. 22.-Determination of Orientation with the Aid of " Oblique"
Photographs.

with the aid of the formula sin 0 = P ~tgfJ' from the distance 2n

between the reflexions and the plate distance P.
If the angle between the axis of rotation and the incident beam is

not (90 - fJ/2), but ~, then the equation which determines p is as
follows:

cos p = cos ~ sin fJ/2+ sin ~ cos 0/2 cos 0 (20/2)
Oblique photographs are mainly important for use with crystals
with unique planes (e.g., hexagonal and tetragonal) whose position
is important for the determination of the orientation of the crystal.

21. Layer-line Diagrams
A further observation conceI'llSthe special case in which the axis

of rotation coincides with a crystal direction defined by simple
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indices. The diagrams then possess certain specially simple features
[namely, the arrangement ofthe reflexions on Polanyi " layer lines",

FIG. 23.-KBr Crystal: Layer.line Diagram Recorded on Cylindrical Film.

which appear as parallel straight lines when photographed on a
cylindrical film, and as a set of hyperbolffi on a plate (Figs. 23 and
24)]. In discussing these diagrams we refer again to Fig. 21, in

FIG. 24.-The Same Crystal: Layer-line Diagram Recorded on
Flat Plate.

which the polar distance of the reflected beam is the angle fl-. From
the triangle FID we first obtain

cos fl- = sin 8 cos Il

from which, by substituting for cos Il from equation 19/1, the
following equation is obtained:

cos fl- = 2 sin 8/2 cos p • (21/1)



FIG. 25.-:Uethod of
Indexing Layer-line

Diagrams (84).

(21/2). / l'd l'n),
cos [L= 2 sm El2J = J

It then follows that for cos [Lthe equation is

l'd
cos P = J'

It will be seen from this equation that for
a given value of l' all reflected rays intersect
the reference sphere at points on a parallel
circle, at a distance [Lfrom the pole, and
that consequently the reflected rays lie on
the surface ofa cone with semi-vertical angle[L
about the axis of rotation. The parallel circles
corresponding to successive values of l' make
equal intercepts on the axis of rotation
so that the surface of the reference sphere carries a series of equi-
distant parallel circles. The index l' remains constant along each
circle and increases by 1 on passing from one circle to the next.1

The maximum index l'max. is derived from the condition l'max. :s;:~

since cos [L:s;:1. The index 0 corresponds to the equator of the
reference sphere.

The intercepts of the cones of reflected rays belonging to the
individual parallel circles with the film constitute the characteristic
" layer lines". If the photograph is recorded on a cylindrical film
with an axis which coincides with the axis of rotation, the film will
be divided by the cones into circles, which will appear as straight
lines when the film is laid out flat. If a plate is used, a set of
hyperbola) will appear with vertices on the axis of symmetry of the
diagram parallel to the axis of rotation. Finally, if a cylindrical

21. Layer-line Diagrams 43

We next assume that the co-ordinates have been so transformed
that the axis of rotation coincides with the new c-axis. The trans-
formed index l' of the plane in question, relative to the new c-axis,

indicates that the intercept on the axis amounts to ~, on this axis.

Consequently l' equivalent lattice planes lie on the c-axis (axis of
rotation) between two successive lattice
points with the identity period J. For cos
p Fig. 25 gives the expression

1 Provided that all refiexions on a layer line are not absent .

•
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film is used with axis along the incident beam, the layer lines will
be represented by an array of curves of the fourth order. This last
type of photograph contains all the possible layer lines.

The significance of layer-line diagrams for the determination of
crystal orientation lies in the fact that, from the spacing between
the layer lines, or the vertices of the hyperbolae, the identity period
parallel to the axis of rotation, and hence its crystallographic nature
(when the lattice dimensions are known), can be readily ascertained
(84). If for instance 2et is the space between the ltll layer lines, or
between their vertices, then if R is again the radius of the cylinder
of the film (or P the distance of the plate) :

2et ( 2et)cot [Lt= 2R = 2P

from which [Lt is calculated and can be inserted in

(21/3)

(21/2a)J=~
cos [Lt

The shortest identity period is obtained according to this formula
if the order ofthe reflexion (n) in the Bragg equation is put equal to 1.

On the other hand, should the axis of rotation, as is more usual,
not be a simple lattice direction, and thus be characterized by a
large identity period, then the layer lines will fall so close together
that it will no longer be possible to assign individual reflexions to
separate layer lines.

22. X-Ray Goniometer
We conclude with a final observation on the subject of the com-

plete determination of the orientation of the lattice in the specimen.
The methods hitherto described yield the orientation in relation to
one direction only. If the lattice orientation of the specimen is to
be fully known, then either two such photographs must be obtained
in different directions, or a photograph must be taken in an " X-ray
goniometer" [(86), (87), (88)]. In this case rotation of the crystal
is synchronized with movement of the film holder so that for each
reflexion obtained the position of the specimen is known.

23. Examples of the Determination of Orientation by the
Rotating-crystal Method

As a first example of the determination of orientation by X-ray
methods we will work out the orientation of the axis of a rod·
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shaped, cubic face-centred crystal with reference to the three axes
of the cube. Fig. 26a shows the rotation photograph (flat plate,
copper radiation AKa = 1·54 A.) of an aluminium crystal, rotated

about its longitudinal axis
which is perpendicular to
the beam. Owing to the
distance from the plate (45·8
mm.) only the two inner-
most Debye-Scherrer rings
({Ill} and {200}) with the e
angles 38° 30' and 44° 50'
are present. With the aid
of the formula (19/2) or the

(a) Rotation photograph recorded
on plate.

(b) Plotting of the arcs in the
stereographic diagram.

FIG. 26.-Determination of the Orientation of an Aluminium Crystal.

equivalent graphical representation the corresponding p angles are
now determined from the measured distances (2m) between reflexions.
The above diagram gives:

2mUlll = 2·9, 21·0, 52·0 and 70·0 mm.

from which it follows that

PUlll = 87° 45',74° 15', 47° 45' and 24° 45'

and 2m(200l= 20·2 and M·O mm.
i.e., P(200l = 78° 15' and 56° 45'.

Although two angles suffice to determine the orientation of the
longitudinal axis, there is close agreement (between the different
values), and, as will be apparent from the stereographic diagram

•
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shown in Fig. 26b, this increases the degree of accuracy of the final
result. The arcs in Fig. 26b are plotted in the first place with refcr-
ence to the normals of two reflecting planes (e.g., in the present case
two cubic axes); arcs having the known p angles are then described
round these. The crystallograph ically equivalent normals from
which the remaining angles are to be plotted (cf. Fig. H)-in this
case the four angles with the cube body diagonals-will appear from
the initial rough determination of orientation (intersection of the
first two circles to be described). By taking advantage of the known
symmetry ofthe crystal it is always possible to completc the plotting
of the orientation in the same basic triangle. The mean values for

.:1 lr\'~2mrV
•

FIG. 27.-Rotation Photograph of a Zn Crystal (Cylindrical Film).

the angles between the axis of the rod and the cubic main axes in
the present example are found ultimately to be 78°, 56° 30' and 36°.

In our next example wewill determ ine the orientation of a hexagonal
crystal (zinc) in the form of a wire with the aid of a rotating-crystal
photograph on a cylindrical film perpendicular to the beam (Fig. 27).
In this case the orientation will be specified by the angle y. between
the wire axis and basal plane, and the angle A between wire axis and
the nearest digonal axis type I. The refiexion from the basal plane
appears in the case of zinc on the innermost Debye-Scherrer ring,
that of the prism planes of type I on the next ring (Table V); the
corresponding 0 angles are 36° 20' and 39° 10' for copper radiation.

It follows from 2mW002) = 36·4 mm., with the aid of equation
(19/3) (2R = 57·3 mm.) that the angle between wire axis and
hexagonal axis is Pmoo21 = 30° 40'. From 2m(lOlO)= 9·4 and
19·8 mm. for the reflexions from the prism planes type I we obtain
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the two angles P(lOIO) = 76° and 60° 20' between wire axis and two
digonal axes type II (normals to the prism planes type I). Once
again there is agreement between the different values of the orienta-
tion deduced from these figures. By forming an average in the
stereographic net we find that

X = 60°
A = 63° 30'.

Finally, from the two layer-line diagrams in Figs. 23 and 24 we
will determine the crystallographic nature of the axis of rotation
of a rod of potassium bromide.

From the distances between the layer lines

2e1 = 13·7 and 2e2 = 30·0 mm.

the diameter of the camera being 57·3 mm., it follows from the
formula (21/3) that the angles

[1.1 = 76° 30' and [1.2 = 62° 20'.

Further, we obtain from (21/2a), with n = 1, a value of 6·63 for J
from the first layer line, and of 6·65 for J from the second layer
line; giving a mean value for J = 6·64 A. Comparison with the
measurements for the KBr lattice (Table XLII) shows that the
rotation axis was parallel to the cubic axis of the crystal.

The same result is arrived at from an evaluation of Fig. 24. The
distances between the vertices of pairs of hyperbolae are 2e1 = 7·8
and 2e2 = 16·6 mm., which, for a plate distance of P = 16·0 mm.,
gives a value of 76° 20' for [1.1 and of 62° 30' for [1.2' and so similarly
indicates the cubic axis as the axis of rotation.

(b) LAUE METHOD

Compared with the methods described above for determining
the orientation of crystals by the use of monochromatic radiation,
the method based on Laue photographs is relatively unimportant.
It can, however, be used with advantage to determine the crystallo-
graphic orientation of the face normals of plate-shaped crystals.

There is a general similarity in the appearance of Laue photo-
graphs, in so far as the individual reflexions corresponding to the
different wavelengths lie on curves which are conic sections, and
always include, as vertex, the point of incidence of the direct beam,
which is perpendicular to the plate. All beams reflected from the
planes of a zone constitute the generators of a circular cone about
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the zone axis, whose intercept with the photographic plate gives
the conic sections known as " zone circles".

As a rule the specimen is held between the plate, which is per-
pendicular to the incident beam, and the X-ray tube. So long as
the angle between the zone axis and the direct beam is less than 450

the zone circles appear on this plate as ellipses, which become para-
bolas when the zone axis is inclined at 45°. If the axis of the zone
is more steeply inclined to the incident beam, then the zone circle
becomes one branch of a hyperbola. In this case the zone also
appears as one branch of a hyperbola on a photographic plate
placed between X-ray tube and specimen, but the vertex does not
coincide with the point of incidence of the direct bcam, as in the
case of the fil'st plate. Finally, if the zone axis is perpendicular to
the incident beam, the cone degenerates into a plane which inter-
sects both plates in straight lines passing through the point of
incidence of the direct beam. Both transmission (89) and back-
reflexion Laue photographs can now be used to determine crystal
orientation. As already mentioned, by this method (in which the
specimen is not rotated), the position of the lattice is determined
in relation to a system of co-ordinates in space and not in relation to
a direction only (namely the direction of rotation) as is the case
when using the rotating-crystal method.

24. Example of the Determination of Orientation by Laue
Photographs

The method can be illustrated by two examples, the examination
of a magnesium crystal by means of a transmission photograph
[according to (90)] and of an aluminium crystal by means of a back-
reflexion photograph. The two diagrams are shown in Figs. 28a
and 29a. The zone circles are easily recognized in both pictures.
Since the individual reflexions are due to various unknown wave-
lengths, it is not at first possible to assign them to definite lattice
planes. On the other hand, it is easy to ascertain the position of the
reflecting lattice plane with reference to the direction of the incident
beam (i.e., the direction of the normal to the crystal plate).

Let SI or S2 be the distance of each reflection from the point of
incidence of the primary beam, then the angle of deviation ()1 of the
X-ray beam is obtained for the transmission photograph from

tg()1 = ~1, the deviation 02 for the back-reflexion photograph from
1

tg (1800
- 82) = ~2, which in PI or P2 represent the distances from

2
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(b) Pole figure of the reflecting lattice planes (in stereographic projection).

FIG. 28 (a) and (b).-Determination of the Orientation ofa Magnesium Crystal.
E
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crystal to plates (Fig. 30). The normal NI or N2 to the reflecting
lattice planes lies in each case in the plane defined by the incident

•1

t?J 17

(I •

j

I/?

"

(a) Laue back·reflexion photograph.

FIG. 29 (Ct) and (b).-Detel'.
mination of the Orientation

of an Aluminium Crystal.

(b) Pole figut'e of the reflecting lattice
planes (in stereographic projection).

and diffracted beams and makes with the direct beam the angle
(900

- 0d2) or (900
- °2/2). If now the position of the plane of
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the two beams is defined by the angle, <PI or <P2' which it makes with
an arbitrarily selected plane of reference, then the pole of the

FIG. 30.-Analysis of Laue Photographs.

reflecting plane can be shown on a stereographic projection whose
equatorial plane is the plane of the crystal plate.

FIG. 3l.-Polar Reflexion Chart for Use with Laue Photographs.

In order to simplify the determination of the 8-angles for the
various reflexions it is convenient to employ a polar reflexion chart
(Fig. 31) which indicates the 8-angles corresponding to the various
S-values for a given plate distance (91). By superimposing Laue
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photograph and chart, the e and cP angles for all reflexions can be
read off directly. If these are plotted in the stereographic pro-
jection, then the pole figure for all reflecting-lattice planes is
obtained (Figs. 28b and 29b). As will be seen from Fig. 30 the angle
(900

- eJ2) from the centre must be plotted in the direction of the
corresponding reflexion for back-reflexion photographs, and in the
opposite direction for transmission photographs.

The orientation can now be determined from these pole figures in
two ways. By the first method the pole figure, in which the zones

90° '.f .
AX~8 OJ rotatwn

FIG. 32.-Determination of the Orientation of a
Magnesium Crystal. Pole Figure of Fig. 28b, Rotated

through 14°.

appear clearly as great circles passing through the reflexions, can
be transformed into a pole figure corresponding to a simple setting
of the crystal by rotation about an axis lying in the equatorial plane
(the rotation method). By the second method the crystallographic
description of the zones and plane normals can be derived directly
from the relationship between the angles which appear on the
stereographic pole figure.

For the first method we employ the pole figure of the transmission
photograph (Fig. 28b) in which the intensity of the reflexions is also
indicated. By rotating in such a way that the zone 1, 2 ... 14
comes into coincidence with the basic circle, a pole figure (Fig. 32)
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is obtained which coincides with the pole figure of the magnesium
crystal about the hexagonal axis (Fig. 33).1 As a consequence of
this rotation the plate normal moves to X; its orientation, i.e., the
angles which it makes with the hexagonal and digonal axes, can be
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FIG. 33.-Pole Figure of Magnesium about the Hexagonal Axis (90).

seen from Fig. 32; they are p = 14° with the hexagonal axis, and
77° and 76° with the nearest digonal axes of types I or H. If the
longitudinal and transverse directions were also entered on the pole
figure, the crystallographic orientations of these two directions
would be immediately apparent.

1 In this case the zone 1, 2 ... 14 is seen to be a zone of the hexagonal
axis from the fact that it exhibits reflex ion angles of 30°.

•
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Applying the second method to the stereographic figure in Fig.
29b we obtain the following angles between the important zones:

(I-Il) = 90°; (I-Ill) = 60°; (I-IV) = 60°
(Il-IIl) = 45°; (Il-IV) = 45°; (Ill-IV) = 60°.

From this it follows that I, Ill, IV are zones of cube-face diagonals,
while Il is a cubic-axis zone. Zone intersections are represented by
a cube edge (Il-IlI), a face diagonal (I-Il) and a body diagonal
(I-Ill-IV). In this way the orientation of the normal (N) of the
specimen which emerges from the centre of the net is fixed. It
makes the angles 34°,61 ° and 74° with the three cubic axes.

If the direction of incidence of the X-ray beam coincides with a
symmetry axis of the crystal, the Laue photograph will exhibit a
correspondingly symmetrical pattern. As a rule the nature of the
symmetry of the Laue photograph suffices in this case to determ ine
the crystallographic direction of the incident beam. Photographs
obtained by the back-reflexion method are specially suitable for this
purpose, besides having the additional advantage of being practicable
with thick specimens [cf., e.g., (92)].

Finally, it should be mentioned that atlases of the Laue photo-
graphs, obtained with face-centred cubic and body-centred cubic
crystals by systematically varying the orientation, have been
prepared (93).
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CHAPTER V

GEOMETRY OF THE MECHANISMS OF CRYSTAL
DEFORMATION

Before discussing in the second part of this book the results of in-
vestigations into crystal plasticity, we propose in the present chapter
to examine the geometry of the various mechanisms of deformation
in so far as it serves to explain the processes to be described.

It has long been knpwn that crystals can be plastically deformed.
The mechanisms which accompany plastic flow are based on the
phenomena of glide (translation) and mechanical twinning (simple
shear), which were discovered by Reusch on rock salt and calcite
(1867). In both cases the deformation is plane and homogeneous,
straight lines and planes remaining straight and plane; a sphere is
transformed into an ellipsoid. The crystalline structure is also
retained in the deformed part, the lattice being transformed into
itself by the deformation.

A. GLIDE 1

25. Model of Gliding

Glide consists in the slipping of portions of the crystal along
crystallographic planes of low indices in the direction of densely
packed atomic rows. Consequently neither the plane nor the direc-
tion of slip is determincd by the loading (for instance, by a maximum
of the shear stress); both these lattice elements are fixed by the
structure of the lattice.

Fig. 34 shows the model of a cylindrical crystal which has been
extended by glide (94). The model represents the basal glide of a
hexagonal crystal under uni-axial tension. The upper and lower
boundaries of the cylindrical specimen are made up of basal planes.
The direction of glide is chosen to be a digonal axis of type I, and
the hexagon sketched on the basal plane indicates that in general
this glide direction does not coincide with the large elliptical axis.
Glide along the crystallographically preferred glide system 2 leads

1 Throughout this book the word" glide" has been used in preference to
"slip". The terms are, however, synonymous and in the literature either
may be used.

2 The glide system that is mechanically preferred by a maximum of the
shear stress consists, for uni-axial tension, of the plane that makes 45° with
the axis of tension, and the major axis of the ellipse as the glide direction
[cf., e.g. (40/1)].

55



56 Geometry of the Mechanisms of Crystal Deformation

to the configuration shown in Fig. 34, c and d. It is obvious that
the change in shape produced in this way is quite specific (band
formation): the originally cylindrical crystal contracts considerably
in one direction, while it expands somewhat in the direction perpen-
dicular to it, owing to the divergence of the glide direction from
the major axis of the translation ellipses. A comparison between
Fig. 34, band d, shows also that the extension has been accompanied

a bed

FIG. 34 (a)-(d).-Models of Gliding.

(a) and (b), initial state; (c) and (d), after extension.

by a very marked rotation of the lattice with respect to the longi-
tudinal direction (direction of tension).

How closely this model corresponds to reality is shown by the
photographs of elongated metal crystals reproduced in Fig. 35.1
The traces of the glide planes appear as sharply defined elliptical
bands on the surface of the strip. The position of the apex of the
ellipses outside the central plane of the crystal band reveals clearly
the divergence between glide direction and the major axis of the
ellipses.

1 For very early observations of glide bands and band formation resulting
from the elongation of metal crystals see (95) and (96).
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26. Geometrical Treatment of Simple Glide
The formul::e expressing the relationship between deformation

and lattice rotation when a single-glide system is operative will be
examined in the first place for extension with the aid of Fig. 36.
The initially cylindrical crystal will be extended between the two
glide planes that go through the points A and B respectively. Glide

Zn

Cd

f3-Sn

Bi

FIG. 35.-Glide of Metal Crystals, Viewed Perpendicularly to the
Plane of the Band.

takes place parallel to the glide plane T in the glide direction t.
The resultant configuration is drawn with thick lines; it has a
double kink. It will again be seen from the diagram that the glide
has been accompanied by lattice rotation relative to the longi-
tudinal axis, although in this case it is the lattice position (position
of the glide elements) and not, as in Fig. 34, the longitudinal axis
which has been kept fixed. The angle between longitudinal axis
and glide direction diminishes with increasing extension. It will
now be seen from Fig. 36 that the lattice rotation consists in a
movement of the longitudinal axis towards the glide direction,
during which the longitudinal axis always remains in the plane



FIG. 36.-Diagram Illustrat-
ing the Formula for Extension

by Gliding.
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determined by its original position and the direction of glide. The

relationship between the amount of extension: (il = II [lo; lo and
o

II representing the length before and after extension) and the rota-
tion of the lattice is obtained directly from the triangles ABB', ABN

and AB'N (94). The triangleABB' gives

~= 1 + il=s~~O (26/1)
lo sm Al

where Ao and Al represent the angles
between the direction of tension and
the glide directions before and after
extension.

From the two right-angled triangles
ABN and AB' N (AN is the normal on
the glide plane) we obtain for the small
side AN common to both triangles the
expressions

AN = lo sin Xo = II sin Xl
and further

~ = 1 + il = s~n Xo (26/2)
lo Sill Xl

in which Xo and Xl are the angles between
glide plane and directions of tension
before and after extension. . It is seen
from these formuhe that the amount of
extension by glide can be very consider-
able; as a rule it will increase with the

original obliquity ofthe glide elements to the direction of deformation.
The introduction of the plastic shear strain instead of the tensile

strain has proved very convenient in the crystallographic analysis
of stress-strain curves of crystals. This quantity, also known as
the crystallographic glide strain (a), is the relative displ~cement of
two glide planes of unit distance from each other [(97), (98)). It is

therefore given by the quotient ~~; in which the numerator

represents the total amount of slip and the denominator the thick-
ness of the deformed glide packet. The connection between glide
strain and extension can be easily derived hom Fig. 36. For BB'
we obtain from the triangle ABB'

BB' = II sin ~Ao - AI).
sm Ao


